Reduction of Core Binding Factor beta (CBFβ) Dosage Blocks T Cell Development.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2714-2714
Author(s):  
Yalin Guo ◽  
Laleh Talebian ◽  
Ivan Maillard ◽  
Caroline L. Speck ◽  
Warren S. Pear ◽  
...  

Abstract Core binding factors (CBFs) are heterodimers consisting of a DNA binding subunit (Runx1, Runx2, or Runx3) and a non-DNA binding CBFβ subunit. CBFβ increases the affinity of the Runx subunits for DNA. Embryos deficient for Runx1 or CBFβ die at midgestation with a complete failure of definitive hematopoiesis due to a block in hematopoietic stem cell (HSC) emergence. To examine the role of core binding factors at later stages of hematopoiesis, we generated a hypomorphic Cbfb allele (Cbfbrss), that when carried over a Cbfb null allele (Cbfbrss/−) results in a 3-4 fold reduction in CBFβ protein levels. Although HSCs emerge in Cbfbrss/− animals, fetal T cell development is severely impaired. Here we examined the T cell developmental block in more detail by culturing fetal liver cells from Cbfbrss/− animals on OP9 stromal cells that express the Notch ligand Delta-like-1 (DL1) (Schmitt and Zúñiga-Pflücker, Immunity17: 749, 2002). Fetal livers (E14.5) from Cbfbrss/− animals contained normal numbers of both c-kit+Sca-1+lin- cells and c-kit+IL7r+ lymphoid progenitors. Lin- fetal liver progenitors cultured on OP9-DL1 cells in the presence of IL-7 and Flt3L displayed a growth disadvantage relative to wild type cells, and a block at the double negative 1 (DN1, CD44+ CD25−) stage of T cell development. The T cell defect could be rescued by retroviral transduction of the CBFβ heterodimerization domain into lin- fetal liver cells, but not by a G61A/N104A mutant that cannot bind the Runx subunits. Genes whose expression was decreased in DN1 cells purified from the OP9-DL1 cultures included CD3 and the early T cell transcription factors GATA3 and TCF. Although expression of several Notch pathway genes (Notch1, Hes-1/5, Deltex-1) was mildly decreased, Notch signals were clearly transduced, suggesting that Notch signaling was intact. These data demonstrate that reduced CBFβ levels impair the differentiation of stem cells/progenitors into T cells at the earliest stage of T cell development. This in vitro model will be useful for characterizing the molecular circuitry involving CBFβ in T cell development, and for identifying CBFβ protein partners.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 124-124
Author(s):  
Ivan Maillard ◽  
Laleh Talebian ◽  
Zhe Li ◽  
Yalin Guo ◽  
Daisuke Sugiyama ◽  
...  

Abstract The family of core binding factors includes the DNA-binding subunits Runx1-3 and the common non-DNA binding partner CBFβ. Runx1 and CBFβ are essential for the emergence of hematopoietic stem cells during fetal development, but not for stem cell maintenance during later ontogeny. Runx1 is also required for megakaryocyte differentiation, B cell development, and for the DN2 to DN3 transition in thymocyte development. Runx2/CBFβ are critical for normal osteogenesis, and Runx3 for CD4 silencing in CD8+ T cells, but their contribution to other steps of hematopoietic development is unknown. To examine the collective role of core binding factors in hematopoiesis, we generated a hypomorphic Cbfb allele (Cbfbrss). CBFβ protein levels were reduced by approximately 2–3 fold in fetuses homozygous for the Cbfbrss allele (Cbfbrss/rss), and 3–4 fold in fetuses carrying one hypomorphic and one knockout allele (Cbfbrss/−). Cbfbrss/rss and Cbfbrss/− fetuses had normal erythroid and B cell development, and relatively mild abnormalities in megakaryocyte and granulocyte differentiation. In contrast, T cell development was very sensitive to an incremental reduction of CBFβ levels: mature thymocytes were decreased in Cbfbrss/rss fetuses, and virtually absent in Cbfbrss/−fetuses. We next assessed the development of Cbfbrss/rss and Cbfbrss/− fetal liver progenitors after transplantation to irradiated adult recipients, in competition with wild-type (wt) bone marrow cells. Wt, Cbfbrss/rss and Cbfbrss/− fetal progenitors replenished the erythroid, myeloid and B cell compartments equally well. The overall development of Cbfbrss/rss T cells was preserved, although CD4 expression was derepressed in double negative thymocytes. In Cbfbrss/− chimeras, mature thymocytes were entirely derived from competitor cells. Furthermore, the developmental block in Cbfbrss/− progenitors was present at the earliest stages of T cell development within the DN1 (ETP) and DN2 subsets. Our data define a critical CBFβ threshold for normal T cell development, and they situate an essential role of core binding factors during the earliest stages of T cell development. In addition, early thymopoiesis appeared more severely affected by reduced CBFβ dosage than by the lack of Runx1 (Ichikawa et al., Nat Med 2004; Growney et al., Blood 2005), suggesting that Runx2/3 may contribute to core binding factor activity in the T cell lineage.


