Recombinant Bispecific Monoclonal Antibody (bsMAb) Against CD20 and CD22 Active In Vitro and In Vivo Against B-Cell Lymphomas.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2521-2521
Author(s):  
Zhengxing Qu ◽  
Thomas M. Cardillo ◽  
Victoria Shi ◽  
Diana L. Delaney ◽  
Hans J. Hansen ◽  
...  

Abstract Background: Preclinical and clinical results suggest improved anti-lymphoma activity of combining anti-CD20 and anti-CD22 MAbs. Our aim was to develop a recombinant bispecific MAb against CD20 and CD22 antigens, and to evaluate its anti-tumor potency compared to the parental MAbs. Methods: Tetravalent anti-CD20/CD22 bsMAb in the form of anti-CD20 IgG linked to two anti-CD22 scFv’s was prepared recombinantly. The ability of the bsMAb to inhibit cell growth and mediate CDC and ADCC was evaluated by cell-based assays. Phosphorylation and distribution of CD22 in B-lymphoma cells treated with the bsMAb were studied by immunoblotting. The extension of survival of disseminated Daudi lymphoma cells in SCID mice also was evalauted. Results: In contrast to the parental anti-CD22 MAb, epratuzumab, the bsMAb did not internalize in Ramos cells. In CDC tests, the bsMAb showed no cytotoxic effects, similar to epratuzumab, although it did bind C1q complement protein, unlike epratuzumab. In ADCC, the bsMAb was as potent as the parental humanized anti-CD20 Mab, hA20, in inducing target-cell lysis. The anti-CD20/CD22 bsMAb has distinct effects on NHL B-cell lines compared to each parental monospecific MAb or in combination: <10 nM bsMAb causes cells to aggregate; in the soluble, non-crosslinked form, while none of the parental MAbs alone or mixed had significant anti-proliferative activity, the recombinant bsMAb was strongly anti-proliferative; the anti-proliferation activities induced by an anti-IgM Ab and the bsMAb were synergistic; and the bsMAb resulted in rapid redistribution of CD22 into detergent-resistant membrane microdomains on the cell surface. Initial animal studies show that the bsMab significantly extended survival over control SCID mice. Conclusion: The recombinantly fused anti-CD20/CD22 bsMAb has new properties compared to the parental monospecific MAbs, and may represent a new class of potential therapeutic agents that could replace binary combinations of antibodies.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3732-3732
Author(s):  
Jostein Dahle ◽  
Ada Repetto ◽  
Camilla Sivertsen Mollatt ◽  
Katrine Brustad Melhus ◽  
Øyvind Sverre Bruland ◽  
...  

Abstract Abstract 3732 The monoclonal anti-CD20 antibody rituximab alone or as part of combination therapy, is considered standard therapy for non-Hodgkin's B-cell lymphomas. However, significantly better clinical results have been obtained for beta-emitting anti –CD20 radioimmunoconjugates (RICs) than for rituximab. RICs targeting CD20 may be problematic because of antigenic drift and antigen blocking caused by previous treatments with rituximab. Therefore, novel therapeutic approaches targeting other B cell antigens might be more effective after rituximab treatment failure than a new anti-CD20 treatment. In the present study, we have compared the therapeutic effect of the novel anti-CD37 RIC 177Lu-DOTA-HH1 with the anti-CD20 RIC 177Lu-DOTA-rituximab against Daudi human lymphoma cells in vitro and in vivo. At the same antibody concentration 177Lu-DOTA-HH1 was significantly more effective in inhibiting cell growth in vitro than 177Lu-DOTA-rituximab. SCID mice were intravenously injected with 10 million Daudi cells one week before RIC treatment. A significantly increased survival of mice treated with 177Lu-DOTA-HH1 as compared with 177Lu-DOTA-rituximab treatment was observed. Furthermore, the toxicity of the 177Lu-DOTA-HH1 treatment was significantly lower than for 177Lu-DOTA-rituximab. In addition, we have compared binding properties and biodistribution of HH1 with rituximab. The affinity of HH1 to CD37 was similar to the affinity of rituximab to CD20. The CD37-HH1 complex was internalized 10 times faster than CD20-rituximab. Both antibodies had a relevant biodistribution and low uptake in bone. This work warrants further preclinical and clinical studies with 177Lu-HH1. Disclosures: Dahle: Nordic Nanovector: Employment. Bruland:Nordic Nanovector: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Larsen:Nordic Nanovector: Equity Ownership, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
1994 ◽  
Vol 83 (5) ◽  
pp. 1329-1336 ◽  
Author(s):  
MA Ghetie ◽  
LJ Picker ◽  
JA Richardson ◽  
K Tucker ◽  
JW Uhr ◽  
...  

