P0-Related Protein Accelerates the Migration of Human Mesenchymal Stem Cells and Their Progeny by Modulating VLA-5 Interactions with Fibronectin.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1391-1391
Author(s):  
Suzanne M. Watt ◽  
Maria Roubelakis ◽  
Sinead Forde ◽  
Fengjuan Lu ◽  
Grigorios Tsaknakis ◽  
...  

Abstract Human mesenchymal stem cells (hMSCs) are capable of expansion, self renewal and generation of several tissues such as bone, fat and cartilage. They also generate microenviromental niche cells that regulate angiogenesis and hematopoiesis. During development and in the adult, hMSCs and their progeny migrate to specific niches where they provide support for hematopoietic cells or they play an important role in tissue regeneration, inflammatory responses and cancer surveillance. There is particular interest in understanding the molecular basis of hMSCs migration which involves numerous transmembrane receptors, cell adhesion and signaling molecules. Here, we demonstrate, for the first time, that human P0 - related protein, hPZR, has the ability to accelerate VLA-5-mediated migration of cultured hMSCs on the extracellular matrix (ECM) protein, fibronectin. This is mediated via the immunotyrosine-inhibitory motif (ITIM) sequences within the hPZR cytoplasmic domain, and the ECM ligand, since it cannot be recapitulated with the hPZR ITIM-less isoform, hPZRb, nor with other ECM components such as laminin or Type IV collagen. It is mediated by interactions with the docking phosphatase, SHP-2. The specificity of these results was confirmed by knocking-down hPZR and hPZRb using siRNA technology. We further demonstrated that hPZR clusters with VLA-5 at the leading edge of the cell, using high-resolution confocal microscopy together with immunoprecipitation and immunoblotting technologies. We propose that hPZR plays a key role in negatively regulating VLA-5 adhesion to fibronectin, a process critical for cell detachment from fibronectin and for the migration of hMSCs and their progeny.

RSC Advances ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 3843-3853
Author(s):  
Yauheni U. Kuvyrkou ◽  
Nadzeya Brezhneva ◽  
Ekaterina V. Skorb ◽  
Sviatlana A. Ulasevich

Herein, the proliferation and osteogenic potential of human mesenchymal stem cells (hMSCs) on the disordered and ordered porous morphology of the titania surface and titania surface modified by hydroxyapatite (HA) are compared for the first time.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Denise Salzig ◽  
Jasmin Leber ◽  
Katharina Merkewitz ◽  
Michaela C. Lange ◽  
Natascha Köster ◽  
...  

The manufacture of human mesenchymal stem cells (hMSCs) for clinical applications requires an appropriate growth surface and an optimized, preferably chemically defined medium (CDM) for expansion. We investigated a new protein/peptide-free CDM that supports the adhesion, growth, and detachment of an immortalized hMSC line (hMSC-TERT) as well as primary cells derived from bone marrow (bm-hMSCs) and adipose tissue (ad-hMSCs). We observed the rapid attachment and spreading of hMSC-TERT cells and ad-hMSCs in CDM concomitant with the expression of integrin and actin fibers. Cell spreading was promoted by coating the growth surface with collagen type IV and fibronectin. The growth of hMSC-TERT cells was similar in CDM and serum-containing medium whereas the lag phase of bm-hMSCs was prolonged in CDM. FGF-2 or surface coating with collagen type IV promoted the growth of bm-hMSCs, but laminin had no effect. All three cell types retained their trilineage differentiation capability in CDM and were detached by several enzymes (but not collagenase in the case of hMSC-TERT cells). The medium and coating did not affect detachment efficiency but influenced cell survival after detachment. CDM combined with cell-specific surface coatings and/or FGF-2 supplements is therefore as effective as serum-containing medium for the manufacture of different hMSC types.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Letizia De Chiara ◽  
Elvira Smeralda Famulari ◽  
Sharmila Fagoonee ◽  
Saskia K. M. van Daalen ◽  
Stefano Buttiglieri ◽  
...  

Mesenchymal stem cells hold great promise for regenerative medicine as they can be easily isolated from different sources such as adipose tissue, bone marrow, and umbilical cord blood. Spontaneously arising pluripotent stem cells can be obtained in culture from murine spermatogonial stem cells (SSCs), while the pluripotency of the human counterpart remains a matter of debate. Recent gene expression profiling studies have demonstrated that embryonic stem cell- (ESC-) like cells obtained from the human testis are indeed closer to mesenchymal stem cells (MSCs) than to pluripotent stem cells. Here, we confirm that colonies derived from human testicular cultures, with our isolation protocol, are of mesenchymal origin and do not arise from spermatogonial stem cells (SSCs). The testis, thus, provides an important and accessible source of MSCs (tMSCs) that can be potentially used for nephrotoxicity testing in vitro. We further demonstrate, for the first time, that tMSCs are able to secrete microvesicles that could possibly be applied to the treatment of various chronic diseases, such as those affecting the kidney.


Neurosurgery ◽  
2017 ◽  
Vol 64 (CN_suppl_1) ◽  
pp. 292-292
Author(s):  
Rawan Al-kharboosh ◽  
Nicholas Ellens ◽  
Katarina Cheng ◽  
Maarten Rotman ◽  
Jordan Green ◽  
...  

