basal proliferation
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 3)

H-INDEX

9
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Zhou Jie ◽  
Ye Wenjing ◽  
Guangming Yi ◽  
Jianming Huang ◽  
Siyao Deng ◽  
...  

Abstract Background Radioresistance remains a major clinical challenge in cervical cancer therapy. Salicylic acid (SA)-mediated direct activation of AMP–activated protein kinase (AMPK) is critical to radiosensitivity. However, limited data exists regarding the combination of SA and radiotherapy, even though there are several indications that this might be a promising treatment strategy. This study aimed to investigate the radiosensitizing effect of SA on human cervical cancer cells and its potential molecular mechanism. Methods Cervical cancer cells were treated with SA and ionizing radiation. The expression of γ-H2AX was evaluated by immunofluorescence (IF) assay. Cell cycle and apoptosis were analyzed by flow cytometry. Western blot was performed to detect the protein level of AMPK/TSC2/mTOR pathway. Results SA inhibited basal proliferation of cervical cancer cells in a dose and time dependent manner. In addition, SA increased radiation-induced DNA damage, promoted apoptosis, triggered a redistribution of cell cycle from G2-M phase to G1-S phase of cervical cancer cells, and hence increased cell sensitivity to radiation. Moreover, SA treatment elevated the expression levels of p-AMPKα and p-TSC2, whereas the level of p-mTOR was significantly decreased. Conclusion SA enhances the radiosensitivity of cervical cancer cells by targeting AMPK/TSC2/mTOR signaling pathway, and might serve as a promising therapeutic strategy to improve the efficacy of radiotherapy for cervical cancer.


2021 ◽  
Author(s):  
Ryan Philip Henry Shaw ◽  
Peter Kolyvas ◽  
Nathanlown Dang ◽  
Angela Hyon ◽  
Sayeepriyadarshini Anakk

ABSTRACTSmall heterodimer partner (Shp) regulates several metabolic processes, including bile acid levels, but lacks the conserved DNA binding domain. Phylogenetic analysis revealed conserved genetic evolution of Shp, Fxr, Cyp7a1 and Cyp27a1, underscoring the importance of these molecules in maintaining bile acid homeostasis. Shp, although primarily studied as a downstream target of Farnesoid X Receptor (Fxr), has a distinct hepatic role that is poorly understood. Here we report that liver-specific Shp knockout (LShpKO) mice have impaired negative feedback of Cyp7a1 and Cyp8b1 upon bile acid challenge and demonstrate that a single copy of the Shp gene is sufficient to maintain this response. LShpKO mice also exhibit elevated total bile acid pool with higher bile acid fraction in the intestine mimicking the 1% cholic acid (CA) fed control mice. Agonistic activation of Fxr (GW4064) in the LShpKO did not alter the elevated basal expression of Cyp8b1 but lowered Cyp7a1 expression. We found that deletion of Shp led to an enrichment of distinct motifs and pathways associated with circadian rhythm, amino and carboxylic acid metabolism, copper ion transport, and DNA synthesis. LShpKO livers displayed a higher basal proliferation that was exacerbated specifically with bile acid challenge but not with another liver mitogen, TCPOBOP (TC). Overall, our data indicate that hepatic SHP uniquely regulates certain proliferative and metabolic cues.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Xue Hao ◽  
Shimin Wang ◽  
Yi Lu ◽  
Wentao Yu ◽  
Pengyue Li ◽  
...  

Tissue homeostasis and regeneration in the Drosophila midgut is regulated by a diverse array of signaling pathways including the Hippo pathway. Hippo signaling restricts intestinal stem cell (ISC) proliferation by sequestering the transcription co-factor Yorkie (Yki) in the cytoplasm, a factor required for rapid ISC proliferation under injury-induced regeneration. Nonetheless, the mechanism of Hippo-mediated midgut homeostasis and whether canonical Hippo signaling is involved in ISC basal proliferation are less characterized. Here we identify Lola as a transcription factor acting downstream of Hippo signaling to restrict ISC proliferation in a Yki-independent manner. Not only that Lola interacts with and is stabilized by the Hippo signaling core kinase Warts (Wts), Lola rescues the enhanced ISC proliferation upon Wts depletion via suppressing Dref and SkpA expressions. Our findings reveal that Lola is a non-canonical Hippo signaling component in regulating midgut homeostasis, providing insights on the mechanism of tissue maintenance and intestinal function.