Abstract In this report, we extend our previous findings that IgG or F(ab′)2 fragments of HD37 anti-CD19 antibody (Ab) in combination with the immunotoxin (IT), RFB4-anti-CD22-deglycosylated ricin A chain (dgA) (but neither reagent alone), prolonged the survival of SCID mice with disseminated human Daudi lymphoma (SCID/Daudi mice) to 1 year at which time they still remained tumor-free. We explored the mechanisms by which the HD37 Ab exerts antitumor activity in vivo by studying its activity in vitro. We found that it has antiproliferative activity (IC50 = 5.2 - 9.8 x 10(-7) mol/L) on three CD19+ Burkitt's lymphoma cell lines (Daudi, Raji, and Namalwa) but not on a weakly CD19-positive (CD19lo) pre-B cell tumor (Nalm-6). The inhibitory effect was manifested by cell cycle arrest, but not apoptosis. Results using three additional anti-CD19 Abs, suggest that the affinity of the antibody and possibly the epitope which it recognizes may effect its capacity to transmit a signal that induces cell cycle arrest. Hence, therapeutically useful Abs may exert anti-tumor activity by a variety of mechanisms, each of which should be evaluated before undertaking clinical trials in humans.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2522-2522 ◽  
Author(s):  
Nishitha Reddy ◽  
Raymond Cruz ◽  
Francisco Hernandez-Ilizaliturri ◽  
Joy Knight ◽  
Myron S. Czuczman

Abstract Background: Lenalidomide is a potent thalidomide analogue shown to activate both the innate and adoptive immune system, inhibit angiogenesis, and modify the tumor microenvironment. While lenalidomide has received approval by the U.S. Federal Drug Administration (FDA) for the treatment of various hematological conditions, ongoing clinical trials are addressing its role in the treatment of B-cell lymphomas. There is a dire need to develop novel well-tolerated, therapies which combine various target-specific agents such as lenalidomide and monoclonal antibodies (mAbs). We previously demonstrated that lenalidomide is capable of expanding natural killer (NK) cells in a human-lymphoma-bearing SCID mouse model and improve rituximab anti-tumor activity in vivo. Methods: In our current work we studied the effects of lenalidomide on the biological activity of a panel of mAbs against various B-cell lymphomas, utilizing various rituximab-sensitive (RSCL) and rituximab-resistant cell lines (RRCL) generated in our laboratory from Raji and RL cell lines. Functional assays including antibody-dependant cellular cytotoxicity (ADCC) and complement-mediated cytotoxicity (CMC) were performed to demonstrate changes in sensitivity to rituximab. RSCL and RRCL (1′105 cells/well) were exposed to either lenalidomide (5 μg/ml) or vehicle with or without mAb at a final concentration of 10μg/ml. The mAb panel consisted of two anti-CD20 mAbs: rituximab (Biogen IDEC, Inc.) and hA20, a humanized anti-CD20 mAb (Immunomedics, Inc.); an anti-CD80 mAb (galixumab, Biogen IDEC Inc.), and an anti-CD52 antibody (Alemtuzumab, Berlex Inc.). Changes in DNA synthesis and cell proliferation were determined at 24 and 48 hrs by [3H]-thymidine uptake. For ADCC/CMC studies, NHL cells were exposed to lenalidomide or vehicle for 24 hrs and then labeled with 51Cr prior to treatment with one of various mAbs (10 mg/ml) and peripheral blood mononuclear cells (Effector: Target ratio, 40:1) or human serum, respectively. 51Cr-release was measured and the percentage of lysis was calculated. Changes in antigen (CD20, CD80, and CD52) expression following in vitro exposure to lenalidomide were studied by multicolor flow cytometric analysis. Results: Concomitant in vitro exposure of various RSCL and RRCL cells to lenalidomide and either galixumab, hA20 or alemtuzumab for 24 hrs resulted in improved anti-tumor activity when compared to controls. In addition, pre-incubation of both RSCL and RRCL with lenalidomide rendered cells more susceptible to alemtuzumab-, hA20- and galixumab-mediated ADCC and CMC. No antigen modulation (i.e., upregulation) was observed following in vitro exposure of lenalidomide to NHL cell lines, suggesting an alternative mechanism involved in the improvement antitumor activity observed. Conclusions: Our data suggest that the augmented antitumor effect of lenalidomide is not limited to its combination with rituximab, but also that it augments the antiproliferative and biological activity of alemtuzumab, hA20 and galixumab. Furthermore, these interactions are observed even in our RRCL. Future studies will be directed towards evaluating whether similar activity will be seen in vivo using a human lymphoma-bearing SCID mouse model. (Supported by USPHS grant PO1-CA103985 from the National Cancer Institute.)