Abstract INTRODUCTION Pre clinical interventions to the CNS require direct cranial administration of drugs for relevant therapeutic concentrations since the efficacy of systemic administration is hindered by the blood-brain barrier (BBB). We used MR-guided Focused Ultrasound (MRgFUS) to deliver primary-patient derived mesenchymal stem cells (hMSCs) for the first time, with sub-millimeter precision, in preselected areas. This method is a revolutionary way to deliver cellular therapy to delicate or inoperable regions obviating the need for invasive surgical intervention. METHODS MRgFUS mediates BBB opening when low intensity FUS is applied to brain vasculature containing circulating microbubbles. This causes high intensity oscillation leading to a pore formation in BBB. hMSCs were injected intracardially in mice as a proof-of-principal delivery system. Under guidance of MRI, 0.4-1MPa in situ pressures at 1 MHz, 1ms bursts and 1Hz pulse repetition frequency for 120 seconds were administered on the left hemisphere. Each animals contralateral brain served as its own control. RESULTS >We demonstrate that MRgFUS augments permeability of BBB. Each animal (n = 3) received 3 cavitation parameters ranging from .4-1MPa in situ pressures at time points 2, 6 and 24 hrs. Immunohistochemistry identified hMSC localization on sonicated points. Further analysis showed blood cell extravasation and capillary damage due to the indices being sonicated so close together causing a larger sheer force from the fluid stream of injected microbubbles. The consequence is a cavitation pore larger than intended, necessitating further optimization. There were no observed behavioral complications after sonication and no hMSCs localization in non-pulsed regions demonstrating precise localization and no off-target delivery. CONCLUSION The global hurdle of systemic therapy due to the BBB makes access of therapeutics, let alone cellular therapy to the brain parenchyma, nearly impossible. This study investigates for the first time the utility of FUS to non-destructively permeabilize the BBB by creating a transient pore big enough for hMSC access.


2008 ◽  
Vol 389 (2) ◽  
pp. 169-177 ◽  
Author(s):  
Wen Li ◽  
Christoph F.A. Vogel ◽  
Phillip Fujiyoshi ◽  
Fumio Matsumura

Abstract Efforts were made to develop a human adipocyte model that is useful for toxicological studies in vitro. For this purpose, a stem cell line derived from human bone marrow cells, originally from an adult, was induced to differentiate towards adipocytes by treating them with insulin, dexamethasone, indomethacin and 3-isobutyl-1-methylxanthine for 3 d, followed by additional incubation for 3 d in Dulbecco's modified Eagle's medium supplemented with insulin only. In most cases, thus differentiated cells through such one cycle of differentiation treatment were further subjected to the second cycle of differentiation. The resulting 2-cycle differentiated cells were found to exhibit many characteristics of typical adipocytes. Dioxin (TCDD), when added at the beginning of their treatment with differentiation-inducing hormone cocktail, clearly prevented them from becoming adipocytes, as in the case of TCDD-treated 3T3-L1 cells. Furthermore, TCDD, even when administered to previously differentiated human mesenchymal stem cells (hMSC) adipocytes, consistently induced the sign of inflammatory responses during the early period of TCDD action (24 h), which was followed by gradual loss of adipocyte-specific markers during the 5-d incubation period. In conclusion, hMSC-derived adipocytes appear to offer a promising human cell model suited for future toxicological studies.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4260-4260
Author(s):  
Maria G. Roubelakis ◽  
Kalliopi I. Pappa ◽  
Vassiliki Bitsika ◽  
Dimitra Zagoura ◽  
Antonia Vlahou ◽  
...  

Abstract Human mesenchymal stem cells (hMSCs) constitute a population of multipotent cells, easily expanded in culture and able to give rise to many lineages. These characteristics make MSCs a very attractive tool for developing new strategies for clinical applications based on cell therapy. So far, the most common source of MSCs has been the bone marrow (BM). However, identification and characterization of alternative sources of MSCs is of great importance. One such alternative source is the amniotic fluid (AF), which can be collected during scheduled amniocentesis without any ethical concerns. To this end, in the present study, we introduced an improved protocol for isolating and clonally expanding fetal MSCs from second trimester amniotic fluid (AF) and we further characterized these cells based on their phenotype, pluripotency, differentiation potential and proteomic profile. The AF samples were obtained during routine amniocentesis and AF-MSCs were enriched by a modified culture protocol. The isolated MSCs expanded rapidly and exhibited differentiation potential into adipocytes and osteoblasts. More importantly, we showed that these cells can differentiate in vitro not only into cell types derived from mesoderm (adipocytes and osteoblasts) and ectoderm (neural cells) but also more interestingly into endoderm (hepatocytes) derived cells. Moreover, we documented that AF-MSCs express Oct-4 transcription factor, a marker of pluripotency, and we studied for the first time its expression over different passages by real time PCR and documented that it remained constant for at least 17 doublings. An extensive characterization of the phenotypic features of AF-MSCs by using a wide range of surface markers and flow cytometry, indicated that they are positive for all the mesenchymal stem cell markers such as CD90, CD105, CD73 and CD166 and generally exhibit a similar expression pattern to the BM-MSCs. To characterize these cells in more detail, we established the first proteomic database for human AF-MSCs. Using 2D-gel electrophoresis and matrix-assisted laser desorption ionisation-time of flight-mass (MALDI-TOF) spectrometry approach, we have generated for the first time the protein map of AF MSCs, by identifying 260 proteins and directly compared this protein profile with that of MSCs derived from BM. We further performed a similar analysis for BM-MSCs, identifying 170 different proteins and generating a reference map for these cells. The comparison of the proteomic pattern from both sources was similar. In general, 140 proteins were identified in AF-MSCs related to cell growth/maintenance, metabolism/energy pathways, protein metabolism, apoptosis, signal transduction and communication as well as transcription and transport, that are not present in BM-MSCs. The approach we initiated, is expected to facilitate systematic functional studies for these multipotent cells. One such approach could be the implementation of the proteomic analysis, during differentiation of AF-MSCs to cells derived from all three germ layers as shown in our study. Data derived from these approaches are expected to clarify the therapeutic potential of the MSCs.


Sign in / Sign up

Export Citation Format

Share Document