2011 ◽  
Vol 300 (6) ◽  
pp. F1375-F1384 ◽  
Author(s):  
Zhiguo Mao ◽  
Andrew J. Streets ◽  
Albert C. M. Ong

Thiazolidinediones have been reported to retard cystic disease in rodent models by uncertain mechanisms. We hypothesized that their major effect in retarding cystogenesis was through inhibiting cell proliferation or stimulating apoptosis. In the Madin-Darby canine kidney cell (MDCK) model, rosiglitazone inhibited cyst growth in a time- and dose-dependent manner and this was accompanied by a reduction in basal proliferation and an increase in apoptosis. Unexpectedly, we also observed a striking abnormality in lumen formation resulting in a characteristic multiple lumen or loss of lumen phenotype in treated cells at doses which did not inhibit cell proliferation. These changes were preceded by mislocalization of gp135 and Cdc42, misorientation of the mitotic spindle, and retardation in centrosome reorientation with later changes in primary cilia length and mislocalization of E-cadherin. Cdc42 activation was unaffected by rosiglitazone in monolayer culture but was profoundly inhibited in three-dimensional culture. MDCK cells stably expressing mutant Cdc42 showed a similar mislocalization of gp135 expression and multilumen phenotype in the absence of rosiglitazone. We conclude that rosiglitazone influences MDCK cyst growth by multiple mechanisms involving dosage-dependent effects on proliferation, spindle orientation, centrosome migration, and lumen formation. Correct spatial Cdc42 activation is critical for lumen formation, but the effect of rosiglitazone is likely to involve both Cdc42 and non-Cdc42 pathways.


Reproduction ◽  
2011 ◽  
Vol 141 (4) ◽  
pp. 467-479 ◽  
Author(s):  
Virginie Maillard ◽  
Pascal Froment ◽  
Christelle Ramé ◽  
Svetlana Uzbekova ◽  
Sébastien Elis ◽  
...  

Resistin, initially identified in adipose tissue and macrophages, was implicated in insulin resistance. Recently, its mRNA was found in hypothalamo–pituitary axis and rat testis, leading us to hypothesize that resistin may be expressed in ovary. In this study, we determined in rats and cows 1) the characterization of resistin in ovary by RT-PCR, immunoblotting, and immunohistochemistry and 2) the effects of recombinant resistin (10, 100, 333, and 667 ng/ml)±IGF1 (76 ng/ml) on steroidogenesis, proliferation, and signaling pathways of granulosa cells (GC) measured by enzyme immunoassay, [3H]thymidine incorporation, and immunoblotting respectively. We observed that resistin mRNA and protein were present in several bovine and rat ovarian cells. Nevertheless, only bovine GC abundantly expressed resistin mRNA and protein. Resistin treatment decreased basal but not IGF1-induced progesterone (P<0.05; whatever the dose) and estradiol (P<0.005; for 10 and 333 ng/ml) production by bovine GC. In rats, resistin (10 ng/ml) increased basal and IGF1-induced progesterone secretion (P<0.0001), without effect on estradiol release. We found no effect of resistin on rat GC proliferation. Conversely, in cows, resistin increased basal proliferation (P<0.0001; for 100–667 ng/ml) and decreased IGF1-induced proliferation of GC (P<0.0001; for 10–333 ng/ml) associated with a decrease in cyclin D2 protein level (P<0.0001). Finally, resistin stimulated AKT and p38-MAPK phosphorylation in both species, ERK1/2-MAPK phosphorylation in rats and had the opposite effect on the AMPK pathway (P<0.05). In conclusion, our results show that resistin is expressed in rat and bovine ovaries. Furthermore, it can modulate GC functions in basal state or in response to IGF1in vitro.


2008 ◽  
Vol 183 (1) ◽  
pp. 37-48 ◽  
Author(s):  
Xuan Wang ◽  
H. Amalia Pasolli ◽  
Trevor Williams ◽  
Elaine Fuchs

The mechanisms by which mammalian epidermal stem cells cease to proliferate and embark upon terminal differentiation are still poorly understood. By conditionally ablating two highly expressed transcription factors, AP-2α and AP-2γ, we unmasked functional redundancies and discovered an essential role for AP-2s in the process. In vivo and in vitro, AP-2 deficiency is accompanied by surprisingly minimal changes in basal gene expression but severely perturbed terminal differentiation and suppression of additional transcription factors and structural genes involved. In dissecting the underlying molecular pathways, we uncover parallel pathways involving AP-2 and Notch signaling, which converge to govern CCAAT/enhancer binding protein genes and orchestrate the transition from basal proliferation to suprabasal differentiation. Finally, we extend the striking similarities in compromising either Notch signaling or AP-2α/AP-2γ in developing skin to that in postnatal skin, where all hair follicles and sebaceous gland differentiation are also repressed and overt signs of premalignant conversion emerge.