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 5087-5087 ◽  
Author(s):  
Takashi Tokunaga ◽  
Akihiro Tomita ◽  
Kazuyuki Shimada ◽  
Junji Hiraga ◽  
Takumi Sugimoto ◽  
...  

Abstract Abstract 5087 Background Rituximab is an anti-CD20 chimeric-monoclonal antibody, and its effectiveness for treatment of CD20-positive B-cell lymphomas has been proven over the past 10 years. Although rituximab is now a key molecular targeting drug for CD20-positive lymphomas, some patients with rituximab resistance have emerged. We previously reported that the CD20-protein-negative phenotypic change after using rituximab is one of the critical mechanisms in rituximab resistance (Hiraga J, Tomita A, et al., Blood, 2009., Sugimoto T, Tomita A, et al., Biochem Biophys Res Commun, 2009.). Recently, we have recognized that some newly-diagnosed B-cell lymphomas show CD20-protein-positive in immunohistochemistry (IHC) but -negative in flow cytometry (FCM) analyses. For these patients, so far, neither the molecular mechanisms of CD20 IHC(+)/FCM(−) phenotype, nor the relationship between this phenotype and rituximab resistance are clear. Thus, the clinical significance of introducing rituximab therapy for these patients must be elucidated. Aims Analyses of the molecular backgrounds of CD20 IHC(+)/FCM(−) phenotype in primary B-lymphoma cells, and confirmation of the effectiveness of rituximab therapy for the patients who show CD20 IHC(+)/FCM(−) phenotype. Results Primary B-cell lymphoma (diffuse large B-cell (DLBCL), follicular, MALT, mantle cell, and Burkitt) tissues and cells were analyzed by IHC and FCM. Four newly-diagnosed B-cell lymphoma patients showed IHC CD79(+)/CD20(+) and FCM CD19(+)/CD20(−) phenotype using anti-CD20 antibodies L26 for IHC and B1 for FCM, and all were diagnosed as DLBCL. Chromosomal analysis showed complex karyotypes in 3 out of 3 patients analyzed, and no shared abnormalities were confirmed. Primary lymphoma cells from 3 patients were available for further molecular analyses, and the genomic DNA, the total RNA, and the protein from whole cell lysate were obtained from these lymphoma cells. DNA sequencing analysis indicated no significant genetic mutations on the coding sequences (CDS) of MS4A1 (CD20) gene. Semi-quantitative and quantitative RT-PCR indicated that CD20 mRNA expression was almost normal in 2 patients and ≂~f10 times lower in 1 patient compared to the positive control B-lymphoma/leukemia cells. Almost the same expression tendency with RT-PCR was confirmed in immunoblot analysis using whole cell lysate and the two different anti-CD20 antibodies. The molecular weight of the CD20 protein in immunoblotting corresponded to the wild type in these patients. Rituximab binding assay in vitro was performed using primary lymphoma cells from a patient and the fluorescent-labeled rituximab (Alexa488-rituximab). Interestingly, rituximab binding on the surface of the CD19 positive lymphoma cells was confirmed in vitro. Rituximab containing combination chemotherapy was performed, resulting in complete response in all 4 cases after completing 4 to 8 courses. Conclusions and Discussion CD20 IHC(+)/FCM(−) phenotype was confirmed in newly-diagnosed DLBCL patients. Significant abnormalities in CD20 protein and mRNA expression in immunoblotting and RT-PCR were not confirmed, and genetic mutations on CDS of MS4A1 gene, resulting in the conformation change of CD20 protein, were not detected. The possibility of abnormal post-translational modification or aberrant localization of CD20 protein, leading to interference with antibody binding, can not be excluded. Rituximab binding with CD19-positive primary lymphoma cells was confirmed in a patient, suggesting that CD20 IHC(+)/FCM(-) phenotype does not directly indicate the ineffectiveness of rituximab for these cells. Further investigations, performing in vitro CDC and ADCC assay using primary lymphoma cells, are still warranted to show rituximab effectiveness and sensitivity to those cells. Disclosures: Kinoshita: Zenyaku Kogyo Co.: Research Funding; Chugai Pharmaceutical Co., Ltd.: Research Funding. Naoe:Zenyaku Kogyo Co.: Research Funding; Chugai Pharmaceutical Co., Ltd.: Research Funding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3245-3245
Author(s):  
Ada H.V. Repetto-Llamazares ◽  
Roy Hartvig Larsen ◽  
Landsverk Kirsti ◽  
Trond Stokke ◽  
Bergthora Eiriksdottir ◽  
...  

