Shigatoxin Triggers Thrombotic Thrombocytopenic Purpura in Genetically Susceptible ADAMTS13-Deficient Mice.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 723-723 ◽  
Author(s):  
David G. Motto ◽  
Anil K. Chauhan ◽  
Guojing Zhu ◽  
Jonathon Homeister ◽  
Colin B. Lamb ◽  
...  

Abstract The life threatening disease TTP is associated with ultra-large von Willebrand Factor multimers (UL-VWF) in the circulation due to inherited or acquired deficiency of the ADAMTS13 metalloprotease. Here we show that ADAMTS13-deficient mice generated by gene targeting are viable and exhibit normal survival through 2 years of age. Despite the absence of VWF-cleaving protease activity (<1% of normal), wild-type and ADAMTS13-deficient plasma exhibit identical VWF multimer distributions, and Adamts13−/− mice develop spontaneous TTP at an extremely low rate (2 cases out of 358 mice). However, intravital microscopy demonstrated that VWF-mediated platelet-endothelial interactions are significantly prolonged in Adamts13−/− mice. These observations suggested that additional environmental triggers and/or genetic modifying factors may be required to bring about TTP in the setting of ADAMTS13 deficiency. To address the effect of VWF level on development of TTP, Adamts13−/− mice were crossed to mice of the CASA/Rk strain which exhibit markedly elevated plasma VWF levels. Resulting CASA/Adamts13−/− mice demonstrated plasma VWF ranging from 150% to 600% of C57BL/6 controls, and we found that 21% of these mice were thrombocytopenic at baseline (vs. 0% of controls). Introduction of the CASA/Rk genetic background also resulted in the appearance of UL-VWF in CASA/Adamts13−/− mice, further prolonged VWF-mediated platelet-endothelial cell interactions, increased the rate of spontaneous TTP, and markedly decreased survival. Challenge of CASA/Adamts13−/− mice with shigatoxin (derived from bacterial pathogens associated with the related human disease hemolytic uremic syndrome) resulted in a striking syndrome closely resembling human TTP, with thrombocytopenia, profound microangiopathic hemolytic anemia, and platelet- and VWF-thrombi seen in multiple organs. Surprisingly, we observed no correlation between plasma VWF level and severity of TTP, implying the existence of TTP-modifying genes distinct from VWF. Our laboratory is pursuing the identification of these genes which may provide insight into the pathogenesis and treatment of TTP in humans. Finally, our data also suggest that microbial-derived toxins, or possibly other sources of endothelial injury, may be among the key factors required to trigger acute TTP in the setting of ADAMTS13 deficiency.

2006 ◽  
Vol 203 (3) ◽  
pp. 767-776 ◽  
Author(s):  
Anil K. Chauhan ◽  
David G. Motto ◽  
Colin B. Lamb ◽  
Wolfgang Bergmeier ◽  
Michael Dockal ◽  
...  

The metalloprotease ADAMTS13 (a disintegrin-like and metalloprotease with thrombospondin type I repeats 13) cleaves highly adhesive large von Willebrand factor (VWF) multimers after their release from the endothelium. ADAMTS13 deficiency is linked to a life-threatening disorder, thrombotic thrombocytopenic purpura (TTP), characterized by platelet-rich thrombi in the microvasculature. Here, we show spontaneous thrombus formation in activated microvenules of Adamts13−/− mice by intravital microscopy. Strikingly, we found that ADAMTS13 down-regulates both platelet adhesion to exposed subendothelium and thrombus formation in injured arterioles. An inhibitory antibody to ADAMTS13 infused in wild-type mice prolonged adhesion of platelets to endothelium and induced thrombi formation with embolization in the activated microvenules. Absence of ADAMTS13 did not promote thrombi formation in αIIbβ3 integrin-inhibited blood. Recombinant ADAMTS13 reduced platelet adhesion and aggregation in histamine-activated venules and promoted thrombus dissolution in injured arterioles. Our findings reveal that ADAMTS13 has a powerful natural antithrombotic activity and recombinant ADAMTS13 could be used as an antithrombotic agent.


Blood ◽  
2002 ◽  
Vol 100 (3) ◽  
pp. 778-785 ◽  
Author(s):  
Giuseppe Remuzzi ◽  
Miriam Galbusera ◽  
Marina Noris ◽  
Maria Teresa Canciani ◽  
Erica Daina ◽  
...  