Endocrinology ◽  
2008 ◽  
Vol 149 (7) ◽  
pp. 3435-3445 ◽  
Author(s):  
Mélissa Otis ◽  
Shirley Campbell ◽  
Marcel D. Payet ◽  
Nicole Gallo-Payet

Angiotensin II (Ang II), through the Ang II type 1 receptor subtype, inhibits basal proliferation of adrenal glomerulosa cells by inducing the disruption of actin stress fiber organization. This effect is observed in cells cultured on plastic or on fibronectin. The aim of the present study was to investigate how Ang II may interfere with extracellular matrix/integrin signaling. In cells treated for 3 d with echistatin (EC) (a snake-venom RGD-containing protein that abolishes fibronectin binding to α5β1 or αvβ3 integrins), basal proliferation decreased by 38%, whereas Ang II was unable to abolish basal proliferation. In cells grown on fibronectin, Ang II decreased binding of paxillin to focal adhesions and, similarly to EC, induced a rapid dephosphorylation of paxillin (1 min), followed by an increase after 15 min. Fibronectin enhanced RhoA/B and Rac activation induced by Ang II, an effect abolished by EC. Under basal conditions, paxillin was more readily associated with RhoA/B than with Rac. Stimulation with Ang II induced a transient decrease in RhoA/B-associated paxillin (after 5 min), with a return to basal levels after 10 min, while increasing Rac-associated paxillin. Finally, results reveal that glomerulosa cells are able to synthesize and secrete fibronectin, a process by which cells can stimulate their own proliferative activity when cultured on plastic. Together, these results suggest that Ang II acts at the level of integrin-paxillin complexes to disrupt the well- developed microfilament network, a condition necessary for the inhibition of cell proliferation and initiation of steroidogenesis.


2005 ◽  
Vol 31 (5) ◽  
pp. 1059-1064 ◽  
Author(s):  
Alicja Baldysiak-Figiel ◽  
Yvonne D. Jong-Hesse ◽  
Gerhard K. Lang ◽  
Gabriele E. Lang

Blood ◽  
2004 ◽  
Vol 103 (3) ◽  
pp. 988-994 ◽  
Author(s):  
Kimberly S. Schluns ◽  
Kimberly D. Klonowski ◽  
Leo Lefrançois

AbstractInterleukin 15 (IL-15) and the IL-15 receptor α (IL-15Rα) chain are both required for the basal proliferation of memory CD8 T cells, but which cell types are required to express IL-15 or IL-15Rα to mediate this proliferation is not known. Using bone marrow (BM) chimeras, we showed that virus-specific CD8 memory T-cell proliferation was driven by IL-15 produced by either BM-derived or parenchymal cells. Experiments using mixed BM chimeras showed that IL-15Rα expression by memory CD8 T cells was not required for their division. In addition, wild-type memory CD8 T cells did not divide after transfer into IL-15Rα-/- mice. Further analyses demonstrated that IL-15Rα+ BM-derived cells were crucial in driving memory CD8 T-cell division in the spleen while both parenchymal and BM-derived cells promoted memory cell division in the lung. Proliferation in response to soluble IL-15 in vivo required expression of IL-15Rα by opposing cells and IL-15Rβ by CD8 memory cells, indicating that IL-15 interacted directly with the T cells. These results indicate that transpresentation of IL-15 by IL-15Rα on BM-derived cells mediates the basal proliferation of memory CD8 T cells. (Blood. 2004;103:988-994)


Endocrinology ◽  
2002 ◽  
Vol 143 (7) ◽  
pp. 2750-2758 ◽  
Author(s):  
Kengo Kawashima ◽  
Koji Yamakawa ◽  
Wakaba Takahashi ◽  
Soichi Takizawa ◽  
Ping Yin ◽  
...  

Abstract Estrogens stimulate cell proliferation in typical estrogen-responsive tissues including the anterior pituitary gland. Here we report that 17-β estradiol (E2) has estrogen receptor-mediated mitogenic and antimitogenic actions on rat lactotrophs in primary culture, depending on the cell context. E2 did not affect basal proliferation at 2 d after treatment, but it increased it at 4 d. Insulin markedly increased proliferative activity, which was inhibited by simultaneous treatment with E2, even after only 2 d of treatment. This antimitogenic action on insulin-induced proliferation was also observed with other estrogens but not with nonestrogenic steroids. Treatment with antiestrogens in combination with E2 antagonized both the mitogenic and antimitogenic actions of E2. Antiestrogen treatment alone inhibited basal proliferation, and it mimicked the inhibitory action of E2 on insulin-induced proliferation with less potency. In parallel with cell proliferation, an insulin-induced increase in the cell number of cyclin D1-immunoreactive lactotrophs was inhibited by E2 treatment. Although the antimitogenic action of E2 was seen with a wide range of doses of insulin or IGF-1, proliferation was stimulated rather than inhibited by E2 when cells were treated with serum or forskolin/isobutylmethylxanthine instead of insulin, indicating a mitogen-specific, but not proliferative activity-dependent, inhibition by E2. The results of estrogen-occupied estrogen receptors as negative regulators of proliferation suggest a novel interaction between estrogen and growth factors in the regulation of proliferation in estrogen-responsive cells.


Sign in / Sign up

Export Citation Format

Share Document