Abstract Immunotherapy (IT) with the anti-CD20 monoclonal antibody rituximab in combination with chemotherapy has resulted in significantly improved response rate and survival in patients with various types of CD20 positive B-cell lymphoproliferative disorders. To be effective, rituximab depends on selective expression of a sufficient number of CD20 antigens per cell. Treatment with rituximab alone or in combination with chemotherapy can, however, result in disappearance of the CD20 expression, which may result in reduced clinical effect of subsequent CD20 targeted treatments. We have discovered that treatment of NHL in vitro and in vivo with the anti-CD37 antibody radionuclide conjugate (ARC) 177Lu-DOTA-HH1 (177Lu-HH1 or Betalutin™) results in an upregulation of the CD20 antigen expression, and therefore represents a rationale for a combination treatment with both agents. The in vitro expression of CD20 in Burkitt's Lymphoma, Daudi, cells 1-7 days after treatment with 177Lu-HH1 increased up to 120 % when compared with cells treated with unlabeled mAb, while Ramos (Burkitt's Lymphoma) and Rec-1 (Mantle Cell Lymphoma) cells showed 10 to 30 % increase, indicating a variation of the antigen upregulation in vitro with different cell lines. An upregulation of CD20 at the same order of magnitude was observed when cells where treated with similar absorbed radiation doses of external beam radiation. Treatment of nude mice with Ramos xenografts with 177Lu-HH1 resulted in a 3 times higher uptake of radiolabeled rituximab in tumor xenografts 5 days after start of treatment than in mice treated with unlabeled HH1 (p < 0.05) while uptake in normal organs was similar in both treatment groups (p > 0.05). SCID mice with intravenously injected Rec-1 cells were treated with NaCl, 100 mg rituximab, 40 MBq/kg 177Lu-HH1 or with the combination of 40 MBq/kg 177Lu-HH1 followed with 100 mg rituximab 5 days later. The combination of 177Lu-HH1 and rituximab resulted in significantly improved survival as compared with NaCl or rituximab alone, and a strong therapeutic gain as compared with 177Lu-HH1 alone (Table 1). In conclusion, 177Lu-HH1 treatment seems to improve uptake of rituximab and increase tumor suppression when used prior to anti-CD20 monoclonal antibody targeting in preclinical models. The reason for the upregulation of CD20 is probably related to the oxidative stress induced by the ARC-treatment, which will be evaluated in further studies. If the upregultation of CD20 is confirmed in clinical studies this effect could affect the way ARC and CD20 immunotherapy would be used in the future. Table 1. Therapy experiment groups and result Group Median ± SD Surviving fraction at the end of the study % Increase in symptom free survival compared to control NaCl + NaCl 64 ± 2 0.1 ---- NaCl + Rituximab 75 ± 10 0.3 15.4 177 Lu-HH1 + NaCl 92 ± 14 * 0.3 43.8 177 Lu-HH1 + Rituximab > 132 * 0.7 > 106.3 *Significantly different from NaCl + NaCl group (p < 0.01) Disclosures Repetto-Llamazares: Nordic Nanovector ASA: Employment, Equity Ownership. Larsen:Nordic Nanovector ASA: Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Stokke:Nordic nanovector ASA: Equity Ownership. Generalov:Nordic Nanovector ASA: Employment. Dahle:Nordic Nanovector ASA: Employment, Equity Ownership.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 396-396
Author(s):  
Kohta Miyawaki ◽  
Takuji Yamauchi ◽  
Takeshi Sugio ◽  
Kensuke Sasaki ◽  
Hiroaki Miyoshi ◽  
...  