Abstract Whether measurement of ADAMTS13 activity may enable physicians to distinguish thrombotic thrombocytopenic purpura (TTP) from hemolytic uremic syndrome (HUS) is still a controversial issue. Our aim was to clarify whether patients with normal or deficient ADAMTS13 activity could be distinguished in terms of disease manifestations and multimeric patterns of plasma von Willebrand factor (VWF). ADAMTS13 activity, VWF antigen, and multimeric pattern were evaluated in patients with recurrent and familial TTP (n = 20) and HUS (n = 29). Results of the collagen-binding assay of ADAMTS13 activity were confirmed in selected samples by testing the capacity of plasma to cleave recombinant VWF A1-A2-A3. Most patients with TTP had complete or partial deficiency of ADAMTS13 activity during the acute phase, and in some the defect persisted at remission. However, complete ADAMTS13 deficiency was also found in 5 of 9 patients with HUS during the acute phase and in 5 patients during remission. HUS patients with ADAMTS13 deficiency could not be distinguished clinically from those with normal ADAMTS13. In a subgroup of patients with TTP or HUS, the ADAMTS13 defect was inherited, as documented by half-normal levels of ADAMTS13 in their asymptomatic parents, consistent with the heterozygous carrier state. In patients with TTP and HUS there was indirect evidence of increased VWF fragmentation, and this occurred also in patients with ADAMTS13 deficiency. In conclusion, deficient ADAMTS13 activity does not distinguish TTP from HUS, at least in the recurrent and familial forms, and it is not the only determinant of VWF abnormalities in these conditions.


Blood ◽  
2008 ◽  
Vol 111 (7) ◽  
pp. 3452-3457 ◽  
Author(s):  
Anil K. Chauhan ◽  
Meghan T. Walsh ◽  
Guojing Zhu ◽  
David Ginsburg ◽  
Denisa D. Wagner ◽  
...  

Abstract Ultralarge von Willebrand factor (UL-VWF) multimers are thought to play a central role in pathogenesis of the disease thrombotic thrombocytopenic purpura (TTP); however, experimental evidence in support of this hypothesis has been difficult to establish. Therefore, to examine directly the requirement for VWF in TTP pathogenesis, we generated ADAMTS13-deficient mice on a TTP-susceptible genetic background that were also either haploinsufficient (Vwf+/−) or completely deficient (Vwf−/−) in VWF. Absence of VWF resulted in complete protection from shigatoxin (Stx)–induced thrombocytopenia, demonstrating an absolute requirement for VWF in this model (Stx has been shown previously to trigger TTP in ADAMTS13-deficient mice). We next investigated the requirements for ADAMTS13 and VWF in a murine model of endotoxemia. Unlike Stx-induced TTP findings, LPS-induced thrombocytopenia and mortality were not affected by either VWF or ADAMTS13 deficiency, suggesting divergent mechanisms of thrombocytopenia between these 2 disorders. Finally, we show that VWF deficiency abrogates the ADAMTS13-deficient prothrombotic state, suggesting VWF as the only relevant ADAMTS13 substrate under these conditions. Together, these findings shed new light on the potential roles played by ADAMTS13 and VWF in TTP, endotoxemia, and normal hemostasis.


2019 ◽  
pp. 12-13
Author(s):  
K. Ukleba ◽  
L. Gvetadze

Thrombotic thrombocytopenic purpura (TTP) is a rare and life-threatening thrombotic microangiopathy characterized by microangiopathic hemolytic anemia, severe thrombocytopenia, and organ ischemia linked to disseminated microvascular platelet rich-thrombi. TTP is specifically related to a severe deficiency in ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type 1 repeats, member 13), the specific von Willebrand factor-cleaving protease. ADAMTS13 deficiency is most frequently acquired via ADAMTS13 autoantibodies, but rarely, it is inherited via mutations of the ADAMTS13 gane. The first acute episode of TTP usually occurs during adulthood, with a predominant anti – ADAMTS13 autoimmune etiology. In rare cases, however, TTP begins as soon as childhood, with frequent inherited forms. TTP is 2 – fold more frequent in women, and its outcome is characterized by a relapsing tendency.


Hematology ◽  
2007 ◽  
Vol 2007 (1) ◽  
pp. 121-126 ◽  
Author(s):  
Pier Mannuccio Mannucci ◽  
Flora Peyvandi

Abstract The last 10 years witnessed the publication of many studies on the pathophysiology of thrombotic thrombocytopenic purpura (TTP), a life-threatening disease characterized by microangiopathic hemolytic anemia, thrombocytopenia and multiorgan failure. The most important finding was the identification of a novel metalloprotease, named ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 motives), that is involved in the regulation of the size of von Willebrand factor (VWF), a major modulator of platelet adhesion and aggregation in the microcirculation. Inherited or acquired deficiencies of ADAMTS13 impair VWF cleavage, leading in turn to the disseminated formation of platelet-rich thrombi in the micro-circulation and to symptoms of end-organ ischemia. By measuring ADAMTS13 in plasma, it has been clearly shown that patients with inherited TTP have severe ADAMTS13 deficiency. However, patients with acquired TTP present with clinical and laboratory heterogeneity, and there are unequivocal cases of acquired TTP with measurable plasma levels of ADAMTS13. This heterogeneity poses a challenge for understanding the pathogenesis of TTP and selecting appropriate therapies.


