Re-Evaluation of CD37 As Target for Radioimmunotherapy of Non-Hodgkin Lymphoma,

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3732-3732
Author(s):  
Jostein Dahle ◽  
Ada Repetto ◽  
Camilla Sivertsen Mollatt ◽  
Katrine Brustad Melhus ◽  
Øyvind Sverre Bruland ◽  
...  

Abstract Abstract 3732 The monoclonal anti-CD20 antibody rituximab alone or as part of combination therapy, is considered standard therapy for non-Hodgkin's B-cell lymphomas. However, significantly better clinical results have been obtained for beta-emitting anti –CD20 radioimmunoconjugates (RICs) than for rituximab. RICs targeting CD20 may be problematic because of antigenic drift and antigen blocking caused by previous treatments with rituximab. Therefore, novel therapeutic approaches targeting other B cell antigens might be more effective after rituximab treatment failure than a new anti-CD20 treatment. In the present study, we have compared the therapeutic effect of the novel anti-CD37 RIC 177Lu-DOTA-HH1 with the anti-CD20 RIC 177Lu-DOTA-rituximab against Daudi human lymphoma cells in vitro and in vivo. At the same antibody concentration 177Lu-DOTA-HH1 was significantly more effective in inhibiting cell growth in vitro than 177Lu-DOTA-rituximab. SCID mice were intravenously injected with 10 million Daudi cells one week before RIC treatment. A significantly increased survival of mice treated with 177Lu-DOTA-HH1 as compared with 177Lu-DOTA-rituximab treatment was observed. Furthermore, the toxicity of the 177Lu-DOTA-HH1 treatment was significantly lower than for 177Lu-DOTA-rituximab. In addition, we have compared binding properties and biodistribution of HH1 with rituximab. The affinity of HH1 to CD37 was similar to the affinity of rituximab to CD20. The CD37-HH1 complex was internalized 10 times faster than CD20-rituximab. Both antibodies had a relevant biodistribution and low uptake in bone. This work warrants further preclinical and clinical studies with 177Lu-HH1. Disclosures: Dahle: Nordic Nanovector: Employment. Bruland:Nordic Nanovector: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Larsen:Nordic Nanovector: Equity Ownership, Membership on an entity's Board of Directors or advisory committees.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1337-1337
Author(s):  
Matthew Nix ◽  
Yu-Hsiu T. Lin ◽  
Huimin Geng ◽  
Makeba Marcoulis ◽  
Paul Phojanakong ◽  
...  

Introduction: B-cell acute lymphoblastic leukemia (B-ALL) patients that harbor rearrangements of the Mixed-lineage leukemia gene (MLLr; also known as KMT2Ar) have particularly dismal clinical outcomes. Although CAR T immunotherapies targeting CD19 have shown impressive responses treating MLLr B-ALL and other B cell malignancies, relapse, often with loss of relevant CD19 epitope, remains a major clinical concern. The mixed results of CD19 CAR T as a monotherapy underscores the need to pursue additional immunotherapy targets and novel therapeutic modalities for high-risk patients. Results and Methods: Data with existing CAR-T's suggest that increased target antigen density frequently correlates with increased tumor elimination. Therefore, we aimed to define the cell surface proteomic landscape of B-ALL to identify novel, MLLr-enriched candidates for targeted immunotherapy of this poor-prognosis subtype. As an initial screen, using N-glycoprotein capture and mass spectrometry, we quantified differentially abundant cell surface proteins in MLLr (n= 4) versus non-MLLr (n= 5) B-ALL cell lines (Figure 1). Label-free proteomics (n= 3 replicates) quantified >900 high-confidence membrane proteins (FDR=0.05). Principal component analysis identified unique cell surfaceome signatures between B-ALL subtypes, implying different surface landscapes associated with specific genetic alterations. The MLLr B-ALL "surfaceome" is notably characterized by increased expression of adhesion molecules not identified by RNA-sequencing alone. We focused on CD72 as a novel immunotherapy target given significant enrichment on MLLr B-ALL vs. other B-ALL subtypes, near equivalent antigen density to CD19, undetectable expression on HSPCs, T-cells, and other normal tissues, and reported widespread expression on other mature B-cell malignancies. Analysis of transcriptome and ChIP-seq data suggested increased CD72 expression in MLLr B-ALL is not regulated directly by the MLL-AF4 oncoprotein but instead a function of increased CD72 expression at pro-B-cell stage. Flow cytometry and immunohistochemistry on primary samples confirmed high expression of CD72 both in MLLr B-ALL as well as DLBCL. Recombinant CD72 ECD was panned against a fully in vitro nanobody yeast display library (McMahon et al., Nat Struct Mol Biol(2018)) resulting in isolation of multiple unique, highly-specific CD72 nanobody binders with KD's < 5nM. Nanobodies were incorporated into 2nd generation CAR constructs and transduced into normal donor CD8+ T-cells and assessed in vitro for tumor cell lysis, cytokine release, and exhaustion marker expression. Nanobody clone Nb.D4 outperformed others in lysis of B-ALL and DLBCL cells lines displaying a broad range of CD72 expression, had no activity versus CD72 negative cells, and showed similar efficacy to that found with a clinically-used CD19 CAR. To assess in vivo activity, CD72(Nb.D4) CAR-T's at 1:1 CD4:CD8 ratio were injected at an effector:tumor ratio of 5:1 into tumor-bearing NSG mice (luciferase-labeled SEM or MLLr PDX). In vivo results confirmed strong anti-tumor effect of CD72 nanobody CAR-T's, equivalent to clinical CD19 CAR, and significantly increased survival in mice (Figure 2). A CRISPR interference-generated antigen escape model of CD19 was also effectively eliminated by CD72 CAR-T's. We also introduce "antigen escape profiling", where cell surface proteomics of a CRISPRi CD72-knockdown model demonstrated extensive surfaceome rewiring with potential implications for leukemia cell trafficking and adhesion in the setting of acquired resistance. Given CD72's role as a BCR signaling inhibitory receptor, we are currently examining its influence on proximal B-cell receptor signaling and relationship to combination therapies affecting this pathway. Conclusions:By characterizing the surface proteomic landscape of B-ALL, we develop a resource for the research community and identify CD72 as a promising therapeutic target. We demonstrate that a novel, fully recombinant nanobody library can generate potent cellular therapies, which may be extended to other targets in the future. We anticipate that antigen escape profiling will prove broadly useful for anticipating mechanisms of resistance to novel immunotherapies. CD72 CAR-T's are a promising strategy across a range of B-cell malignancies, particularly those refractory to CD19 therapy. Disclosures Nix: UCSF: Patents & Royalties. Wiita:UCSF: Patents & Royalties; Indapta Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Protocol Intelligence: Equity Ownership, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2112-2112 ◽  
Author(s):  
John Dulos ◽  
Driessen Lilian ◽  
Marc Snippert ◽  
Marco Guadagnoli ◽  
Astrid Bertens ◽  
...  