Diffuse large B-cell lymphoma (DLBCL) is among the most common hematological malignancies with varying prognosis. As many as forty percent of patients eventually experience relapsed/refractory disease after combinatorial chemo-immunotherapies, R-CHOP, and prognosis after relapse is dismal. MYC is among the most established prognostic factors and associated with clinically-distinct subsets of DLBCL with poor prognosis: double-expressor lymphoma (DEL) and double-hit lymphoma (DHL). MYC is co-expressed with BCL2 in DEL, which consists of 60% of activated B-cell type DLBCL (ABC-DLBCL) cases, while DHL, defined by coexistence of MYC and BCL2/BCL6 rearrangements, were reportedly observed in 15% of germinal center B-cell like DLBCL (GCB-DLBCL). Considering that MYC-positive DLBCLs exhibit dismal outcomes, pharmacological inhibition of MYC activity is highly demanded; however, direct targeting of MYC has been proven challenging. Here we show that PAICS (phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccinocarboxamide synthase), which catalyzes a critical step in de novo purine synthesis, functions downstream of MYC in DLBCL cells. We further show MRT252040, a newly-developed PAICS inhibitor, effectively suppresses proliferation of MYC-driven DLBCL cells in vitro and in vivo. Through the nCounter-based transcriptome profiling of formalin-fixed paraffin-embedded (FFPE) tissues from 170 untreated DLBCL patients, we found that MYC and PAICS were co-expressed and their mRNA levels were among the most predictive for poor prognosis after standard R-CHOP therapy. Their expression levels were particularly high in a subset of ABC-DLBCL and extranodal DLBCL, namely in DEL and DHL cases. Importantly, these findings were validated using three independent cohorts (Schmitz et al. NEJM, 2018). MYC and PAICS expression levels were high in most DLBCL lines and low in normal B cells in the lymph nodes, while they were variable in primary DLBCL tissues, revealed by nCounter and immunofluorescence. This trend was more evident in PAICS due presumably to active de novo purine biosynthesis in highly-proliferative cell lines and a subset of DLBCLs, including MYC-positive DLBCLs. These findings were also validated using the DepMap, a publicly-available genome-wide CRISPR/Cas9 dropout screen datasets. PAICS was among the top-ranked essential genes for the survival of DLBCL cell lines. Since co-expression of MYC and PAICS in a subset of DLBCL were indicative of a functional relationship between the two factors, we explored publicly-available ChIP-seq datasets to see if MYC directly regulates PAICS expression. As expected, MYC ChIP-seq signals were highly enriched near the PAICS promoter in a series of cancer cell lines. Furthermore, shRNA-mediated MYC knockdown led to reduced levels of PAICS mRNA in MYC-positive DLBCL cells and significantly slowed their growth. Collectively, these data suggest that PAICS is a direct transcriptional target of MYC, playing a key role in proliferation of MYC-positive DLBCL cells. To assess the feasibility of PAICS-inhibition as a therapeutic option for MYC-positive DLBCLs, we tested MRT252040 for its anti-lymphoma activity in vitro and in vivo. To do so, we first assessed cell cycle status and Annexin positivity upon MRT252040 treatment using a series of DLBCL cell lines. As expected, MRT252040-mediated PAICS inhibition induced cell cycle arrest and apoptosis. Furthermore, MRT252040 treatment significantly delayed proliferation of DLBCL cell lines, namely those harboring MYC rearrangements. Finally, to assess anti-lymphoma activity of MRT252040 in vivo, we tested MRT252040 efficacy using patient-derived xenograft DLBCL. After xenotransplantation, proportions of lymphoma cells per total mononuclear cells in peripheral blood were examined over time by FACS, and MRT252040 (or vehicle) treatment was initiated once lymphoma cells constituted &gt;0.1%. MRT252040-treated mice survived significantly longer than vehicle-treated mice, indicative of therapeutic efficacy of MRT252040 monotherapy against DLBCL in vivo. Our data suggest that MYC regulates the de novo purine synthesis pathway via directly transactivating PAICS expression. We propose that MRT252040, a newly-developed PAICS inhibitor, warrants attention as a novel therapeutic approach for MYC-positive DLBCLs, which otherwise exhibit poor clinical outcomes. Disclosures Ohshima: SRL, Inc.: Consultancy; Kyowa Kirin Co., Ltd.: Honoraria, Research Funding; Chugai Pharmaceutical Co., Ltd.: Honoraria, Research Funding; Celgene Corp.: Honoraria, Research Funding; NEC Corp.: Research Funding. Akashi:Sumitomo Dainippon, Kyowa Kirin: Consultancy; Celgene, Kyowa Kirin, Astellas, Shionogi, Asahi Kasei, Chugai, Bristol-Myers Squibb: Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4180-4180
Author(s):  
Felipe Vences-Catalan ◽  
Chiung-Chi Kuo ◽  
Ranjani Rajapaksa ◽  
Caroline Duault ◽  
Ronald Levy ◽  
...  