Blood ◽  
2002 ◽  
Vol 100 (2) ◽  
pp. 710-713 ◽  
Author(s):  
Valentina Bianchi ◽  
Rodolfo Robles ◽  
Lorenzo Alberio ◽  
Miha Furlan ◽  
Bernhard Lämmle

Abstract A severe deficiency in von Willebrand factor–cleaving protease (ADAMTS13) activity (< 5% that in normal plasma) has been observed in most patients with a diagnosis of thrombotic thrombocytopenic purpura (TTP) but not in those with a diagnosis of hemolytic uremic syndrome. However, ADAMTS13 deficiency has been claimed not to be specific for TTP, since it was observed in various thrombocytopenic and other conditions. We studied 68 patients with thrombocytopenia due to severe sepsis or septic shock (n = 17), heparin-induced thrombocytopenia (n = 16), idiopathic thrombocytopenic purpura (n = 10), or other hematologic (n = 15) or miscellaneous conditions (n = 10). Twelve of the 68 patients had subnormal levels of ADAMTS13 activity (≤ 30%), but none had less than 10%. Thus, the study showed that ADAMTS13 activity is decreased in a substantial proportion of patients with thrombocytopenia of various causes. A severe deficiency of ADAMTS13 (< 5%), identified in more than 120 patients during 1996 to 2001 in our laboratory, is specific for a thrombotic microangiopathy commonly labeled TTP.


2001 ◽  
Vol 2 (5) ◽  
pp. 352-354 ◽  
Author(s):  
Agnès Veyradier ◽  
François Brivet ◽  
Martine Wolf ◽  
Catherine Boyer-Neumann ◽  
Bernadette Obert ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (2) ◽  
pp. 425-436 ◽  
Author(s):  
Hong Yang ◽  
Sean Lang ◽  
Zhimin Zhai ◽  
Ling Li ◽  
Walter H. A. Kahr ◽  
...  

Abstract Platelet P-selectin plays important roles in inflammation and contributes to thrombosis and hemostasis. Although it has been reported that von Willebrand factor (VWF) affects P-selectin expression on endothelial cells, little information is available regarding regulation of platelet P-selectin expression. Here, we first observed that P-selectin expression was significantly decreased on platelets of fibrinogen and VWF double-deficient mice. Subsequently, we identified this was due to fibrinogen deficiency. Impaired P-selectin expression on fibrinogen-deficient platelets was further confirmed in human hypofibrinogenemic patients. We demonstrated that this impairment is unlikely due to excessive P-selectin shedding, deficient fibrinogen-mediated cell surface P-selectin binding, or impaired platelet granule release, but rather is due to decreased platelet P-selectin content. Fibrinogen transfusion completely recovered this impairment in fibrinogen-deficient (Fg−/−) mice, and engagement of the C-terminus of the fibrinogen γ chain with β3 integrin was required for this process. Furthermore, Fg−/− platelets significantly increased P-selectin expression following transfusion into β3 integrin–deficient mice and when cultured with fibrinogen. These data suggest fibrinogen may play important roles in inflammation, thrombosis, and hemostasis via enhancement of platelet P-selectin expression. Since human fibrinogen levels vary significantly in normal and diseased populations, P-selectin as an activation marker on platelets should be used with caution.


2021 ◽  
Vol 100 (4) ◽  
pp. 12-19
Author(s):  
Kh.М. Emirova ◽  
◽  
O.M. Orlova ◽  
E.M. Chichuga ◽  
А.L. Мuzurov ◽  
...  

Atypical hemolytic uremic syndrome (aHUS) is an orphan disease caused by hyperactivation of the alternative complement pathway. Objective of the study: to assess the state of the «ADAMTS13 – von Willebrand factor (vWF) – platelets» system in children with aHUS. Materials and methods of research: [by the FRET method (fluorescence resonance energy transfer) for the FRETSVWF73 (Peptide Institude, Inc., Japan)] hydrolysis of the fluorescent substrate and ADAMTS13 antigen [by ELISA using TECHNOZYM® ADAMTS13 5450551 ELISA (Technoclone GmbH, Austria)], vWF activity [for platelet agglutination (aggregation) in the presence of ristomycin (NPO Renam reagent kit for the ALAT-230LA-2 aggregometer, Russia)] and vWF antigen [by ELISA using the TECHNOZYM® vWF kit: Ag 5450201 ELISA (Technoclone GmbH , Austria)]. Results: there was a decrease in the activity and concentration of ADAMTS13 in 63% and 62% of patients, respectively. A decrease in vWF activity was noted in 44% of cases, an increase in its concentration – in 54% of children. Thrombocytopenia was diagnosed in 99% of children. Conclusion: the imbalance in the «ADAMTS13 – vWF – platelets» system supports the process of thrombus formation with the development of organ ischemia in aHUS under conditions of endothelial dysfunction. Reduced ADAMTS13 activity predicts the severity of the disease.


Sign in / Sign up

Export Citation Format

Share Document