Donor CD8+ T Cells Facilitate Induction of Chimerism and Tolerance without GVHD in Autoimmune NOD Mice Conditioned with Anti-CD3 mAb.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1204-1204
Author(s):  
Yaming Liang ◽  
Tammy Huang ◽  
Chunyan Zhang ◽  
Ivan Todorov ◽  
Mark Atkinson ◽  
...  

Abstract Prevention of autoimmune diabetes and induction of islet transplantation tolerance in NOD mice can be reached by induction of mixed chimerism via bone marrow transplantation (BMT), but this procedure requires total body irradiation (TBI)-conditioning of the recipients. The toxicity of radiation and potential for graft versus host disease (GVHD) prevents its clinical application. Donor CD8+ T cells play a critical role in facilitation of engraftment, but also contribute to induction of GVHD in TBI-conditioned recipients. Here, we showed that high doses of donor CD8+ T cells in combination with bone marrow (BM) cells induced mixed chimerism without GVHD in NOD recipients conditioned with anti-CD3 mAb. The prevention of GVHD in those recipients was associated with low-level production of inflammatory cytokines (i.e. TNF-α), high-level production of anti-inflammatory cytokines (i.e. IL-4 and IL-10), and confining of the donor CD8+ T cell expansion to lymphohematopoietic tissues. The chimeric NOD recipients showed donor specific tolerance and reversal of insulitis. These results demonstrate that donor CD8+ T cell-mediated facilitation of engraftment can be separated from GVHD in non-irradiated recipients. This regimen may have potential application in the treatment of autoimmune disorders as well as induction of transplantation tolerance.

Blood ◽  
2005 ◽  
Vol 105 (5) ◽  
pp. 2180-2188 ◽  
Author(s):  
Yaming Liang ◽  
Tammy Huang ◽  
Chunyan Zhang ◽  
Ivan Todorov ◽  
Mark Atkinson ◽  
...  

AbstractPrevention of autoimmune diabetes and induction of islet transplantation tolerance in nonobese diabetic (NOD) mice can be reached by induction of mixed chimerism via bone marrow transplantation (BMT), but this procedure requires total body irradiation (TBI) conditioning of the recipients. The toxicity of radiation and potential for graft-versus-host disease (GVHD) prevents its clinical application. Donor CD8+ T cells play a critical role in facilitation of engraftment but also contribute to induction of GVHD in TBI-conditioned recipients. Here, we showed that high doses of donor CD8+ T cells in combination with bone marrow (BM) cells induced mixed chimerism without GVHD in NOD recipients conditioned with anti-CD3 monoclonal antibody (mAb). The prevention of GVHD in those recipients was associated with low-level production of inflammatory cytokines (ie, tumor necrosis factor α [TNF-α]), high-level production of anti-inflammatory cytokines (ie, interleukin 4 [IL-4] and IL-10), and confining of the donor CD8+ T-cell expansion to lymphohematopoietic tissues. The chimeric NOD recipients showed donor-specific tolerance and reversal of insulitis. These results demonstrate that donor CD8+ T-cell–mediated facilitation of engraftment can be separated from GVHD in nonirradiated recipients. This regimen may have potential application in the treatment of autoimmune disorders as well as induction of transplantation tolerance.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3533-3533
Author(s):  
Mathias Witzens-Harig ◽  
Dirk Hose ◽  
Michael Hundemer ◽  
Simone Juenger ◽  
Anthony D. Ho ◽  
...  

