Protein Phosphatase 2A Plays an Essential Role in Migration of CD34+ Cells to SDF-1/CXCL12.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1131-1131
Author(s):  
Sunanda Basu ◽  
Nicole T. Ray ◽  
Simon J. Atkinson ◽  
Hal E. Broxmeyer

Abstract Although cord blood contains significant numbers of hematopoietic stem and progenitor cells (HSPC), its applicability has remained largely in children (1Broxmeyer and Smith, 2004). Homing of hematopoietic stem progenitor cells (HSPC) to bone marrow is a critical determinant for success of transplantation. Enhancement of homing of HSPC from cord blood has the potential to increase the applicability of cord blood transplantation in adults. Therefore, it is important to understand the molecules that underlie directional movement of HSPC. Stromal derived factor-1 (SDF-1)/CXCL12 is the most potent chemoattractant for both mouse and human HSPC and has been shown to play an important role in the homing and retention of HSPC in bone marrow. Earlier studies have shown that PI-3 kinase plays a critical role in chemotaxis by attracting various pleckstin homology (PH) containing domain proteins at the leading edge and spatial localization of PI3Kinase and PTEN is critical for maintaining the leading edge. Controlled activation of Akt/PKB, one of the various PH containg domains, has been described to be required for efficient chemotaxis. In this study we have demonstrated that protein phosphatase 2A (PP2A), a serine-threonine phosphatase, plays an important role in chemotaxis of cord blood CD34+ cells towards SDF-1, primarily by modulating Akt activity. Inhibition of PP2A by okadaic acid (OA) or siRNA impairs chemotaxis; this involved impairment in the ability of CD34+ cells to polarize and reduced speed of movement. This was associated with robust and prolonged Akt phosphorylation. Indeed, over expression of constitutive active Akt in CD34+ cells impaired SDF-1 directed chemotaxis. Co-immunoprecipitation experiments demonstrated increased association of Akt with PP2A following SDF-1 stimulation and this increased association of Akt and PP2A-catalytic subunit was observed at the plasma membrane of SDF-1 stimulated CD34+ cells by confocal microscopy. The importance of PP2A in maintaining a critical level and duration of activated Akt was also supported by our finding that inhibition of PI-3kinase by low dose of LY294002, partially recovered chemotactic activity in CD34+ cells pretreated with OA. Interestingly, glycogen synthase kinase-3 (GSK-3) associated with Akt following SDF-1 stimulation, although it was found to be constitutively associated with PP2A-C. Inhibition of GSK-3 using GSK-3 IX inhibitor impaired chemotaxis, raising the possibility that GSK-3 is a downstream target for Akt in SDF-1 directed chemotaxis. The physiological relevance of our in vitro findings is established from the observation that OA pretreatment impaired engraftment potential of CD34+ cells in NOD-SCID mice. Our findings contribute to the growing understanding of molecules that affect directional movement and may have the potential implications for homing and engraftment of HSPC.

Blood ◽  
2011 ◽  
Vol 117 (6) ◽  
pp. 1840-1850 ◽  
Author(s):  
Kam Tong Leung ◽  
Kathy Yuen Yee Chan ◽  
Pak Cheung Ng ◽  
Tze Kin Lau ◽  
Wui Man Chiu ◽  
...  

Abstract The stromal cell–derived factor-1 (SDF-1)/chemokine C-X-C receptor 4 (CXCR4) axis plays a critical role in homing and engraftment of hematopoietic stem/progenitor cells (HSCs) during bone marrow transplantation. To investigate the transcriptional regulation provided by this axis, we performed the first differential transcriptome profiling of human cord blood CD34+ cells in response to short-term exposure to SDF-1 and identified a panel of genes with putative homing functions. We demonstrated that CD9, a member of the tetraspanin family of proteins, was expressed in CD34+CD38−/lo and CD34+CD38+ cells. CD9 levels were enhanced by SDF-1, which simultaneously down-regulated CXCR4 membrane expression. Using specific inhibitors and activators, we demonstrated that CD9 expression was modulated via CXCR4, G-protein, protein kinase C, phospholipase C, extracellular signal-regulated kinase, and Janus kinase 2 signals. Pretreatment of CD34+ cells with the anti-CD9 monoclonal antibody ALB6 significantly inhibited SDF-1–mediated transendothelial migration and calcium mobilization, whereas adhesion to fibronectin and endothelial cells was enhanced. Pretreatment of CD34+ cells with ALB6 significantly impaired their homing to bone marrow and spleen of sublethally irradiated NOD/SCID (nonobese diabetic/severe combined immune-deficient) mice. Sorted CD34+CD9− cells displayed lower bone marrow homing capacity compared with that of total CD34+ cells. CD9 expression on homed CD34+ cells was significantly up-regulated in vivo. Our results indicate that CD9 might possess specific functions in HSC homing.


