Redundant Leukemogenicity of NUP98-HOX Fusion Genes in Primary Murine Bone Marrow Cells Correlates with Gene Expression Changes Consistent with Common Key Target Genes.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1134-1134
Author(s):  
Lars Palmqvist ◽  
Nicolas Pineault ◽  
Patricia Rosten ◽  
Keith R. Humphries

Abstract Several Abd-B HOX genes have been found in translocations with the nucleoporin gene NUP98 in patients with acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS). We have previously tested both known and engineered NUP98-HOX fusions in the murine bone marrow transplantation model (N. Pineault et al., MCB24:1907, 2004). Strikingly, an engineered NUP98-HOXA10 (NA10) fusion, not observed in patients, and the AML-associated fusion gene NUP98-HOXD13 (ND13) have a virtually indistinguishable ability to transform myeloid progenitor cells and to induce leukemia in collaboration with MEIS1. Importantly, their transforming ability is lost when the DNA-binding homeodomain is mutated. This functional overlap provides a potentially powerful strategy to identify key genes/pathways mediating HOX-induced leukemias by looking for overlapping gene expression changes induced by different NUP98-HOX fusion genes. 5-FU bone marrow cells were transduced with retroviral vectors encoding for the leukemogenic ND13 or NA10 fusion genes or a non-leukemogenic ND13 gene with a N51S homeodomain mutation or the empty MIG vector. RNA was extracted from transduced GFP+ Sca1+ Lin- cells and linear RNA amplification was performed before the analysis on the Affymetrix GeneChip MOE430. Three independent experiments were conducted and analyzed. Correlation analysis showed a high degree of similarity between ND13 and NA10 in their overall gene expression profiles, compared to the N51S mutant or the MIG control. Validation with real-time quantitative RT-PCR on non-amplified RNA revealed good agreement between the gene array and the PCR, with a tendency for bigger fold-changes with the PCR method. Close to 500 genes were found differentially expressed (changed ≥2-fold vs. MIG ctrl and t-test p-value <0.05) and some 100 of these were changed by both ND13 and NA10 but not by the N51S homeodomain mutant. These genes are strong candidates as direct and/or immediate downstream targets involved in leukemic transformation. Remarkably, among these were genes previously identified as a NUP98 fusion partner in human leukemia (DEAD-box protein, Ddx10), or part of the same family of genes found in NUP98-fusions (Ddx4 and the paired mesoderm homeobox gene, Pmx2). This suggests a possible molecular link in leukemogenicity between HOX- and non-HOX-NUP98 fusions. Other interesting genes that were induced by ND13 and NA10, but not by the N51S homeodomain mutant, were genes previously implicated in leukemia (e.g. Flt3, Evi1) as well as Hox-related genes, such as the Hox cofactor Pbx3 and several Hox A cluster members. Furthermore, approximately one third were ESTs or genes with unknown function. In conclusion, our results document similar changes in gene expression induced by functionally redundant but different NUP98-HOX fusions and should facilitate the identification of common target genes involved in leukemic transformation.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1452-1452
Author(s):  
Jean-Yves Metais ◽  
Rotraud Wieser ◽  
Cynthia E. Dunbar