Abstract Introduction: The bone marrow (BM) is a site of induction of tumour antigen specific T cell responses in many malignancies. We have demonstrated in the BM of myeloma patients high frequencies of spontaneously generated CD8 memory T cells with specificity for the myeloma-associated antigen MUC1, which were not detectable in the peripheral blood (PB). Besides MUC1, carcinoembryonic antigen was recently identified as a tumour-associated antigen in a patient with multiple myeloma. Up to now, spontaneous CD4 T cell responses against myeloma-associated antigens have not been reported. We undertook this study to evaluate to what extent spontaneous CD4 T cell responses against myeloma antigens occur during myeloma progression and if MUC1 or carcinoembryonic antigen represent immunogenic targets of spontaneous CD4 and CD8 T cell responses. Methods: Altogether, 78 patients with multiple myeloma were included into the study. Presence of functionally competent antigen specific T cells was evaluated by ex vivo short term (40 h) IFN-γ Elispot analyses. CD4 T cell responses against MUC1 were assessed by stimulation of purified CD4 T cell fractions with antigen pulsed, autologous dendritic cells (DCs) pulsed with two synthetic 100 meric polypeptides (pp1-100ss and (137–157)5 tr) that can be processed and presented via multiple HLA-II alleles. CD4- or CD8 T cell reactivity against carcinoembryonic antigen was assessed on purified CD4- and CD8 T cell fractions by pulsing DCs with highly purified CEA derived from culture supernatants of an epithelial carcinoma cell line. CD8 responses against MUC1 were analyzed by stimulation of HLA-A2+ patients derived purified T cells with DCs loaded with HLA-A2 restricted MUC1-derived nonameric peptide LLLLTVLTV. As negative control antigen for MUC1 polypeptides and CEA human IgG was used for pulsing DCs at identical concentrations while HLA-A2-restricted peptide SLYNTVATL derived from HIV was used as control antigen for LLLLTVLTV. Test antigen specific reactivity was defined by significantly increased numbers of IFN-γ spots in triplicate test wells compared to control wells (p<0.05, students T test). Results: 8 out of 19 tested patients (42%) contained MUC1 specific CD8 T cells in their bone marrow, while MUC1 specific CD4 T cells were detected in the BM of 30% of the cases (3/10). Interestingly, in peripheral blood (PB) CD8 reactivity against MUC1 was detectable in only 1 out of 10 patients while CD4 reactivity in PB was not detectable at all (0/10). CEA was specifically recognized by BM CD8 T cells from 5 out of 30 patients (17%) and by BM CD4 T cells from 5 out of 18 patients (28%). CEA was not recognized by CD4 and CD8 T cells in the PB of the same patients (0/13). Conclusion: Spontaneous T helper responses against tumour-associated antigens occur in the BM at similar levels as antigen specific CD8 T cells responses while they are virtually undetectable in the PB. Compared to CEA, MUC1 induces CD8 T cell responses in a much higher proportion of myeloma patients. Nevertheless, our data suggest that CEA may trigger spontaneous T cell responses against multiple myeloma in a considerable number of patients. Thus, systematic functional analyses of this potential tumour antigen in multiple myeloma appears to be justified.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3539-3539
Author(s):  
Jacopo Mariotti ◽  
Kaitlyn Ryan ◽  
Paul Massey ◽  
Nicole Buxhoeveden ◽  
Jason Foley ◽  
...  