2007 ◽  
Vol 16 (6) ◽  
pp. 579-585 ◽  
Author(s):  
Guo-Ping Huang ◽  
Zhi-Jun Pan ◽  
Bing-Bing Jia ◽  
Qiang Zheng ◽  
Chun-Gang Xie ◽  
...  

Human mesenchymal stem cells (MSCs) are multipotential and are detected in bone marrow (BM), adipose tissue, placenta, and umbilical cord blood (UCB). In this study, we examined the ability of UCB-derived MSCs (UCB-MSCs) to support ex vivo expansion of hematopoietic stem/progenitor cells (HSPCs) from UCB and the engraftment of expanded HSPCs in NOD/SCID mice. The result showed that UCB-MSCs supported the proliferation and differentiation of CD34+ cells in vitro. The number of expanded total nucleated cells (TNCs) in MSC-based culture was twofold higher than cultures without MSC (control cultures). UCB-MSCs increased the expansion capabilities of CD34+ cells, long-term culture-initiating cells (LTC-ICs), granulocyte-macrophage colony-forming cells (GM-CFCs), and high proliferative potential colony-forming cells (HPP-CFCs) compared to control cultures. The expanded HSPCs were transplanted into lethally irradiated NOD/SCID mice to assess the effects of expanded cells on hematopoietic recovery. The number of white blood cells (WBCs) in the peripheral blood of mice transplanted with expanded cells from both the MSC-based and control cultures returned to pretreatment levels at day 25 posttransplant and then decreased. The WBC levels returned to pretreatment levels again at days 45–55 posttransplant. The level of human CD45+ cell engraftment in primary recipients transplanted with expanded cells from the MSC-based cultures was significantly higher than recipients transplanted with cells from the control cultures. Serial transplantation demonstrated that the expanded cells could establish long-term engraftment of hematopoietic cells. UCB-MSCs similar to those derived from adult bone marrow may provide novel targets for cellular and gene therapy.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1129-1129
Author(s):  
Dandan Li ◽  
Omar S. Aljitawi ◽  
Richard A. Hopkins

Abstract Umbilical cord blood (UCB) is of great value by providing transplantable hematopoietic stem and progenitor cells (HSPCs). Compared with HSPCs from adult bone marrow and periferial blood, UCB cells are more primitive with higher proliferation ability, and UCB HSPC transplantation requires less HLA matching. The major problems in UCB transplantation is the limited number of transplantable cells in each unit which are often insufficient for transplantation in adults In order to elucidate the effects of the main components of bone marrow on cord blood CD34+ expansion, freshly enriched cord blood CD34+ cells were cultured in contact with bone marrow stromal cell (BM-MSC) monolayer, BM-MSCs pre-seeded in decellularized Wharton's jelly matrix (DWJM), and in DWJM alone, as well as separated by a transwell preventing the physical contact between CD34+ cells and BM-MSCs in a medium supplemented with a cytokine cocktail including Flt-3 igand, stem cell factor, and thrombopoietin. Expansion patterns were analyzed by CD34+ and CD45+ expansion, as well as colony-forming unit (CFU) assay. We found that the number of CFU increases significantly in cord blood CD34+ cells co-cultured with BM-MSCs in DWJM compared to that of control. Particularly, the increase in CFU-GEMM, BFU-E and CFU-GM number is more significant compared to other colonies. Importantly, DWJM alone is not able to increase CFU numbers compared to that of the control indicating there is a synergistic effect between DWJM and BM-MSCs on cell stemness. Surprisingly, BM-MSCs in DWJM also increses CD34+ cell expansion by 2 to 3 fold after one week culture, presumably from enhanced ablilty of self-renewal from CD34+ cells. Therefore, our data suggest DWJM synergizes with BM-MSCs to increase CD34 cell stemness, which can potentially be used in the clinic therapy. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 9 (6) ◽  
pp. 1670
Author(s):  
Daniela Cilloni ◽  
Jessica Petiti ◽  
Valentina Campia ◽  
Marina Podestà ◽  
Margherita Squillario ◽  
...  