Abstract The tetraspanin CD81 associates with CD19 on B cells; this molecular complex functions as co-receptor to lower the threshold of BCR-initiated B cell activation. Recently we have shown the importance of CD81 in tumor growth and metastasis of solid tumors (Vences-Catalan et al., 2015). However, the role of CD81 in lymphoid malignancies has not been explored. Previous studies demonstrated anti-proliferative effects of anti-CD81 antibodies on human B cell lymphomas using in vitro assays (Oren et al., 1990). Here we tested the therapeutic effect of an anti-human CD81 antibody in vivo against Raji and SUP-B8 B cell lymphomas using a xenograft model in SCID mice. Our studies demonstrated that our anti-human CD81 antibody (mouse IgG1) had therapeutic effect comparable to Rituximab (human IgG1) (Figure 1A). Yet, the two antibodies differ in their ability to mediate antibody-dependent cell cytotoxicity (ADCC), Rituximab is known to be highly effective, whereas the mouse IgG1 anti-CD81 antibody is not expected to mediate ADCC. To enhance the anti-CD81-mediated ADCC, we class switched the hybridoma to mouse IgG2a; we also engineered a chimeric antibody containing human IgG1ADCC-HIGH Fc constant region. Indeed, mouse IgG2a and the chimeric human IgG1 anti-CD81 mAb showed a remarkable increase in NK cell-mediated ADCC as well as complement-dependent cytotoxicity (CDC) when compared to Rituximab in vitro (data not shown) and in vivo (Figure 1B). These results suggest that CD81 can be a potential therapeutic target on B cell lymphomas by virtue of both its direct cytotoxic effect and as a mediator of ADCC and CDC. The humanized IgG1 version is being developed as a therapeutic candidate. Comparable efficacy of anti-CD81 to Rituximab. SCID mice were I.V.-injected with 1.5x106 Raji-GFP-Luc cells, tumors growth proceeded for 5 days before IP injection of 4 weekly doses of 100 ug of the indicated antibodies. (A) Survival of Raji-GFP-Luc bearing SCID mice given anti CD81 (n=30), Rituximab (n=20) or control MsIgG1 (n=30). (B) In vivo bioluminescence imaging of tumor growth in mice injected (left to right) with control mouse IgG1; anti-CD81 (MsIgG1); anti-CD81 MsIgG2a; chimeric anti-CD81 (HuIgG1) and Rituximab. Comparable efficacy of anti-CD81 to Rituximab. SCID mice were I.V.-injected with 1.5x106 Raji-GFP-Luc cells, tumors growth proceeded for 5 days before IP injection of 4 weekly doses of 100 ug of the indicated antibodies. (A) Survival of Raji-GFP-Luc bearing SCID mice given anti CD81 (n=30), Rituximab (n=20) or control MsIgG1 (n=30). / (B) In vivo bioluminescence imaging of tumor growth in mice injected (left to right) with control mouse IgG1; anti-CD81 (MsIgG1); anti-CD81 MsIgG2a; chimeric anti-CD81 (HuIgG1) and Rituximab. Disclosures Levy: Kite Pharma: Consultancy; Five Prime Therapeutics: Consultancy; Innate Pharma: Consultancy; Beigene: Consultancy; Corvus: Consultancy; Dynavax: Research Funding; Pharmacyclics: Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1671-1671
Author(s):  
Harbani Malik ◽  
Ben Buelow ◽  
Brian Avanzino ◽  
Aarti Balasubramani ◽  
Andrew Boudreau ◽  
...  