Abstract Abstract 3539 Poster Board III-476 Pentostatin has been utilized clinically in combination with irradiation for host conditioning prior to reduced-intensity allogeneic hematopoietic stem cell transplantation (allo-HSCT); however, murine models utilizing pentostatin to facilitate engraftment across fully MHC-disparate barriers have not been developed. To address this deficit in murine modeling, we first compared the immunosuppressive and immunodepleting effects of pentostatin (P) plus cyclophosphamide (C) to a regimen of fludarabine (F) plus (C) that we previously described. Cohorts of mice (n=5-10) received a three-day regimen consisting of P alone (1 mg/kg/d), F alone (100 mg/kg/d), C alone (50 mg/kg/d), or combination PC or FC. Combination PC or FC were each more effective at depleting and suppressing splenic T cells than either agent alone (depletion was quantified by flow cytometry; suppression was quantified by cytokine secretion after co-stimulation). The PC and FC regimens were similar in terms of yielding only modest myeloid suppression. However, the PC regimen was more potent in terms of depleting host CD4+ T cells (p<0.01) and CD8+ T cells (p<0.01), and suppressing their function (cytokine values are pg/ml/0.5×106 cells/ml; all comparisons p<0.05) with respect to capacity to secrete IFN-g (13±5 vs. 48±12), IL-2 (59±44 vs. 258±32), IL-4 (34±10 vs. 104±12), and IL-10 (15±3 vs. 34±5). Next, we evaluated whether T cells harvested from PC-treated and FC-treated hosts were also differentially immune suppressed in terms of capacity to mediate an alloreactive host-versus-graft rejection response (HVGR) in vivo when transferred to a secondary host. BALB/c hosts were lethally irradiated (1050 cGy; day -2), reconstituted with host-type T cells from PC- or FC-treated recipients (day -1; 0.1 × 106 T cells transferred), and challenged with fully allogeneic transplant (B6 donor bone marrow, 10 × 106 cells; day 0). In vivo HVGR was quantified on day 7 post-BMT by cytokine capture flow cytometry: absolute number of host CD4+ T cells secreting IFN-g in an allospecific manner was ([x 106/spleen]) 0.02 ± 0.008 in recipients of PC-treated T cells and 1.55 ± 0.39 in recipients of FC-treated cells (p<0.001). Similar results were obtained for allospecific host CD8+ T cells (p<0.001). Our second objective was to characterize the host immune barrier for engraftment after PC treatment. BALB/c mice were treated for 3 days with PC and transplanted with TCD B6 bone marrow. Surprisingly, such PC-treated recipients developed alloreactive T cells in vivo and ultimately rejected the graft. Because the PC-treated hosts were heavily immune depleted at the time of transplantation, we reasoned that failure to engraft might be due to host immune T cell reconstitution after PC therapy. In an experiment performed to characterize the duration of PC-induced immune depletion and suppression, we found that although immune depletion was prolonged, immune suppression was relatively transient. To develop a more immune suppressive regimen, we extended the C therapy to 14 days (50 mg/Kg) and provided a longer interval of pentostatin therapy (administered on days 1, 4, 8, and 12). This 14-day PC regimen yielded CD4+ and CD8+ T cell depletion similar to recipients of a lethal dose of TBI, more durable immune depletion, but again failed to achieve durable immune suppression, therefore resulting in HVGR and ultimate graft rejection. Finally, through intensification of C therapy (to 100 mg/Kg for 14 days), we were identified a PC regimen that was both highly immune depleting and achieved prolonged immune suppression, as defined by host inability to recover T cell IFN-g secretion for a full 14-day period after completion of PC therapy. Finally, our third objective was to determine with this optimized PC regimen might permit the engraftment of MHC disparate, TCD murine allografts. Indeed, using a BALB/c-into-B6 model, we found that mixed chimerism was achieved by day 30 and remained relatively stable through day 90 post-transplant (percent donor chimerism at days 30, 60, and 90 post-transplant were 28 ± 8, 23 ± 9, and 21 ± 7 percent, respectively). At day 90, mixed chimerism in myeloid, T, and B cell subsets was observed in the blood, spleen, and bone marrow compartments. Pentostatin therefore synergizes with cyclophosphamide to deplete, suppress, and limit immune reconstitution of host T cells, thereby allowing engraftment of T cell-depleted allografts across MHC barriers. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5212-5212 ◽  
Author(s):  
Zonghong Shao ◽  
Huijuan Jiang ◽  
Rong Fu