During the phase of proliferation needed for hematopoietic reconstitution following transplantation, hematopoietic stem/progenitor cells (HSPC) must express genes involved in stem cell self-renewal. We investigated the expression of genes relevant for self-renewal and expansion of HSPC (operationally defined as CD34+ cells) in steady state and after transplantation. Specifically, we evaluated the expression of ninety-one genes that were analyzed by real-time PCR in CD34+ cells isolated from (i) 12 samples from umbilical cord blood (UCB); (ii) 15 samples from bone marrow healthy donors; (iii) 13 samples from bone marrow after umbilical cord blood transplant (UCBT); and (iv) 29 samples from patients after transplantation with adult hematopoietic cells. The results show that transplanted CD34+ cells from adult cells acquire an asset very different from transplanted CD34+ cells from cord blood. Multivariate machine learning analysis (MMLA) showed that four specific gene signatures can be obtained by comparing the four types of CD34+ cells. In several, but not all cases, transplanted HSPC from UCB overexpress reprogramming genes. However, these remarkable changes do not alter the commitment to hematopoietic lineage. Overall, these results reveal undisclosed aspects of transplantation biology.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4253-4253
Author(s):  
Shmuel Yaccoby ◽  
Kenichiro Yata ◽  
Yun Ge ◽  
Bart Barlogie ◽  
Joshua Epstein ◽  
...  

Abstract Recent studies indicate that osteoblasts play an important role in maintaining hematopoietic stem cells (HSCs) niche in the bone marrow microenvironment. The aim of study was to test the effect of osteoclasts on the fate of HSCs in a long term co-culture assay. To generate osteoclasts, peripheral blood mononuclear cells from mobilized donors were cultured for 6–10 days in αMEM media supplemented with 10% FCS, M-CSF and RANKL. After removal of non-adherent cells, the cultures contained 95% multinucleated osteoclasts and their precursors. These osteoclasts expressed TRAP and formed resorption pits on bone slices (Yaccoby et al., Cancer Res., 2004). CD34+ cells were purified from donor PBSCs and cord blood using immunomagnetic beads separation (>95% purity). Adult and cord blood HSCs were co-cultured with osteoclasts for up to 3 and 10 months, respectively, in media lacking any cytokines. Because osteoclasts do not survive long without M-CSF and RANKL, the HSCs were transferred to fresh osteoclast cultures every 6–10 days. Unlike their tight adherence to stromal cells, HSCs did not adhere to the osteoclasts and were easily recovered from co-cultures by gentle pipetting. Following 1 to 3 weeks of co-culture, committed HSCs rapidly differentiated into various hematopoietic cell lineage, followed by phagocytosis of terminal differentiated hematopoietic cells by the osteoclasts. The remaining HSCs were highly viable (>90% by trypan blue exclusion) and gradually lost their CD34 expression, so that the cultures contained subpopulations of HSCs expressing CD34−/lowCD38+ and CD34−/lowCD38−. Quantitive real time RT-PCR (qRT-PCR) revealed loss of expression of CD34 and reduced expression of CD45 by HSCs co-cultured with osteoclasts longer than 6 weeks. Variable expression of CD34 on HSCs was previously reported in murine but not human HSCs (Tajima et al., Blood, 2001). The co-cultured HSCs showed reduced capacity of generating in vitro hematopoietic colonies, and did not differentiate into osteoclasts upon stimulation with M-CSF and RANKL. We next tested the long term engraftment of these co-cultured HSCs in 2 animal models. In the first model, cord blood and adult HSCs from 2 donors recovered after >6 weeks in co-culture were injected I.V. into irradiated NOD/SCID mice. In the second novel model, co-cultured cord blood and adult HSCs from 2 donors were injected directly into rabbit bones implanted subcutaneously in SCID mice (SCID-rab model), 6–8 weeks after rabbit bone implantation. After 2–4 months, 10%±3% human CD45-expressing cells were identified in the NOD/SCID mice femora and 8%±4% in the SCID-rab mice rabbit bone. Our study suggests that osteoclasts promote rapid differentiation of committed HSCs and induce conversion of CD34+ cells to CD34− stem cells with self renewal potential. Intriguingly, long term co-culture of primary CD138-selected myeloma plasma cells (n=16) with osteoclasts resulted in dedifferentiation of tumor cells from a mature CD45− phenotype to an immature, CD45-expressing cells, suggesting a common mechanism of osteoclast-induced HSC and myeloma cell plasticity. This indicates that osteoclasts are important bone marrow component regulating human HSC niche, plasticity and fate.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1652-1652
Author(s):  
Patrick Ziegler ◽  
Steffen Boettcher ◽  
Hildegard Keppeler ◽  
Bettina Kirchner ◽  
Markus G. Manz