Author(s):  
Xiaona You ◽  
Yun Zhou ◽  
Yuan-I Chang ◽  
Guangyao Kong ◽  
Erik A. Ranheim ◽  
...  

Mammalian GATA2 gene encodes a dual zinc finger transcription factor, which is essential for hematopoietic stem cell (HSC) generation in the aorta, gonad, mesonephros (AGM) region, HSC self-renewal, and specification of progenitor cell fates. Previously, we demonstrated that Gata2 expression in AGM is controlled by its intronic +9.5 enhancer. Gata2 +9.5 deficiency removes the E-box motif and the GATA site and depletes fetal liver HSCs. However, whether this enhancer has essential functions to regulate adult hematopoiesis has not been established. Here, we evaluate Gata2 +9.5 enhancer function in adult hematopoiesis. +9.5+/- bone marrow cells displayed reduced T cell reconstitution in a competitive transplant assay. Donor-derived analysis demonstrated a previously unrecognized function of the +9.5 enhancer in T cell development at the lymphoid-primed multipotent progenitor stage. Moreover, +9.5+/- adult HSCs displayed increased apoptosis and reduced long-term self-renewal capability in comparison with wild-type (WT) HSCs. These phenotypes were more moderate than those of Gata2+/- HSCs. Consistent with the phenotypic characterization, Gata2 expression in +9.5+/- LSKs was moderately higher than that in Gata2+/- LSKs, but lower than that in WT LSKs. Our data suggest that +9.5 deficiency compromises, without completely abrogating, Gata2 expression in adult HSCs.


2020 ◽  
Vol 88 ◽  
pp. S51
Author(s):  
Victoria Sun ◽  
Amelie Montel-Hagen ◽  
David Casero ◽  
Steven Tsai ◽  
Alexandre Zampieri ◽  
...  

1994 ◽  
Vol 14 (11) ◽  
pp. 7111-7123
Author(s):  
K Hahm ◽  
P Ernst ◽  
K Lo ◽  
G S Kim ◽  
C Turck ◽  
...  

The lymphocyte-specific DNA-binding protein LyF-1 interacts with a critical control element in the terminal deoxynucleotidyltransferase (TdT) promoter as well as with the promoters for other genes expressed during early stages of B- and T-cell development. We have purified LyF-1 and have obtained a partial amino acid sequence from proteolytic peptides. The amino acid sequence suggests that LyF-1 is a zinc finger protein encoded by the Ikaros gene, which previously was implicated in T-cell development. Recombinant Ikaros expressed in Escherichia coli bound to the TdT promoter, and antisera directed against the recombinant protein specifically blocked the DNA-binding activity of LyF-1 in crude extracts. Further analysis revealed that at least six distinct mRNAs are derived from the Ikaros/LyF-1 gene by alternative splicing. Only two of the isoforms possess the N-terminal zinc finger domain that is necessary and sufficient for TdT promoter binding. Although both of these isoforms bound to similar sequences in the TdT, lambda 5, VpreB, and lck promoters, one isoform contains an additional zinc finger that resulted in altered recognition of some binding sites. At least four of the Ikaros/LyF-1 isoforms were detectable in extracts from B- and T-cell lines, with the relative amounts of the isoforms varying considerably. These data reveal that the LyF-1 protein is encoded by specific mRNAs derived from the alternatively-spliced Ikaros gene, suggesting that this gene may be important for the early stages of both B- and T-lymphocyte development.