Abstract We have found non-random patterns of retroviral integration in long-term hematopoietic repopulating cells in the rhesus macaque, with frequent integration events of MLV vectors into the MDS1-EVI1 gene complex. These findings, along with reports regarding frequent integration events in the same gene complex in patients with chronic granulomatous disease receiving MLV-transduced hematopoietic cells in a clinical trial and the ability of MLV vectors activating expression of this gene via integration to immortalize primary murine bone marrow cells, suggests these gene products could have important roles in normal and leukemic hematopoiesis. Expression from this gene complex can result in translation of at least three distinct proteins: MDS1, EVI1, and MDS1-EVI1. EVI1 has been the most studied protein of this locus. Its overexpression, as a consequence of chromosomal rearrangement or viral integration, is associated with leukemia. MDS1-EVI1 contains a PR domain that is lacking in EVI1 and is thought to possibly be antagonistic to EVI1, however the location of the integrations in our prior rhesus studies would indicate that overexpression of either gene product could be immortalizing. Both proteins share the same expression profile in normal tissues as well as most reports of myeloid leukemias. To investigate the impact of the three gene products on hematopoietic cells, we cloned murine mds1, evi1, and mds1-evi1 into the pMIEV-GFP retroviral vector and produced ecotropic vector particles. These were used to transduce the murine BaF3 hematopoietic cell line as a model to study the impact of expression of these various gene products. Gene expression analysis using Afflymetrix arrays demonstrated that both EVI1 and MDS1-EVI1 expression produced dramatic changes in gene expression profiles of these cells, compared to MDS1 and control vector. For instance, EVI1 transduced cells overexpressed oncogenes such as small G proteins belonging to the RAS family. There was modulation of genes implied in hematopoiesis, apoptosis, TGF beta signaling, and cell cycle. To assess changes in cell cycling of transduced BaF3 cells we used a flow cytometric assay, which unraveled an arrest in G1 phase only when EVI1 was overexpressed. These changes were concomitant to an increased metabolic activity as measured by an MTT assay. Further studies of these different pathways have to be performed in order to confirm the results obtained by the DNA chips analysis. Primary murine bone marrow cells could be immortalized after transduction by both EVI1 and MDS1-EVI1 vectors, compared to MDS1 and control vectors. Mice have been transplanted with primary bone marrow cells transduced with all vectors, and are being followed for hematopoietic changes or leukemia. In conclusion, both MDS1-EVI1 and EVI1 overexpression appear to result in marked changes in the behavior of primitive hematopoietic cells.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 229-229
Author(s):  
Michael Heuser ◽  
Eric Yung ◽  
Courteney Lai ◽  
Bob Argiropoulos ◽  
Florian Kuchenbauer ◽  
...  

