Gene Expression Profiles, Differentiation and Lineage Commitment of Human Myeloid Progenitors.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4120-4120
Author(s):  
Louise Edvardsson ◽  
Josefina Dykes ◽  
Tor Olofsson

Abstract With the objective to further elucidate the mechanism behind commitment to erythroid and neutrophil lineages, we isolated by cell sorting common myeloid progenitors (CMPs), granulocyte/monocyte progenitors (GMPs) and megakaryocyte/erythrocyte progenitors (MEPs), based on the surface expression of CD123 (IL3R-α) and CD45RA on human CD34+ bone marrow cells (first described by Manz et al. PNAS, 2002;99:11872). Methylcellulose cultures supporting the growth of myeloid and erythroid progenitors, and real-time RT-PCR mapping the gene expression of Flt3, c-kit, TpoR, GATA-2, GATA-1, SCL, NF-E2, EpoR, ABO, β-globin, GPA, PU.1, C/EBPα, C/EBPε, G-CSFR, proteinase 3 (PR3) and lactoferrin, were used to validate and characterize the progenitors and their progeny. Cell sorted progenitors were labeled with CFDA, SE to track cell division and cultured in suspension to induce neutrophil or erythroid differentiation (SCF+G-CSF for neutrophil and Epo+IL–3+GM–CSF for erythroid culture). After 3–5 days, cells that had gone through 1–8 divisions were sorted and changes in clonogenicity and gene expression were studied. The CMP-population retained some clonogenicity after as many divisions as were tested (at the most six divisions in erythroid and eight in neutrophil culture) and the CMPs differentiated along the lineage defined by the culture system, as evidenced both by the methylcellulose cultures and an increasing expression of GATA-1 and EpoR in erythroid and PU.1, G-CSFR and PR3 in neutrophil cultures, respectively. On the other hand, the GMP-population displayed granulocyte/monocyte (G/M)-differentiation irrespective of the culture system used, although it divided fewer times and lost its clonogenic capacity faster in erythroid culture. Little or no clonogenicity remained after 4–5 divisions in erythroid culture, while some colony-forming capacity remained even after seven divisions in neutrophil culture (maximum number tested). The increased expression of the granulopoiesis-associated genes was also less pronounced in the erythroid culture. The MEP-population dominated by erythroid differentiation capacity retained colony-forming capacity for at least 6–7 divisions in both erythroid and neutrophil cultures, although with a higher overall clonogenicity in erythroid culture. Unexpectedly, however, MEPs were restricted to G/M-differentiation when cultured in neutrophil culture. In cells from erythroid culture the expression of GATA-1, EpoR and β-globin increased, while a corresponding pattern was seen for PU.1, G-CSFR and PR3 in neutrophil culture. Overall, our data support the progenitor classification, based on the surface expression of CD123 and CD45RA, with regard to CMP and GMP populations but question it with regard to the MEP-population. The change in differentiation course for the MEPs in neutrophil culture could be a result of an initially present G/M-potential or a less strict commitment susceptible to cytokine-induced redifferentiation.

Author(s):  
Julian Baumeister ◽  
Tiago Maié ◽  
Nicolas Chatain ◽  
Lin Gan ◽  
Barbora Weinbergerova ◽  
...  

AbstractMyeloproliferative neoplasms (MPN), comprising essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (PMF), are hematological disorders of the myeloid lineage characterized by hyperproliferation of mature blood cells. The prediction of the clinical course and progression remains difficult and new therapeutic modalities are required. We conducted a CD34+ gene expression study to identify signatures and potential biomarkers in the different MPN subtypes with the aim to improve treatment and prevent the transformation from the rather benign chronic state to a more malignant aggressive state. We report here on a systematic gene expression analysis (GEA) of CD34+ peripheral blood or bone marrow cells derived from 30 patients with MPN including all subtypes (ET (n = 6), PV (n = 11), PMF (n = 9), secondary MF (SMF; post-ET-/post-PV-MF; n = 4)) and six healthy donors. GEA revealed a variety of differentially regulated genes in the different MPN subtypes vs. controls, with a higher number in PMF/SMF (200/272 genes) than in ET/PV (132/121). PROGENγ analysis revealed significant induction of TNFα/NF-κB signaling (particularly in SMF) and reduction of estrogen signaling (PMF and SMF). Consistently, inflammatory GO terms were enriched in PMF/SMF, whereas RNA splicing–associated biological processes were downregulated in PMF. Differentially regulated genes that might be utilized as diagnostic/prognostic markers were identified, such as AREG, CYBB, DNTT, TIMD4, VCAM1, and S100 family members (S100A4/8/9/10/12). Additionally, 98 genes (including CLEC1B, CMTM5, CXCL8, DACH1, and RADX) were deregulated solely in SMF and may be used to predict progression from early to late stage MPN. Graphical abstract