Author(s):  
Koichi Akashi ◽  
Motonari Kondo ◽  
Annette M. Schlageter ◽  
Irving L. Weissman

2019 ◽  
Vol 42 (7) ◽  
pp. 374-379 ◽  
Author(s):  
Hirotoshi Miyoshi ◽  
Chiaki Sato ◽  
Yuichiro Shimizu ◽  
Misa Morita

With the aim of establishing an effective method to expand hematopoietic stem/progenitor cells for application in hematopoietic stem cell transplantation, we performed ex vivo expansion of hematopoietic stem/progenitor cells derived from mouse fetal liver cells in three-dimensional cocultures with stromal cells. In these cocultures, stromal cells were first cultured within three-dimensional scaffolds to form stromal layers and then fetal liver cells containing hematopoietic cells were seeded on these scaffolds to expand the hematopoietic cells over the 2 weeks of coculture in a serum-containing medium without the addition of cytokines. Prior to coculture, stromal cell growth was suppressed by treatment with the DNA synthesis inhibitor mitomycin C, and its effect on hematopoietic stem/progenitor cell expansion was compared with that in control cocultures in which fetal liver cells were cocultured with three-dimensional freeze-thawed stromal cells. After coculture with mitomycin C-treated stromal cells, we achieved a several-fold expansion of the primitive hematopoietic cells (c-kit+hematopoietic progenitor cells >7.8-fold, and CD34+hematopoietic stem/progenitor cells >3.5-fold). Compared with control cocultures, expansion of hematopoietic stem/progenitor cells tended to be lower, although that of hematopoietic progenitor cells was comparable. Thus, our results suggest that three-dimensional freeze-thawed stromal cells have higher potential to expand hematopoietic stem/progenitor cells compared with mitomycin C-treated stromal cells.


Blood ◽  
2000 ◽  
Vol 95 (7) ◽  
pp. 2284-2288 ◽  
Author(s):  
Hideo Ema ◽  
Hiromitsu Nakauchi

Abstract The activity of hematopoietic stem cells in the developing liver of a C57BL/6 mouse embryo was quantified by a competitive repopulation assay. Different doses of fetal liver cells at days 11 to 18 of gestation were transplanted into irradiated mice together with 2 × 105 adult bone marrow cells. A long-term repopulation in myeloid-, B-cell, and T-cell lineage by fetal liver cells was evaluated at 20 weeks after transplantation. At day 12 of gestation multilineage repopulating activity was first detected in the liver as 50 repopulating units (RU) per liver. The number of RU per liver increased 10-fold and 33-fold by day 14 and day 16 of gestation, and decreased thereafter, suggesting a single wave of stem cell development in the fetal liver. A limiting dilution analysis revealed that the frequency of competitive repopulating units (CRU) in fetal liver cells at day 12 of gestation was similar to that at day 16 of gestation. Because of an increase of total fetal liver cell number, the absolute number of CRU per liver from days 12 to 16 of gestation increased 38-fold. Hence, the mean activity of stem cells (MAS) that is given by RU per CRU remained constant from days 12 to 16 of gestation. From these data we conclude that hematopoietic stem cells expand in the fetal liver maintaining their level of repopulating potential.


2015 ◽  
Vol 112 (44) ◽  
pp. E6020-E6027 ◽  
Author(s):  
Martijn H. Brugman ◽  
Anna-Sophia Wiekmeijer ◽  
Marja van Eggermond ◽  
Ingrid Wolvers-Tettero ◽  
Anton W. Langerak ◽  
...  

The fate and numbers of hematopoietic stem cells (HSC) and their progeny that seed the thymus constitute a fundamental question with important clinical implications. HSC transplantation is often complicated by limited T-cell reconstitution, especially when HSC from umbilical cord blood are used. Attempts to improve immune reconstitution have until now been unsuccessful, underscoring the need for better insight into thymic reconstitution. Here we made use of the NOD-SCID-IL-2Rγ−/− xenograft model and lentiviral cellular barcoding of human HSCs to study T-cell development in the thymus at a clonal level. Barcoded HSCs showed robust (>80% human chimerism) and reproducible myeloid and lymphoid engraftment, with T cells arising 12 wk after transplantation. A very limited number of HSC clones (<10) repopulated the xenografted thymus, with further restriction of the number of clones during subsequent development. Nevertheless, T-cell receptor rearrangements were polyclonal and showed a diverse repertoire, demonstrating that a multitude of T-lymphocyte clones can develop from a single HSC clone. Our data imply that intrathymic clonal fitness is important during T-cell development. As a consequence, immune incompetence after HSC transplantation is not related to the transplantation of limited numbers of HSC but to intrathymic events.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3748-3748
Author(s):  
Bidisha Chanda ◽  
Kiyoko Izawa ◽  
Ratanakanit Harnprasopwat ◽  
Keisuke Takahashi ◽  
Seiichiro Kobayashi ◽  
...  