Abstract We recently demonstrated human T cell, B cell, dendritic cell, and natural interferon producing cell development and consecutive formation of primary and secondary lymphoid organs in Rag2−/−gc−/− mice, transplanted as newborns intra-hepatically (i.h.) with human CD34+ cord blood cells (Traggiai et al., Science 2004). Although these mice support high levels of human cell engraftment and continuous T and B cell formation as well as CD34+ cell maintenance in bone marrow over at least six month, the frequency of secondary recipient reconstituting human hematopoietic stem and progenitor cells within the CD34+ pool declines over time. Also, although some human immune responses are detectable upon vaccination with tetanus toxoid, or infection with human lymphotropic viruses such as EBV and HIV, these responses are somewhat weak compared to primary human responses, and are inconsistent in frequency. Thus, some factors sustaining human hematopoietic stem cells in bone marrow and immune responses in lymphoid tissues are either missing in the mouse environment, or are not cross-reactive on human cells. Human mesenchymal stem cells (MSCs) replicate as undifferentiated cells and are capable to differentiate to multiple mesenchymal tissues such as bone, cartilage, fat, muscle, tendon, as well as marrow and lymphoid organ stroma cells, at least in vitro (e.g. Pittenger et al., Science 1999). Moreover, it was shown that MSCs maintain CD34+ cells to some extend in vitro, and engraft at low frequency upon transplantation into adult immunodeficient mice or fetal sheep as detected by gene transcripts. We thus postulated that co-transplantation of cord blood CD34+ cells and MSCs into newborn mice might lead to engraftment of both cell types, and to provision of factors supporting CD34+ maintenance and immune system function. MSCs were isolated and expanded by plastic adherence in IMDM, supplemented with FCS and cortisone (first 3 weeks) from adult bone marrow, cord blood, and umbilical vein. To test their potential to support hemato-lymphopoiesis, MSCs were analyzed for human hemato-lymphotropic cytokine transcription and production by RT-PCR and ELISA, respectively. MSCs from all sources expressed gene-transcripts for IL-6, IL-7, IL-11, IL-15, SCF, TPO, FLT3L, M-CSF, GM-CSF, LIF, and SDF-1. Consistently, respective cytokines were detected in supernatants at the following, declining levels (pg/ml): IL-6 (10000-10E6) > SDF-1 > IL-11 > M-CSF > IL-7 > LIF > SCF > GM-CSF (0–450), while FLT3L and TPO were not detectable by ELISA. Upon i.h. transplantation of same passage MSCs (1X10E6) into sublethally irradiated (2x2 Gy) newborn Rag2−/−gc−/− mice, 2-week engraftment was demonstrated by species specific b2m-RT-PCR in thymus, spleen, lung, liver and heart in n=7 and additionally in thymus in n=3 out of 13 animals analyzed. Equally, GFP-RNA transcripts were detectable in the thymus for up to 6 weeks, the longest time followed, upon co-transplantation of same source CD34+ cells and retrovirally GFP-transduced MSCs in n=2 out of 4 animals. Further engraftment analysis of ongoing experiments will be presented. Overall, these results demonstrate that human MSC produce hemato-lymphoid cytokines and engraft in newborn transplanted Rag2−/−gc−/− mice, at least at early time-points analyzed. This model thus might allow studying hematopoietic cell and MSC-derived cell interaction, and might serve as a testing system for MSC delivered gene therapy in vivo.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3378-3378
Author(s):  
Bin Zhang ◽  
Heiko Konig ◽  
Tinisha Mcdonald ◽  
Tessa L. Holyoake ◽  
Dario Campana ◽  
...  