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 820-820
Author(s):  
Wei Li ◽  
Betty S. Pace

Abstract The design and evaluation of therapies for sickle cell disease (SCD) rely on our understanding of hemoglobin accumulation during erythropoiesis and sequential globin gene expression (ε → Gγ → Aγ → δ → β) during development. To gain insights into globin gene switching, we completed time course micorarray analyses of erythroid progenitors to identify trans-factors involved in γ gene activation. Studies were completed to map the pattern of γ and β globin gene expression in progenitors grown from normal peripheral blood mononuclear cells. We compared cells grown in a 2-phase (phase 1, d0-6: SCF, IL-3, IL-6, and GM-CSF and phase 2, d7-25: SCF and EPO) vs. 1-phase (d0-34: SCF, IL-3, and EPO) liquid culture system. From day 0 to 34 in either system cell viability remained >99%. Total RNA was isolated using Trizol and column cleanup (Qiagen). Globin mRNA levels were measured at 2–3 day intervals by quantitative PCR (qPCR). In the 2-phase system γ-globin mRNA>β-globin mRNA up to d14, 4 days of approximately equal expression then β mRNA > γ mRNA by d20. By contrast, in 1-phase studies there was a rapid switch around d20(see graph). We speculate that this difference may be due to the early addition of EPO on d0 therefore we continued our detailed analysis in this system. To confirm that our in vitro system recapitulates in vivo gene expression patterns, we completed studies to ascertain Gγ - vs. Aγ globin mRNA levels. The normalized Gγ:Aγ ratio decreased from ~3:1 on d7 to ~1:1 by d34; These findings were confirmed using two sets of Gγ and Aγ globin primers. We concluded that the 1-phase system recapitulated normal γ/β globin switching and that gene profiling studies to identify the trans-factor involved in switching mechanisms were feasible. We used Discover oligo chips (ArrayIt, Sunnyvale, CA) containing 380 human genes selected from 30 major functional groups including hematopoiesis. To aide interpretation of chip data, cell populations were rated morphologically using Giemsa stained cytospin preps. From d16 on we observed an increase in late erythroid progenitors (normoblasts) from 1% to 71% by d31. After verifying RNA quality by gel inspection of ribosomal molecules, we prepared Cy3 and Cy5 probes for early and late time-point RNA samples respectively. Chip analysis was performed at several time points but d0/21, d7/21, and d21/28 were most informative. Based on Axon GenePixPro 6.0 and Acuity 4.0 software analysis we found the following genes with >1.5-fold change in expression profile (shown as down-regulated/up-regulated genes): d0/21: 33/73, d7/21: 13/25, and d21/28:35/26. Principal component analysis (PCA), hierarchical clusters and self organizing maps were constructed. Gene profiles were correlated with the γ/β switching curve using d7 (γ >β), d21 (γ ~ β), and d28 (γ <β) data. Hematopoietic dataset analysis at d21 revealed 4 candidate γ-globin gene activators including v-myb, upsteam binding transfactor -RNApol1 and 2 zinc finger proteins. Analysis of a d28 dataset revealed 12 proteins involved in γ-globin gene silencing including IL-3, SCF, MAPKKK3, v-raf-1, ATF-2, and glucocorticoid receptor DNA binding factor 1 among others. Gene expression profiles will be validated using qPCR and promising candidates will be tested by forced expression in transient and stable reporter systems. Figure Figure


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2361-2361
Author(s):  
Hui Yu ◽  
Sheng Zhou ◽  
Geoffrey A. Neale ◽  
Brian P. Sorrentino