Abstract Objective To investigate the proportion and activation of myeloid- derived suppressor cells (MDSC) in bone marrow from patients with myelodysplastic syndromes (MDS). Methods The proportion of MDSC (Lin-HLA-DR-CD33+) in bone marrow of 30 MDS patients and 19 normal controls were measured by flow cytometry assay(FCM). MDSC and CD8+ T cell were isolated from bone marrow of 14 MDS patients and 14 normal controls among them by FCM and microbeads. The expressions of arginase 1(ARG1) and inducible nitric oxide synthase (iNOS) were analyzed by qPCR and western bolting. Co-cultures with CD8+ T cell were proved the MDSC-mediated inhibition of CD8+ T cell. Results MDS patient’s median MDSC were 7.29% which was higher than that of controls (2.91%). The expression of ARG1 and iNOS mRNA in MDSC of high-risk MDS patients was higher than that of low-risk MDS patients. But the protein of ARG1 was overexpressed rather than that of iNOS. After co-cultured, the apoptosis ratio of CD8+ T cells of MDS((64.17±4.86) %) was increased compared to pure CD8+ T cells ( (54.58±9.95)%). Further more, the production of IFN-γsecreted by CD8+ T cells co-cultured with MDSC ((551.94±47.39) pg/ml)was lower than that of pure CD8+ T cells ((586.04±46.65) pg/ml) There was no significant difference in level of TNF-βbetween co-cultured with MDSC and pure CD8+ cells. Conclusion The proportion of MDSC in bone marrow was increased significantly in MDS. MDSC overexpressed ARG1 in patients with MDS and correlated to the malignant degree of this disease. Further more, MDSC can increased the apoptosis ratio of CD8+ T cell, and inhibited the secretion of IFN-γ. These findings suggested MDSC mediated the response of immunosuppression in MDS. Disclosures: No relevant conflicts of interest to declare.


2016 ◽  
Vol 213 (10) ◽  
pp. 2129-2146 ◽  
Author(s):  
Ningwen Tai ◽  
Jian Peng ◽  
Fuqiang Liu ◽  
Elke Gulden ◽  
Youjia Hu ◽  
...  

Both animal model and human studies indicate that commensal bacteria may modify type 1 diabetes (T1D) development. However, the underlying mechanisms by which gut microbes could trigger or protect from diabetes are not fully understood, especially the interaction of commensal bacteria with pathogenic CD8 T cells. In this study, using islet-specific glucose-6-phosphatase catalytic subunit–related protein (IGRP)–reactive CD8 T cell receptor NY8.3 transgenic nonobese diabetic mice, we demonstrated that MyD88 strongly modulates CD8+ T cell–mediated T1D development via the gut microbiota. Some microbial protein peptides share significant homology with IGRP. Both the microbial peptide mimic of Fusobacteria and the bacteria directly activate IGRP-specific NY8.3 T cells and promote diabetes development. Thus, we provide evidence of molecular mimicry between microbial antigens and an islet autoantigen and a novel mechanism by which the diabetogenicity of CD8+ T cells can be regulated by innate immunity and the gut microbiota.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2763-2763
Author(s):  
J. Jopseph Melenhorst ◽  
Phillip Scheinberg ◽  
Pratip K. Chattopadhyay ◽  
Emma Gostick ◽  
Mario Roederer ◽  
...  

Abstract Both acute and chronic myeloid leukemias (AML and CML) and myelodysplastic syndromes (MDS) over-express and present self-antigens such as the HLA-A*0201-restricted proteinase 3 (PR1) and Wilm’s tumor-1 (WT1) epitopes, making these leukemia-associated antigens selectively amenable to immunotherapeutic intervention. Here, we examined the antigen avidity properties of circulating and bone marrow-resident CD8+ T cells specific for PR1 and WT1 in patients with AML (n=11), CML (n=10) and MDS (n=3). A total of 19 bone marrow (BM) samples and 27 peripheral blood (PB) samples were studied both prior to and following stem cell transplantation (SCT). Cognate HLA-A*0201 tetramers with identical TCR docking platforms were produced using three distinct monomeric HLA-A*0201 complexes with differential coreceptor binding properties to dissect the avidity of antigen binding directly ex vivo: “CD8-null” tetramers, which contain a compound D227K/T228A mutation in the a3 domain of the heavy chain that abrogates CD8 binding; wildtype tetramers; and, “CD8-enhanced” tetramers, which contain a Q115E mutation in the a2 domain of the heavy chain that moderately increases CD8 binding. We have shown previously that CD8-null tetramers engage only high avidity antigen-specific CD8+ T cells; in contrast, CD8-enhanced tetramers can engage populations of antigen-specific CD8+ T cells with low avidities that fall below the threshold for detection with wildtype tetramers. Using these reagents, we developed a polychromatic flow cytometric panel that enabled the simultaneous assessment of phenotype, function and avidity within antigen-specific CD8+ T cell populations. Either PR1- and/or WT1-specific CD8+ T cells were identified in 12/19 BM samples and 6/27 PB samples. Notably, one of the pre-SCT samples contained only low avidity leukemia-associated antigen-specific CD8+ T cells; in contrast, all of the specific populations identified in the post-SCT samples engaged their cognate antigen with high avidity. In 5/7 patients, analysis of paired BM/PB samples revealed the presence of high avidity PR1- and/or WT1-specific CD8+ T cells confined almost exclusively to the BM. Phenotypic analysis demonstrated a mixture of central and effector memory cells in all cases, thereby confirming that these PR1- and WT1-specific CD8+ T cell populations were antigen-experienced. Thus, high avidity CD8+ T cells specific for leukemia-associated antigens are present in vivo and preferentially localize to BM in myeloid malignancies.