Abstract The therapeutic success of imatinib mesylate (IM) in chronic myeloid leukemia (CML) is impaired by persistence of malignant hematopoietic stem and progenitor cells (HSPC). The bone marrow microenvironment regulates the self-renewal, proliferation and differentiation of HSPC. We investigated the role of microenvironmental interactions in resistance of CML HSPC to elimination by BCR-ABL tyrosine kinase inhibitors (TKI). CML CD34+CD38− primitive progenitor cells and CD34+CD38+ committed progenitor cells were cultured for 96 hours with IM (5μM), nilotinib (5μM) and dasatinib(150nM), in medium supplemented with low concentrations of growth factors, with and without irradiated primary human marrow stromal cells (immortalized by ectopic telomerase expression) followed by an assessment of apoptosis and proliferation. Culture with stroma did not result in significant alteration of apoptosis in the absence of TKI treatment (3.1±0.7% apoptosis for primitive progenitors with stroma and 2.7±0.9% without stroma, 3.7±0.2% for committed progenitors with stroma and 4.7±2.1% without stroma). Coculture with stroma completely protected CML primitive and committed progenitors from TKI-induced apoptosis. CML CD34+CD38− cells demonstrated 20±6% apoptosis following culture with IM in the absence of stroma, but only 3.8±1% apoptosis in the presence of stroma (p=0.04, n=4). Similarly, apoptosis with nilotinib decreased from 12.5±1.8% without stroma to 2.9±0.3% with stroma (p=0.033), and apoptosis with dasatinib decreased from 7.1±0.04% without stroma to 2.7±0.2% with stroma (p=0.001). Apoptosis of CML CD34+CD38+ cells also significantly decreased following TKI treatment with 12.9±4.0%, 10.6±3.2%, 8.4±2.3% apoptosis observed after IM, nilotinib and dasatinib treatment respectively without stroma and 7.1±1.2%, 4.8±1.0%, 3.7±0.4% with stroma, (p=0.04, p=0.03 and p=0.02 respectively, n=4). Culture with stroma resulted in mild reduction in CML progenitor proliferation in the absence of TKI treatment, but TKI treatment resulted in similar degrees of inhibition of proliferation regardless of the presence of stroma. Culture of CML CD34+ cells in a Transwell insert with 0.45μm pores, allowing free diffusion of stromal factors but preventing direct contact with stroma, was associated with reduction in the protective effect of stroma coculture (32.2% apoptosis without stroma, 14.7% with stroma, and 24.6% with Transwell insert). Addition of blocking antibodies to a4 integrin and N-cadherin did not affect survival of CML CD34+ cells in the absence of IM, but resulted in enhanced apoptosis of CML CD34+ cells cocultured with stroma after addition of IM (20.4% apoptosis without antibody, 28.9% with anti-N-cadherin, and 29.8% with anti-integrin antibody). We conclude that the bone marrow stromal microenvironment protects CML primitive and committed progenitors from pro-apoptotic effects of BCR-ABL TKI treatment. Direct contact-mediated interactions, likely through VLA-4 and N-Cadherin, play an important role in protecting CML CD34+ cells from TKI-mediated apoptosis. These observations indicate that measures aimed at interfering with the protective effects of stroma could be of benefit for the eradication of residual malignant progenitors in CML patients receiving BCR-ABL TKI treatment.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4040-4040
Author(s):  
Szabolcs Fatrai ◽  
Simon M.G.J. Daenen ◽  
Edo Vellenga ◽  
Jan J. Schuringa

Abstract Mucin1 (Muc1) is a membrane glycoprotein which is expressed on most of the normal secretory epithelial cells as well as on hematopoietic cells. It is involved in migration, adhesion and intracellular signalling. Muc1 can be cleaved close to the membrane-proximal region, resulting in an intracellular Muc1 that can associate with or activate various signalling pathway components such as b-catenin, p53 and HIF1a. Based on these properties, Muc1 expression was analysed in human hematopoietic stem/progenitor cells. Muc1 mRNA expression was highest in the immature CD34+/CD38− cells and was reduced upon maturation towards the progenitor stage. Cord blood (CB) CD34+ cells were sorted into Muc1+ and Muc1− populations followed by CFC and LTC-IC assays and these experiments revealed that the stem and progenitor cells reside predominantly in the CD34+/Muc1+ fraction. Importantly, we observed strongly increased Muc1 expression in the CD34+ subfraction of AML mononuclear cells. These results tempted us to further study the role of Muc1 overexpression in human CD34+ stem/progenitor cells. Full-length Muc1 (Muc1F) and a Muc1 isoform with a deleted extracellular domain (DTR) were stably expressed in CB CD34+ cells using a retroviral approach. Upon coculture with MS5 bone marrow stromal cells, a two-fold increase in expansion of suspension cells was observed in both Muc1F and DTR cultures. In line with these results, we observed an increase in progenitor counts in the Muc1F and DTR group as determined by CFC assays in methylcellulose. Upon replating of CFC cultures, Muc1F and DTR were giving rise to secondary colonies in contrast to empty vector control groups, indicating that self-renewal was imposed on progenitors by expression of Muc1. A 3-fold and 2-fold increase in stem cell frequencies was observed in the DTR and Muc1F groups, respectively, as determined by LTC-IC assays. To determine whether the above mentioned phenotypes in MS5 co-cultures were stroma-dependent, we expanded Muc1F and DTR-transduced cells in cytokine-driven liquid cultures. However, no proliferative advantage or increase in CFC frequencies was observed suggesting that Muc1 requires bone marrow stromal cells. In conclusion, our data indicate that HSCs as well as AML cells are enriched for Muc1 expression, and that overexpression of Muc1 in CB cells is sufficient to increase both progenitor and stem cell frequencies.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2322-2322
Author(s):  
Takashi Yoshikubo ◽  
Yoshihiro Matsumoto ◽  
Masahiko Nanami ◽  
Takayuki Sakurai ◽  
Hiroyuki Tsunoda ◽  
...  