Abstract Abstract 2361 HOXB4 is a homeobox transcription factor that can induce hematopoietic stem cell (HSC) expansion both in vivo and in vitro. An interesting feature of HOXB4-induced HSC expansion is that HSC numbers do not exceed normal levels in vivo due to an unexplained physiological capping mechanism. To gain further insight into HOXB4 regulatory signals, we transplanted mice with bone marrow cells that had been transduced with a MSCV-HOXB4-ires-YFP vector and analyzed gene expression profiles in HSC-enriched populations 20 weeks after transplant, a time point at which HSC numbers have expanded to normal levels but no longer increasing beyond physiologic levels. We used Affymetrix arrays to analyze gene expression profiles in bone marrow cells sorted for a Lin−Sca-1+c-Kit+ (LSK), YFP+ phenotype. Using ANOVA, we identified1985 probe sets with >2 fold difference in expression (FDR<, 0.1) relative to a control vector-transduced LSK cells. A cohort of genes was identified that were known positive regulators of HSC self-renewal and proliferation. Hemgn, which we identified in a previous screen as a positive regulator of expansion and a direct transcriptional target of HOXB4, was 3.5 fold up-regulated in HOXB4 transduced LSKs. Other genes known to be important for HSCs survival, self-renewal and differentiation were upregulated to significant levels including N-myc, Meis1, Hoxa9, Hoxa10 and GATA2. Microarray data for selected genes was validated by quantitative real-time PCR on HOXB4 transduced CD34low LSK cells, a highly purified HSC population, obtained from another set of transplanted mice at the 20 week time point. In contrast, other gene expression changes were noted that would potentially limit or decrease stem cell numbers. PRDM16, a set domain transcription factor critical for HSC maintenance and associated with clonal hematopoietic expansions when inadvertently activated as a result of retroviral insertion, was dramatically down-regulated on the expression array and 7.6 fold decreased in the real time PCR assay of CD34low LSK cells. TFG-beta signaling is a well defined inhibitor HSC proliferation and utilize Smad proteins as downstream effectors. Expression of Smad1 and Smad7 were significantly upregulated on the LSK expression array and 8.1 and 3.5 fold up-regulated by qPCR in CD34low LSK cells. Another potential counter-regulatory signal was down regulation of Bcl3 mRNA, a potential anti-apoptotic effector in HSCs. We hypothesize that the HOXB4 expansion program involves activation of genes that lead to increased HSC numbers with later activation of counter-regulatory signals that limit expansion to physiologic numbers of HSCs in vivo. We are now examining how this program changes at various time points after transplantation and hypothesize the capping limits are set at relatively later time points during reconstitution. We also are studying the functional effects of these gene expression changes, and in particular, whether enforced expression of HOXB4 and PRMD16 will result in uncontrolled HSC proliferation and/or leukemia. Disclosures: No relevant conflicts of interest to declare.


2005 ◽  
Vol 25 (12) ◽  
pp. 5205-5214 ◽  
Author(s):  
Roy Drissen ◽  
Marieke von Lindern ◽  
Andrea Kolbus ◽  
Siska Driegen ◽  
Peter Steinlein ◽  
...  

ABSTRACT Development of red blood cells requires the correct regulation of cellular processes including changes in cell morphology, globin expression and heme synthesis. Transcription factors such as erythroid Krüppel-like factor EKLF (Klf1) play a critical role in erythropoiesis. Mice lacking EKLF die around embryonic day 14 because of defective definitive erythropoiesis, partly caused by a deficit in β-globin expression. To identify additional target genes, we analyzed the phenotype and gene expression profiles of wild-type and EKLF null primary erythroid progenitors that were differentiated synchronously in vitro. We show that EKLF is dispensable for expansion of erythroid progenitors, but required for the last steps of erythroid differentiation. We identify EKLF-dependent genes involved in hemoglobin metabolism and membrane stability. Strikingly, expression of these genes is also EKLF-dependent in primitive, yolk sac-derived, blood cells. Consistent with lack of upregulation of these genes we find previously undetected morphological abnormalities in EKLF-null primitive cells. Our data provide an explanation for the hitherto unexplained severity of the EKLF null phenotype in erythropoiesis.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 72-72
Author(s):  
Godfrey Grech ◽  
Montserrat Blazquez-Domingo ◽  
Andrea Kolbus ◽  
Hartmut Beug ◽  
Bob Lowenberg ◽  
...  