Blood ◽  
2004 ◽  
Vol 103 (3) ◽  
pp. 988-994 ◽  
Author(s):  
Kimberly S. Schluns ◽  
Kimberly D. Klonowski ◽  
Leo Lefrançois

AbstractInterleukin 15 (IL-15) and the IL-15 receptor α (IL-15Rα) chain are both required for the basal proliferation of memory CD8 T cells, but which cell types are required to express IL-15 or IL-15Rα to mediate this proliferation is not known. Using bone marrow (BM) chimeras, we showed that virus-specific CD8 memory T-cell proliferation was driven by IL-15 produced by either BM-derived or parenchymal cells. Experiments using mixed BM chimeras showed that IL-15Rα expression by memory CD8 T cells was not required for their division. In addition, wild-type memory CD8 T cells did not divide after transfer into IL-15Rα-/- mice. Further analyses demonstrated that IL-15Rα+ BM-derived cells were crucial in driving memory CD8 T-cell division in the spleen while both parenchymal and BM-derived cells promoted memory cell division in the lung. Proliferation in response to soluble IL-15 in vivo required expression of IL-15Rα by opposing cells and IL-15Rβ by CD8 memory cells, indicating that IL-15 interacted directly with the T cells. These results indicate that transpresentation of IL-15 by IL-15Rα on BM-derived cells mediates the basal proliferation of memory CD8 T cells. (Blood. 2004;103:988-994)


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2824-2824
Author(s):  
Robert D Knight ◽  
Myo Htut ◽  
Juan C. Varela ◽  
Andrew Kin ◽  
Vineetha Edavana ◽  
...  