Abstract Abstract 229 Overexpression of MN1 (meningioma 1) is a negative prognostic factor in acute myeloid leukemia (AML) patients with normal cytogenetics, and induces a rapidly lethal AML in mice. We have shown previously that MN1, a transcription cofactor of retinoic acid receptor alpha (RARA), increases resistance to all-trans retinoic acid (ATRA) by greater than 3000-fold in an in-vitro differentiation model. We investigated the molecular mechanisms involved in the MN1-induced myeloid differentiation block by fusing potent transcriptional activation or repression domains to MN1, conducting a structure-function analysis of MN1, gene expression profiling, ChIP-on chip experiments, and functional validation of MN1 target genes. We found that (1) MN1 inhibits myeloid differentiation through transcriptional repression; (2) the C-terminal domain of MN1 is critical for induction of resistance to ATRA; (3) EGR2 is a putative direct target of MN1 and RARA that is repressed in MN1 leukemias; and (4) that constitutive upregulation of EGR2 in MN1 leukemias permits differentiation and prevents engraftment of transplanted cells. To investigate whether MN1 impacts on myeloid differentiation through transcriptional activation or repression we fused a strong transcriptional activation domain (VP16) or repression domain (M33) to MN1. MN1VP16 immortalized murine bone marrow cells, however, these cells could differentiate to mature granulocytes, and succumbed to cell cycle arrest upon treatment with ATRA. Mice receiving transplants of MN1VP16 cells had a median survival of 143 days (n=16) compared to 35 days in mice receiving MN1-transduced cells (n=18; p<.001). Morphologic analysis of bone marrow mostly showed mature granulocytes with less than 20 percent immature forms consistent with a diagnosis of myeloproliferative-like disease. Conversely, mice receiving transplants with cells transduced with the fusion of MN1 to the transcriptional repression domain of M33 (n=7) developed leukemia with a similar latency and phenotype as mice receiving transplants from MN1-transduced cells (survival, P=.6). These data suggest that MN1 inhibits myeloid differentiation by transcriptional repression rather than activation of its target genes. A structure-function analysis was performed to identify the domain(s) of MN1 required to inhibit myeloid differentiation. Consecutive stretches of 200 amino acids of MN1 were interrogated The deletion constructs were subsequently transduced into bone marrow cells immortalized by NUP98-HOXD13 (ND13). ND13 cells are very sensitive to ATRA-induced differentiation and cell cycle arrest with an IC50 of 0.1 μ M, whereas overexpression of MN1 increases resistance greater than 3000-fold. Interestingly, deletion of the 200 C-terminal amino acids of MN1 restored ATRA sensitivity of ND13 cells compared to full-length MN1, suggesting that the C-terminus of MN1 is required for inhibition of myeloid differentiation. To identify MN1-regulated genes important for the myeloid differentiation block we performed gene expression profiling of MN1- and MN1VP16-transduced bone marrow cells. To further identify genes that might be directly regulated by MN1 we performed ChIP-on-chip using anti-MN1 and anti-RARA antibodies. EGR2, CCL5, CMAH, among others, were identified as targets of both MN1 and RARA whose gene expression was low in MN1 but high in MN1VP16 cells. Overexpression of these genes in MN1-transduced leukemic cells was used to validate their function. Blast percentage of in vitro cultured bone marrow cells was 93, 58, 83, and 41 percent in MN1+CTL cells, MN1+EGR2, MN1+CCL5, and MN1+CMAH cells, respectively. MN1+EGR2 cell engraftment in peripheral blood of mice declined from 2.2 percent at 4 weeks to undetectable levels at 8 weeks (n=4), whereas MN1+CCL5 and MN1+CMAH cell engraftment was 23 (n=4) and 26 (n=4) percent at 4 weeks, and 14 and 30 percent at 8 weeks, respectively. At time of death, EGR2 was not detectable in mice whereas leukemias of mice receiving MN1+CCL5 or MN1+CMAH- transduced cells were positive for CCL5 or CMAH, respectively. In conclusion, our data suggest that MN1 inhibits myeloid differentiation by transcriptional repression of a subset of its target genes, and that re-expression of EGR2, a zinc-finger transcription factor, may prevent outgrowth of MN1 leukemias in mice. Pharmacologic activation of EGR2 may become a novel antileukemic strategy. Disclosures: No relevant conflicts of interest to declare.


1990 ◽  
Vol 10 (11) ◽  
pp. 6046-6050 ◽  
Author(s):  
D Patinkin ◽  
S Seidman ◽  
F Eckstein ◽  
F Benseler ◽  
H Zakut ◽  
...  

Megakaryocytopoiesis was selectively inhibited in cultured murine bone marrow cells by a 15-mer oligodeoxynucleotide complementary to the initiator AUG region in butyrylcholinesterase mRNA. Furthermore, conditioned medium from Xenopus oocytes producing recombinant butyrylcholinesterase stimulated megakaryocytopoiesis. These observations implicate butyrylcholinesterase in megakaryocytopoiesis and suggest application of oligodeoxynucleotides for modulating bone marrow development.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 388-388
Author(s):  
Jason M. Aliotta ◽  
Mandy Pereira ◽  
Peter J. Quesenberry