Abstract Abstract 3748 Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder generally believed to originate from a hematopoietic stem cell carrying the BCR-ABL fusion gene, which generally encodes 210kD and 190kD constitutively active tyrosine kinases termed as p210 and p190, respectively. In spite of the putative stem cell origin and the competence for differentiation toward mature B cells, there is a longstanding consensus that CML never involves the T cell lineage at least in chronic phase. To gain insight into this apparent conflict, we used in vitro T cell differentiation model from murine pluripotent stem cells (PSCs) as well as hematopoietic stem cells (HSCs). C57BL/6 MEFs were reprogrammed using a polycistronic lentiviral Tet-On vector encoding human Oct4, Sox2 and Klf4, which were tandemly linked via porcine teschovirus-1 2A peptides, together with another lentiviral vector expressing rtTA driven by the EF-1a promoter. Almost all the vector sequences including the transgenes were deleted by adenovirus-mediated transduction of Crerecombinase after derivation of iPSCs, and only remnant 291-bp LTRs containing a single loxP site remained in the genome. A clone of MEF-iPSCs were retrovirally transduced with p190DccER, a ligand-controllable p190-estrogen receptor fusion protein, whose tyrosine kinase activity absolutely depends on 4-hydroxytamoxyfen (4-HT).For T cell lineage differentiation, p190DccER-MEF-iPSCs were recovered from a feeder-free culture supplemented with LIF and plated onto a subconfluent OP9-DL1 monolayer in the presence of Flt3 ligand and IL7 with or without 0.5 mM 4-HT.After 3 weeks of culture, iPSC-derived blood cells were collected and subjected to FACS analysis for their lineage confirmation. About 70% of lymphocyte-like cells from the 4-HT(-) culture expressed CD3, but only 20% of counterparts from the 4-HT(+)culture expressed CD3, suggesting impaired T cell development by Bcr-Abl. Next, c-Kit+Sca1+Lin− (KSL) bone marrow cells were prepared by FACS from 8-weeks old C57BL/6 mice treated with 5-FU. KSL cells were similarly transduced with p190DccER and were subjected to the OP9-DL1co-culture system with or without 0.5 mM 4-HT.After 2 weeks of culture, 90% of lymphocytes from the 4-HT(-)culture revealed CD3+TCRβ+ phenotype, but only 30% of those were double positive in the presence of 4-HT(+). In addition, 96% of lymphocytes from the 4-HT(-) culture progressed to the DN2 stage with c-Kit−CD44+CD25+phenotype, whereas 40% of those from the 4-HT(+) culture arrested at the DN1 stage showing c-Kit+CD44+CD25−.Since IL7 plays a central role at the stage from DN1 to DN2 of progenitor T cells, Bcr-Abl is suggested to impair T cell development possibly through interfering with the IL7 signal. The precise mechanism underlying impaired T lymphopoiesis by Bcr-Abl is under investigation. Disclosures: No relevant conflicts of interest to declare.


1995 ◽  
Vol 181 (4) ◽  
pp. 1445-1458 ◽  
Author(s):  
B F Haynes ◽  
C S Heinly

To determine events that transpire during the earliest stages of human T cell development, we have studied fetal tissues before (7 wk), during (8.2 wk), and after (9.5 wk to birth) colonization of the fetal thymic rudiment with hematopoietic stem cells. Calculation of the approximate volumes of the 7- and 8.2-wk thymuses revealed a 35-fold increase in thymic volumes during this time, with 7-wk thymus height of 160 microM and volume of 0.008 mm3, and 8.2-wk thymus height of 1044 microM and volume of 0.296 mm3. Human thymocytes in the 8.2-wk thymus were CD4+ CD8 alpha+ and cytoplasmic CD3 epsilon+ cCD3 delta+ CD8 beta- and CD3 zetta-. Only 5% of 8-wk thymocytes were T cell receptor (TCR)-beta+, &lt; 0.1% were TCR-gamma+, and none reacted with monoclonal antibodies against TCR-delta. During the first 16 wk of gestation, we observed developmentally regulated expression of CD2 and CD8 beta (appearing at 9.5 wk), CD1a,b, and c molecules (CD1b, then CD1c, then CD1a), TCR molecules (TCR-beta, then TCR-delta), CD45RA and CD45RO isoforms, CD28 (10 wk), CD3 zeta (12-13 wk), and CD6 (12,75 wk). Whereas CD2 was not expressed at the time of initiation of thymic lymphopoiesis, a second CD58 ligand, CD48, was expressed at 8.2 wk, suggesting a role for CD48 early in thymic development. Taken together, these data define sequential phenotypic and morphologic changes that occur in human thymus coincident with thymus colonization by hematopoietic stem cells and provide insight into the molecules that are involved in the earliest stages of human T cell development.


Sign in / Sign up

Export Citation Format

Share Document