Abstract Erythroid progenitors can be expanded in vitro in the presence of erythropoietin (Epo), stem cell factor (SCF) and dexamethasone, while they differentiate to enucleated erythrocytes in presence of Epo only. Our study aims to identify (i) signaling pathways that control expansion of erythroid progenitors and (i) genes regulated by these signaling pathways. Since (i) SCF strongly activates phosphotidylinositol 3 kinase (PI3K) and (ii) inhibition of PI3K with LY294002 induces terminal differentiation of erythroid progenitors under Epo and SCF stimulation, SCF seems to enhance renewal divisions of erythroid progenitors via a PI3K-dependent mechanism. An important PI3K-dependent process in cell proliferation is regulation of mRNA translation. PI3K controls the activity of mTOR (mammalian target of rapamycin), whose activation results in phosphorylation of eIF4E (eukaryote Initiation Factor 4E)-binding protein (4E-BP). Fully phosphorylated 4E-BP releases eIF4E, which can subsequently bind eIF4G, the scaffolding protein of the eIF4F cap-binding and scanning complex. In particular mRNAs with a structured UTR (untranslated region) require optimal availability of eIF4E to be translated. SCF, but not Epo can induce full phosphorylation of 4E-BP and efficient formation of the eIF4F cap-binding complex. Overexpression of eIF4E inhibited erythroid differentiation as if SCF were present, indicating that SCF-induced release of eIF4E from 4E-BP is an important mechanism regulating the balance between progenitor expansion and differentiation. A major step in mRNA translation controlled by eIF4F is polysome recruitment. To identify genes whose expression is regulated by signaling-induced polysome recruitment, we compared total and polysome-bound mRNA from factor deprived and Epo-, SCF- or Epo plus SCF restimulated progenitors on gene-expression micro-arrays (Affymetrix). The profiling was performed with 4 biological replicates and candidate genes were selected using ANOVA. In subsequent cluster analysis we combined these data with (polysomal) expression profiles of differentiating erythroid cells. Thus we identified a cluster containing genes, upregulated in part or completely at the level of mRNA polysome recruitment and downregulated during erythroid differentiation. Targets involved in signal transduction and gene expression were analyzed in more detail. Polysome recruitment of 15/17 targets tested so far appeared to be dependent on PI3K activation and eIF4E expression. Constitutive expression of these targets in erythroid progenitors revealed that one target in particular was able to inhibit erythroid differentiation comparable to overexpression of eIF4E. This target was IGBP1 (Immunoglobulin binding protein 1). IGBP1 binds to and modulates the activity of the catalytic subunit of PP2A, a major cellular serine/threonine phosphatase, which also dephosphorylates 4E-BP. Overexpression of IGBP1 does not inhibit 4E-BP dephosphorylation in absence of factor, but enhances phosphorylation of 4E-BP in presence of Epo. Nevertheless, constitutive expression of IGBP1 does not increase polysome association of structured mRNAs. The multiple functions of PP2A suggest that the potent inhibition of erythroid differentiation by IGBP1 may be due to deregulation of several cellular mechanisms.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1629-1629
Author(s):  
Manon Queudeville ◽  
Elena Vendramini ◽  
Marco Giordan ◽  
Sarah M. Eckhoff ◽  
Giuseppe Basso ◽  
...  