Abstract The NEXI-002 study is a prospective, multicenter, open-label phase 1/2 trial designed to characterize the safety, immunologic, and preliminary anti-myeloma activity of the NEXI-002 antigen specific CD8+ T cell product. Multiple myeloma (MM) is an incurable malignancy that occurs predominantly in older patients and is characterized by the growth of malignant plasma cells in the bone marrow. Despite substantial advances in therapy, virtually all patients relapse after treatment, emphasizing the unmet medical need for additional effective treatments. The NEXI-002 product is an autologous non-genetically engineered therapy of CD8+ T cells that recognize HLA 02.01-restricted peptides from the WT1, CD138, CS1, and NY-ESO-1 antigens. This T-cell product includes key memory phenotypes such as stem-like memory, central memory, and effector memory cells. Eligible patients have relapsed or refractory multiple myeloma (RRMM) who have received at least three prior lines of treatment that included at least an immunomodulatory agent, a proteasome inhibitor, and an anti-CD38 agent. Three patients were enrolled into the Safety Evaluation phase and received a single infusion of 80 million (M) to 100M cells of NEXI-002 product. In this phase of the study the primary endpoint is safety and secondary endpoints include expansion, persistence, and trafficking of the NEXI-002 cells. Bridging anti-MM treatment was permitted during the manufacture of the cellular product with a wash-out period of at least 14 days prior to lymphodepletion (LD) chemotherapy (intravenous fludarabine 30 mg/m 2 and cyclophosphamide 300 mg/m 2), which was administered on Days -5, -4, and -3 prior to the infusion of the NEXI-002 product up to 72 hours later (Day1). Treatment-related adverse events, including infusion reactions, events that prolong hospitalization post infusion, CRS, and neurotoxicity (ICANS) have not developed in these patients who received the NEXI-002 product. Lymphocyte recovery to baseline levels occurred within a few days after the infusion of the NEXI-002 product, demonstrating robust CD4 and CD8 T cell reconstitution following LD chemotherapy. NEXI-002 antigen specific T cells were detected in peripheral blood (PB) by multimer staining and proliferated over time and trafficked to the bone marrow (BM). The phenotype composition of detectable antigen specific T cells at both sites maintained that of the infused product. These NEXI-002 T cells persisted in PB and BM during follow-up. T-cell receptor (TCR) sequencing assays revealed T cell clones in the NEXI-002 product that were not detected in PB of patients tested at baseline. These clones subsequently expanded and persisted over time in the PB and BM. In conclusion, these results show that infusion of the NEXI-002 product is safe, well tolerated, and capable of generating a cell-mediated immune response that may lead to clinical activity. RNA Seq transcriptional profiling of the CD8+ T cells is planned. Additional patients have recently received NEXI-002 infusions and the trial will continue to be expanded to gain additional safety, immunologic, and clinical activity experience. Disclosures Knight: Neximmune, Inc: Current Employment. Varela: Nexlmmune: Current equity holder in publicly-traded company, Honoraria, Membership on an entity's Board of Directors or advisory committees; Kite: Speakers Bureau. Edavana: Neximmune, Inc: Current Employment. Lu: Neximmune, Inc: Current Employment. Kim: Neximmune, Inc: Current Employment. Suarez: Neximmune, Inc: Current Employment. Oelke: Neximmune, Inc: Current Employment. Bednarik: Neximmune, Inc: Current Employment.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2040-2040
Author(s):  
Valeria Visconte ◽  
Nalini Raghavachari ◽  
Keyvan Keyvanfar ◽  
Delong Liu ◽  
Marie Desierto ◽  
...  