Abstract Thrombopoietin (TPO, the ligand for c-mpl) is a key factor for megakaryopoiesis. Several clinical trials of TPO have been conducted for thrombocytopenia without much success due to, in part, the production of neutralized antibodies against endogenous TPO, which causes thrombocytopenia. To overcome this problem, we previously demonstrated that mouse type minibody against c-mpl, with an amino acid sequence totally different from TPO, showed megakaryopoiesis and increased platelet numbers in monkey. This time, using CDR grafting, we generated a humanized sc(Fv)2VB22B minibody (huVB22B) against c-mpl for therapeutic use. The new minibody showed almost the same activity in vitro as TPO and the mouse type minibody, confirmed by both a human megakaryocyte cell (CD41+) differentiation assay and a proliferation assay with TPO-dependent cell line, M-07e. Single sc or iv administration of huVB22B to cynomolgus monkeys showed a dose-dependent increase in platelet numbers. Pharmacokinetic analysis showed that the plasma half-life (T1/2) of huVB22B at iv and sc administration to cynomolgus monkeys was 7–8 h and 11–16 h, respectively. After administration of huVB22B, the platelets of these monkeys increased and showed functional aggregation in response to ADP in vitro. Repeated administration of huVB22B (0.2, 2 and 20mg/kg/week) revealed that the increase in platelet level in cynomolgus monkeys was maintained for a month. Very slight reticular fibers in bone marrow were detected in a high dose group (20mg/ kg). No overt changes were detected by toxicity evaluations including clinical pathology and histopathology in 0.2 and 2mg/kg groups. No neutralized activities in plasma were observed during these experiments. Next, we examined the activities of huVB22B on human bone marrow-derived CD34-positive cells (BM-CD34+) and umbilical cord blood-derived CD34-positive cells (UCB-CD34+) in vitro. BM-CD34+ and UCB-CD34+ cells were cultured with huVB22B in serum free medium. HuVB22B induced differentiation of CD41+ cells from BM-CD34+ or UCB-CD34+ cells in a similar dose-dependent manner. However, UCB-CD34+ cells showed greater proliferation in response to huVB22B compared to BM-CD34+ cells. We then examined the in vivo activities of huVB22B on UCB CD34+ cells by treating NOD/SCID mice transplanted with human UCB-CD34+ cells with huVB22B and examining the bone marrow cells of the mice. The results showed that, compared with the control, administration of huVB22B showed an increase in the number of human hematopoietic progenitor cells (CD34+), lymphoid lineage cells (CD19+), and myeloid lineage cells (CD33+) in addition to human CFU-Meg cells (CD41+). These results suggest that c-mpl stimulation in vivo after transplantation might increase engraftment of progenitor cells in the bone marrow microenvironment and subsequently induce differentiation to multilineage cells. Umbilical cord blood transplantation faces frequent complications including a low-level stem/progenitor cell engraftment and delayed platelet recovery. Our results suggest that c-mpl stimulation might be used to increase the engraftment of UCB stem/progenitor cells and shorten the time of platelet recovery following UCB transplantation.


2005 ◽  
Vol 33 (7) ◽  
pp. 828-835 ◽  
Author(s):  
Cláudia Lobato da Silva ◽  
Raquel Gonçalves ◽  
Kirsten B. Crapnell ◽  
Joaquim M.S. Cabral ◽  
Esmail D. Zanjani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document