Abstract Abstract 1629 Poster Board I-655 Primary childhood acute lymphoblastic leukemia (ALL) samples are very difficult to culture in vitro and the currently available cell lines only poorly reflect the heterogeneous nature of the primary disease. Many groups therefore use mouse xenotransplantation models not only for in vivo testing but also as a means to amplify the number of leukemia cells to be used for various analysis. It remains unclear as to what extent the xenografted samples recapitulate their respective primary leukemia. It has been suggested for example that transplantation may result in the selection of a specific clone present only to a small amount in the primary diagnostic sample. We used a NOD/SCID xenotransplantation model and injected leukemia cells isolated from fresh primary diagnostic material of 4 pediatric ALL patients [2 pre-B-ALL, 1 pro-B-ALL (MLL/AF4}, 1 cortical T-ALL] intravenously into the lateral tail vein of unconditioned mice. As soon as the mice presented clinical signs of leukemia, leukemia cells were isolated from bone marrow and spleen. Isolated leukemia cells were retransplanted into secondary and tertiary recipients. RNA was isolated from diagnostic material and serial xenograft passages and gene expression profiles were obtained using a human whole genome array (Affymetrix U133 2.0). Simultaneously, immunophenotypic analysis via multicolor surface and cytoplasmatic staining by flow cytometry was performed for the diagnostic samples and respective serial xenograft passages. In an unsupervised clustering analysis the diagnostic sample of each patient clustered together with the 3 derived xenograft samples, although the 3 xenograft samples clustered stronger to each other than to their respective diagnostic sample. Comparison of the 4 diagnostic samples vs. all xenograft samples resulted in a gene list of 270 genes upregulated at diagnosis and 8 genes upregulated in the xenograft passages (Wilcoxon, p< .05). The high number of genes upregulated at diagnosis is most likely due to contamination of primary patient samples with normal peripheral blood and/or bone marrow cells as 15% of genes are attributed to myeloid cells, 7% to erythroid cells, 7% to lymphoid cells, 32% to bone marrow in general as well as to innate immunity, chemokines, immunoglobulins. The remaining genes can not be attributed to a specific hematopoetic cell lineage and are not known to be related to leukemia or cancer in general. Accordingly, there are no statistically significant differences between the primary, secondary and tertiary xenograft passages. The immunophenotype analysis are also in accordance with these findings, as the diagnostic blast population retains its immunophenotypic appearance during serial transplantation, whereas the contaminating CD45-positive non- leukemic cells disappear after the first xenograft passage. The few genes upregulated in xenograft samples compared to diagnosis are mainly involved in cell cycle regulation, protein translation and apoptosis resistance. Some of the identified genes have already been described in connection with cancer subtypes, their upregulation therefore being indicative of a high proliferative state in general and could argue towards a more aggressive potential of the engrafted leukemia cells but alternatively could also simply be due to the fact that the xenograft samples are pure leukemic blasts and are not contaminated with up to 15% of non-cycling healthy bone marrow cells as in the diagnostic samples. We conclude that the gene expression profiles generated from xenografted leukemias are very similar to those of their respective primary leukemia and moreover remain stable over serial retransplantation passages as we observed no statistically significant differences between the primary, secondary and tertiary xenografts. The differentially expressed genes between diagnosis and primary xenotransplant are most likely to be due to contaminating healthy cells in the diagnostic samples. Hence, the NOD/SCID-xenotransplantation model recapitulates the primary human leukemia in the mouse and is therefore an appropriate tool for in vivo and ex vivo studies of pediatric acute leukemia. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2079-2079
Author(s):  
Tânia Regina Zaccariotto ◽  
Carolina Lanaro ◽  
Dulcinéia Martins Albuquerque ◽  
Magnun N N Santos ◽  
Marcos André Cavalcanti Bezerra ◽  
...  