Abstract We have previously demonstrated that murine bone marrow cells co-cultured with lung opposite a cell-impermeable membrane express high levels of lung cell-specific genes (Aliotta et al, Stem Cells, 2007;25(9):2245–56). Greater changes in gene expression were noted in marrow cells co-cultured with radiation-injured lung. A factor smaller than the pore size of the cell-impermeable membrane (0.4μm) is responsible for these changes as cell-free conditioned media (CM) had a similar effect on co-cultured marrow cells. Lung-derived microvesicles were found to enter marrow cells in culture and may be among the factors responsible for these phenotypic changes. We wished to determine if these observations could be generalized to co-cultures using other murine organs and whether these changes in gene expression are tissue-specific. Whole bone marrow (WBM) cells were isolated from C57BL/6 mice and co-cultured with lung, liver, heart and WBM cells from C57BL/6 mice exposed to 1200 centigrey (cGy) of total body irradiation (TBI) or no radiation. Control WBM cells were co-cultured with no tissue (control). Co-cultured WBM cells were analyzed 7 or 14 days later by Real Time RT-PCR and fold difference in target gene expression was determined (relative to control cells). In addition, cell-free CM made from the same organs was co-cultured for 7 or 14 days with WBM cells which were then analyzed by RT-PCR. Alternatively, CM was analyzed for the presence of microvesicles by electron microscopy (EM) of ultracentrifuged (UCF) pelleted material. WBM co-cultured only with lung had increased gene expression of surfactant proteins A (Sp-A) and C (Sp-C, 89 and 334-fold increase vs. control, respectively) whereas WBM co-cultured only with brain had increased gene expression of Glial Fibrillary Acidic Protein (GFAP, 4.6-fold increase vs. control). Slight increases in Albumin expression were seen in all co-culture groups but expression was markedly elevated in WBM co-cultured with liver (162,657-fold increase vs. control). Expression of heart-specific markers, including Troponin I and T2, was seen in WBM co-cultured with heart but these levels were not significantly different from those of other co-culture groups. Radiation injury augmented expression of certain genes in co-cultured WBM, including Sp-A (1019 vs. 89-fold increase) in lung co-cultures and GFAP (24 vs. 4.6-fold increase) in brain co-cultures. WBM co-cultured with CM from all organs demonstrated similar changes in gene expression. In addition, pelleted material from UCF CM contained RNA that was specific to the tissue from which the CM was made. EM of UCF CM demonstrated numerous membranebound particles 50–200nm in size that were typical of microvesicles in appearance. These data suggest that changes seen in gene expression of co-cultured WBM are largely tissue-specific, depending on the tissue they are co-cultured with. Microvesicles released by various tissues in co-culture may be among the mediators responsible for the changes seen in WBM gene expression.


1990 ◽  
Vol 10 (11) ◽  
pp. 6046-6050
Author(s):  
D Patinkin ◽  
S Seidman ◽  
F Eckstein ◽  
F Benseler ◽  
H Zakut ◽  
...  

Megakaryocytopoiesis was selectively inhibited in cultured murine bone marrow cells by a 15-mer oligodeoxynucleotide complementary to the initiator AUG region in butyrylcholinesterase mRNA. Furthermore, conditioned medium from Xenopus oocytes producing recombinant butyrylcholinesterase stimulated megakaryocytopoiesis. These observations implicate butyrylcholinesterase in megakaryocytopoiesis and suggest application of oligodeoxynucleotides for modulating bone marrow development.


1997 ◽  
Vol 42 (2) ◽  
pp. 155-159
Author(s):  
Yufang Cui ◽  
Pingkun Zhou ◽  
Brian I. Lord ◽  
Jolyon H. Hendry

1990 ◽  
Vol 10 (7) ◽  
pp. 3562-3568
Author(s):  
M Principato ◽  
J L Cleveland ◽  
U R Rapp ◽  
K L Holmes ◽  
J H Pierce ◽  
...  

Murine bone marrow cells infected with replication-defective retroviruses containing v-raf alone or v-myc alone yielded transformed pre-B cell lines, while a retroviral construct containing both v-raf and v-myc oncogenes produced clonally related populations of mature B cells and mature macrophages. The genealogy of these transformants demonstrates that mature myeloid cells were derived from cells with apparent B-lineage commitment and functional immunoglobulin rearrangements. This system should facilitate studies of developmental relationships in hematopoietic differentiation and analysis of lineage determination.


Sign in / Sign up

Export Citation Format

Share Document