Abstract Introduction Along with CD20 and CD22, the restricted expression of CD19 to the B-cell lineage makes it an attractive target for the therapeutic treatment of B-cell malignancies. Many monoclonal antibodies and antibody drug conjugates specific to CD19 have been described, including bispecific T-cell redirecting antibodies (T-BsAbs). In addition, anti-CD19 chimeric antigen receptor T-cells (CAR-Ts) have been approved to treat leukemia. To date, toxicity from over-activation of T-cells and large-scale production of CAR-Ts still hinder this approach. Bispecific T-cell engaging antibodies redirecting T cells to CD19 circumvent the latter problem but to date have shown similar T-cell over-activation, as well as significant neurotoxicity. Utilizing TeneoSeek, a next generation sequencing (NGS)-based discovery pipeline that uses in silico analysis of heavy chain only/fixed light chain antibody (HCA/Flic, respectively) sequences to enrich for antigen specific antibodies, we made a high affinity αCD19 HCA and a library of αCD3 Flic antibodies that showed a >2 log range of EC50s for T cell activation in vitro. Of note, the library contained a selectively-activating αCD3 that induced potent T-cell dependent lysis of lymphoma cells (when paired with an αCD19 HCA) with minimal cytokine secretion. To characterize the relative efficacy and potential therapeutic window of this unique molecule, we compared the low-activating (and Fc-containing) CD19 x CD3 to two pan T-cell activating bispecific CD19 x CD3 antibodies (blinatumomab and another developed in-house) in vitro and in vivo for T-cell activation, efficacy in killing lymphoma cells, and toxicity. Methods T-cell activation was measured via flow cytometry (CD69 and CD25 expression) and cytokine ELISA (IL-2, IL-6, IL-10, INF-ɣ, and TNFα) in vitro. Lysis of B-cell tumor cell lines (Raji, Ramos, and Nalm6) was measured via calcein release in vitro. In vivo, NOG mice were engrafted with human peripheral blood mononuclear cells (huPBMC) and human lymphoma cell lines, and the mice treated with weekly injections of T-BsAbs. Tumor burden was evaluated via caliper measurement. Pharmacokinetic (PK) studies were performed in NOG mice using ELISA. Results EC50s for cytotoxicity were in the single-digit nanomolar range for the selective T cell activating T-BsAb and sub-nanomolar for the pan T-cell activating controls. The selective T cell activator showed markedly reduced cytokine release for all cytokines tested compared to the pan T-cell controls even at saturating concentrations. In vivo, established CD19 positive B-cell tumors were cleared in NOG mice in the presence of huPBMC. PK profiles of both molecules generated in-house (selective and pan T-cell activators) were consistent with those of an IgG in mice. No activation of T-cells was observed in vitro or in vivo in the absence of CD19 expressing target cells. Conclusions Both the selectively-activating and the pan T-cell activating control bispecific antibodies killed lymphoma cells in vitro and in vivo in a CD19-dependent manner. While the pan T-cell activating controls showed T-cell activation comparable to other CD3-engaging bispecifics, the selective activator induced significantly reduced cytokine secretion by T-cells and demonstrated a half-life consistent with other IgG antibodies. In summary, our selectively activating CD19 x CD3 T-BsAb shows promise as a lymphoma therapeutic differentiated from current T-cell targeted therapies currently in the clinic and in clinical trials. Disclosures Malik: Teneobio, Inc.: Employment. Buelow:Teneobio Inc.: Employment. Avanzino:Teneobio, Inc.: Employment. Balasubramani:Teneobio, Inc.: Employment. Boudreau:Teneobio, Inc.: Employment. Clarke:Teneobio, Inc.: Employment. Dang:Teneobio, Inc.: Employment. Davison:Teneobio, Inc.: Employment. Force Aldred:Teneobio Inc.: Employment. Harris:Teneobio, Inc.: Employment. Jorgensen:Teneobio, Inc.: Employment. Li:Teneobio, Inc.: Employment. Medlari:Teneobio, Inc.: Employment. Narayan:Teneobio, Inc.: Employment. Ogana:Teneobio, Inc.: Employment. Pham:Teneobio Inc.: Employment. Prabhakar:Teneobio, Inc.: Employment. Rangaswamy:Teneobio, Inc.: Employment. Sankaran:Teneobio, Inc.: Employment. Schellenberger:Teneobio, Inc.: Employment. Ugamraj:Teneobio, Inc.: Employment. Trinklein:Teneobio, Inc.: Employment. Van Schooten:Teneobio, Inc.: Employment.


Sign in / Sign up

Export Citation Format

Share Document