Abstract Abstract 2079 Phosphatidylinositol phosphate kinases (PIPKs) are a family of lipid kinase enzymes that produce the second messenger PI4,5P2 (phosphatidylinositol 4,5-biphosphate), which plays an important role in the regulation of a variety of cellular activities, including gene expression. PIPKs are classified into 3 subfamilies — PIPK I (a, b, g), PIPK II (a, b, g) and PIPK III — which are functionally distinct and are located in different subcellular compartments. In a recent study in our laboratory, the PIPKIIa gene was differentially expressed in reticulocytes from 2 siblings with hemoglobin (Hb) H disease who had the same genotype (-a3.7/–SEA). Expression of both the PIPKIIa and b-globin genes were higher in the patient with the higher Hb H level, suggesting a possible relationship between PIPKIIa and the production of globins, particularly b-globin. In light of these findings, the aim of this study was to determine the gene expression profiles of PIPKs (I and II - with their isoforms a, b and g - and III) during erythropoiesis in peripheral blood hematopoietic CD34+ cell culture from 11 healthy volunteers and 6 patients with hemoglobinopathies [2 with a-thalassemia (Hb H disease), 2 with b-thalassemia (homozygous for the IVS-I-6-T-C mutation) and 2 with sickle cell anemia] using quantitative real time PCR (qRT-PCR) and to compare these profiles with the gene expression profiles of a-, b- and g-globins on the 7th, 10th and 13th days of the erythroid culture. In the cell culture from the normal group, expression of the PIPKIIa and other PIPK genes increased during erythroid differentiation, coinciding with the expression profiles of globin genes and showing in particular that a-globin has a significant effect on PIPKIIa (p<0.0001), as the PIPKIIa on a-globin gene (p=0.0002). In the patients, the expression profile of the PIPKIIa gene also increased during differentiation, whereas the results for the other PIPK genes varied. However, mRNA levels differed between patients, indicating greater complexity in individuals with hemoglobinopathies. PIPKIIa expression level was elevated in the culture from one of the a-thalassemia patients (approximately 12 times higher than in the corresponding control) but was lower than the control in one of the b-thalassemia patients. Expression levels of this gene also varied among sickle cell patients. This is the first study of the gene expression profiles of these kinases during in vitro human erythropoiesis. We identified a standard pattern of gene expression for PIPKs, and PIPKIIa in particular, a gradual increase in expression during erythroid differentiation, similar to the pattern for globin genes. This suggests that PI4,5P2, as an important secondary messenger involved in the regulation of gene expression, may play an important role in the regulation of globin gene expression and the normal process of Hb synthesis in red blood cells. Although our results varied between patients, highlighting the complexity of the regulatory systems involved in Hb production, they reinforce the hypothesis of a relationship between PIPKIIa and globin expression. This work was supported by FAPESP, CNPq and CAPES. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4074-4074
Author(s):  
Anderson F. Cunha ◽  
Ana F. Brugnerotto ◽  
Adriana S.S. Duarte ◽  
Gustavo G.L. Costa ◽  
Sara T.O. Saad ◽  
...  

Abstract Erythroid differentiation is a dynamic and complex process in which a pluripotent stem cell undergoes a series of developmental changes that commit it to a specific lineage. These alterations involve changes in gene expression profiles. Extensive studies have led to a considerable understanding of the cellular and molecular control of hemoglobin production during red blood cell differentiation, however, a complete understanding of human erythropoiesis will require a robust description of the entire transcriptome of these cells during differentiation. From a global point of view of cell metabolic regulation, where genomic information could be complemented with gene expression, the use of methods that enable quantification of the entire transcriptome of the red blood cell during differentiation is of great importance. In this study, the gene expression profiles during differentiation of Human erythroid cells of a normal blood donor in a two-phase liquid culture (Fibach & Rachmilewitz, 1993) were evaluated using Serial analysis of gene expression (SAGE). Global gene expression was evaluated in cells collected immediately before the addition of erythropoeitin (0 hour) and 192 and 336 hours after the addition of this hormone. We generated a total of 30512 tags at 0h, 30117 tags at 192h and 30189 tags at 336h, representing 12026, 11709 and 11337 unique tags, respectively. In the 0h library, a high expression of ferritin genes and CD74 antigen gene was observed. As expected, the expression of globin genes started during intermediate stages of differentiation (predominantly basophilic erythroblasts) and were the most expressed genes at the end of the culture (predominantly orthocromatic erythroblasts). Ribosomal genes were the most expressed genes at 192 hours, indicating an increase in protein synthesis. To identify the genes that were differentially expressed between the libraries, a P value < 0.01 and fold ≥ 5 were considered as statistically significant. In the comparison of the 0h and 192h libraries, 179 differentially expressed transcripts were identified. From these genes, in addition to the globin genes, we found an up-regulation of several genes related to protein binding (LXN, GSTM3, and TRIP6), transcription factor (GATA-1), hydrolase activity (TPSAB1), ion transport (SLC12A9) and regulation of apoptosis (PRDX2). Comparing the 192h and 336h libraries, 103 differentially expressed transcripts were identified. The up-regulated genes were generally related to hemoglobin synthesis, such as ALAS2, involved in the biosynthesis of the heme group or related to intracellular transport such as MSCP and NUDT4 and cell differentiation such as GDF15. The transcription of some of these genes, such as SLC12A9, TRB3, EYA3 and TWIST2 are described for the first time during erythroid differentiation. The results indicated that the global aspects of the transcriptome were similar during differentiation for the majority of the genes and that probably a relative small set of genes is involved in the modification of erythroid cells during differentiation. The results of this study amplify the previous published data (Komor et al, 2005) and may contribute to the comprehension of erythroid differentiation and identification of new target genes involved in some erythroid diseases.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1605-1605
Author(s):  
Akihito Shinohara ◽  
Yoichi Imai ◽  
Masahiro Nakagawa ◽  
Tsuyoshi Takahashi ◽  
Motoshi Ichikawa ◽  
...  