Abstract Somatic mutation in the X-linked phosphatydylinositol glycan class A (PIG-A) gene causes glycosyl phosphatidylinositol (GPI) anchor deficiency in hematopoietic stem and progenitor cells, in humans, a requirement for the development of the disease paroxysmal nocturnal hemoglobinuria (PNH). While progress has been made in understanding PNH and especially in treatment of intravascular hemolysis secondary to cell surface deficiency of CD59, why PIG-A mutant stem cells expand in the setting of immune-mediated bone marrow failure remains obscure. We produced a conditional PigA knock-out animal model (PigA−/−) by cross-breeding mice carrying germline insertion of two lox sites flanking exon 6 of PigA gene with mice carrying the transgene Cre-recombinase driven by the human c-fes promoter. The resultant B6 Fes-cre PigAflox (PigA−/−) mice had PigA gene inactivation specifically in hematopoietic cells. We observed that GPI-deficient (GPI−) bone marrow (BM) and spleen cells from PigA−/− mice contained much larger proportions of lymphocytes, especially CD8+ T cells, in comparison to GPI+ cells. The expansion of GPI−CD8+ T cells was not associated with any obvious hematological phenotype, and blood and BM cell counts were relatively normal in PigA−/− mice. In comparison to GPI+ cells analyzed by microarray, GPI− BM cells showed up-regulation in expression of genes important for immune function responses. Pathway analysis revealed that differentially-expressed genes were clustered in several groups related to immunological function, such as lymphocyte markers (CD8b1, CD8a, CD3e, CD3d, CD7, CD2, CD5, CD6, CD28, CD96, CD27), proteins related to T cell activation (Lck, Zap70, Fyn, Zeta, Lat, Traf1, Tcf7, Ctla2a/Ctla2b), TCR components (Tcr-beta-V13, Tcr-beta-V8.2, Tcr-alpha, Tcr-beta- J, Tcr-gamma), chemokines and C-C motifs (Ccl5, CXCR6, Ccr7), and molecules of the killer lectin-like receptor subfamily (Klrc1, Klrc2, Klra7, Klra8). We transplanted into lethally-irradiated recipients BM cells from PigA−/− mice (pre-incubated with aerolysin to lyse GPI+ cells) or BM cells from normal PigA+/+ donors. By microarray, transplanted GPI− cells retained the phenotype of untransplanted GPI− cells, with a much increased CD8+ T cell proportion and up-regulated immune function gene expression in comparison to transplanted normal BM cells. The enlarged GPI−CD8+ T cell pool had a significantly lower proportion of CD11a+ cells than did GPI+CD8+ T cells, suggesting that GPI−CD8+ T cells were generally less active. There was no difference in the proportion of CD44− naive T cells between GPI−CD8+ and GPI+CD8+ T cells; GPI−CD8+ T cells were not NK cells as they lacked surface NK1.1 staining. The percentage of CD4+CD25+FoxP3+ regulatory T cells in GPI− cells was only 10% of that in GPI+ cells in peripheral blood in both untransplanted and transplanted animals, indicating that the expanded T cell population in the GPI− cell fraction contained few cells with immunosuppressive property. We further investigated T cell clonality by usage of T cell receptor beta variable region (Vbeta); approximately 5-6 Vbeta subfamilies were over represented in the GPI− CD8+ T cells. In particular, Vbeta 5.1/5.2 was prominent in GPI−CD8+ T cells, constituting 22-23 ± 5% GPI− T cells from untransplanted and transplanted animals; a significant increase in comparison to 8-9.1 ± 0.5% Vbeta 5.1/5.2 clonal representation in GPI+CD8+ T cells. Our results are consistent with an antigen-driven T cell response in the GPI− lymphocyte population, independent of pancytopenia. Functionally, GPI−CD8 T cells showed no response to lectin stimulation as measured by gamma interferon production, but they were capable of effecting target cell apoptosis when co-incubated with minor-H antigen mismatched BM cells in vitro. Our data agrees with observations in humans, in which an immune process driven by a restricted set of (unknown) antigens appears active in the pathogenesis of PNH (Gargiulo et al., Blood 2007). We conclude that deletion of PigA gene in hematopoietic cells, independent of frank hematopoietic failure, leads to enrichment of lymphocytes, especially CD8 T cells, in the GPI− cell fraction that have an inactive and naive phenotype. These expanded, clonally-restricted, T cells may provide an initial pool of immune effectors, which in the proper immune activated environment, contribute to bone marrow failure in PNH.


Blood ◽  
2009 ◽  
Vol 113 (10) ◽  
pp. 2238-2244 ◽  
Author(s):  
J. Joseph Melenhorst ◽  
Phillip Scheinberg ◽  
Pratip K. Chattopadhyay ◽  
Emma Gostick ◽  
Kristin Ladell ◽  
...  

Abstract The activity of allogeneic CD8+ T cells specific for leukemia-associated antigens (LAAs) is thought to mediate, at least in part, the curative effects of hematopoietic stem cell transplantation (HSCT) in myeloid malignancies. However, the identity and nature of clinically relevant LAA-specific CD8+ T-cell populations have proven difficult to define. Here, we used a combination of coreceptor-mutated peptide-major histocompatibility complex class I (pMHCI) tetramers and polychromatic flow cytometry to examine the avidity profiles, phenotypic characteristics, and anatomical distribution of HLA A*0201-restricted CD8+ T-cell populations specific for LAAs that are over-expressed in myeloid leukemias. Remarkably, LAA-specific CD8+ T-cell populations, regardless of fine specificity, were confined almost exclusively to the bone marrow; in contrast, CD8+ T-cell populations specific for the HLA A*0201-restricted cytomegalovirus (CMV) pp65495-503 epitope were phenotypically distinct and evenly distributed between bone marrow and peripheral blood. Furthermore, bone marrow-resident LAA-specific CD8+ T cells frequently engaged cognate antigen with high avidity; notably, this was the case in all tested bone marrow samples derived from patients who achieved clinical remission after HSCT. These data suggest that concomitant examination of bone marrow specimens in patients with myeloid leukemias might yield more definitive information in the search for immunologic prognosticators of clinical outcome.


Sign in / Sign up

Export Citation Format

Share Document