Abstract Abstract 1605 Reactive oxygen species (ROS) are small molecules containing oxygen with unpaired electron. ROS are always generated as the products of cellular metabolism, and cells have several antioxidant systems to avoid their harmful effect induced by their high chemical reactivity. While studies about biological effects of ROS have been mainly focused on the harmful aspects, a growing body of evidence suggests that ROS are critical mediators of several signaling pathways in cellular homeostasis. In hematopoiesis, for example, it was reported that the generation of intracellular ROS functions as the initiation signal in the development of Drosophila hematopoietic cells and that ROS control self-renewal of hematopoietic stem cells. However, little is known about the functions of ROS in regulating hematopoietic progenitors. In this study, we show a critical role of ROS in lineage decision of myeloid progenitor cells. Firstly, we measured the intracellular ROS level of hematopoietic cells from murine bone marrow by flow cytometry with H2-DCFDA (2’,7’-dichlorofluorescin diacetate) staining. It was found that intracellular ROS level of megakaryocyte-erythrocyte progenitor cells (MEP) was kept equal to or lower than that of lineage marker negative, Sca-1 positive, c-Kit positive (KSL) cells. On the other hand, that of granulocyte-monocyte progenitor cells (GMP) was significantly elevated. Additionally, mRNA expression of NADPH oxidase 2 (cytochrome b-245) and NOXA2 (neutrophil cytosolic factor 2), both of which are major components of the membrane-bound oxidase complex generating ROS in cells, was significantly suppressed in MEP and KSL cells, whereas it was up-regulated in GMP. Thus, intracellular ROS level of MEP is kept lowest in hematopoietic cells. Next, we investigated the effect of ROS on the differentiation of myeloid progenitors. In liquid culture assay, loading of ROS with low dose hydrogen peroxide inhibited the differentiation of progenitor cells into MEP, whereas removal of ROS with catalase accelerated the differentiation of those into MEP. Similarly, in the colony-forming assay with semisolid culture medium, we observed that loading of ROS inhibited the formation of megakaryocyte-erythrocyte colonies. To investigate the effect of intrinsic ROS on the colony-forming capacity, we sorted ROS-high and low common myeloid progenitor cells (CMP) individually and cultured them. It was shown that ROS-low CMP had high colony-forming capacity of megakaryocyte-erythrocyte, whereas ROS-high CMP had high colony-forming capacity of granulocyte-monocyte. There is inverse correlation between intracellular ROS level of CMP and colony-forming capacity of megakaryocyte-erythrocyte. In order to confirm that ROS can control the differentiation of CMP into MEP or GMP in vivo, we injected lipopolysaccharide (LPS), which can increase intracellular ROS level of bone marrow cells, into mice. We found that MEP were decreased in LPS-injected mice. Finally, we performed gene expression microarray analysis to compare gene expression profiles between ROS-low and high CMP. In terms of gene expression profiles, ROS-low CMP were similar to MEP and magakaryocyte whereas ROS-high CMP were similar to GMP. In conclusion, these findings suggest that intracellular ROS play a critical role in lineage decision of myeloid progenitor cells, especially in the generation of MEP. In several diseases with anemia or thrombocytopenia, such as myelodysplastic syndrome, Fanconi anemia and autoimmune diseases with chronic inflammation, it was reported that intracellular ROS level of hematopoietic cells was up-regulated. Thus, up-regulated intracellular ROS may be involved in their symptoms via differentiation disorder of MEP. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document