Abstract A PRoliferation Inducing Ligand (APRIL, TNFSF13), is a ligand for the receptors BCMA and TACI. APRIL serum levels are enhanced in patients diagnosed with Multiple Myeloma (MM), Chronic Lymphocytic Leukemia (CLL), and Colorectal Carcinoma correlated with poor prognosis. Our anti-APRIL antibody blocked CLL survival and inhibited mouse B1 hyperplasia in vivo (Guadagnoli et al., 2011). APRIL is produced by cells in the bone marrow niche, including myeloid-derived cells, osteoclasts and plasmacytoid dendritic cells. APRIL critically triggers BCMA in vitro and in vivoto drive proliferation and survival of human MM cells (Tai et al., 2016). Importantly, APRIL induces resistance to lenalidomide, bortezomib and other standard-of-care drugs. Furthermore, APRIL drives expression of PD-L1, IL-10, VEGF and TGFβ forcing an immunosuppressive phenotype on BCMA+ cells. As MM survival, resistance to treatment and the immunosuppressive phenotype can be blocked by neutralizing APRIL (Tai et al., 2016), development of an antibody blocking APRIL provides a novel avenue for the treatment of MM. A novel mouse anti-human APRIL antibody hAPRIL.01A (Guadagnoli et al., 2011) initially discovered using Aduro's B-Select platform, was humanized and further engineered enhancing its stability (designated as BION-1301). The antibody binds to recombinant human APRIL with a KDof 0.4 ± 0.15 nM determined by BioLayer Interferometry and an EC50 of 0.29 ± 0.05 nM by ELISA. The epitope of BION-1301 was mapped to the BCMA and TACI binding site explaining its fully blocking capacity. Blocking potency (IC50) was 1.61 ± 0.78 nM (BCMA) and 1.29 ± 0.89 nM (TACI) respectively, corroborated by potent and complete blockade of APRIL-induced cytotoxicity of BCMA-Fas and TACI-Fas Jurkat transfectants. In vitro, BION-1301 suppressed APRIL-induced B-cell IgA and IgG class switching in a dose-dependent fashion. In vivo, BION-1301 was shown to suppress human APRIL induced T cell-independent B cell responses to NP-Ficoll. Biophysical and functional experiments indicated that BION-1301 recapitulated all characteristics of the mouse parental antibody hAPRIL.01A. To support the clinical development of BION-1301, quantitative assays were developed using several mouse-anti-human APRIL antibodies and shown to detect free and complexed APRIL in human blood samples. Results obtained with assays demonstrate that APRIL can be quantified reproducibly in human sera and overcome the drawbacks of previous assays, such as requirement of polyclonal sera, Ig adsorption, interference by human serum and reduced sensitivity. In conclusion, we have generated and functionally characterized a novel humanized APRIL neutralizing antibody, designated BION-1301. The mechanism-of-action and anti-tumor activity described for the parental antibody hAPRIL.01A in vitro and in vivo strongly support the development of BION-1301 as a single agent or in combination with lenalidomide, bortezomib, and suggest a rationale for combination with checkpoint inhibitors. BION-1301 is expected to enter clinical development in 2017. References:Guadagnoli M, Kimberley FC, Phan U, Cameron K, Vink PM, Rodermond H, Eldering E, Kater AP, van Eenennaam H, Medema JP. Development and characterization of APRIL antagonistic monoclonal antibodies for treatment of B-cell lymphomas. Blood. 2011 Jun 23;117(25):6856-65Tai YT, Acharya C, An G, Moschetta M, Zhong MY, Feng X, Cea M, Cagnetta A, Wen K, van Eenennaam H, van Elsas A, Qiu L, Richardson P, Munshi N, Anderson KC. APRIL and BCMA promote human multiple myeloma growth and immunosuppression in the bone marrow microenvironment. Blood. 2016 Jun 23;127(25):3225-36 Disclosures Dulos: Aduro Biotech Inc.: Equity Ownership. Lilian:Aduro Biotech Inc.: Equity Ownership. Snippert:Aduro Biotech Inc.: Equity Ownership. Guadagnoli:Aduro Biotech Inc.: Equity Ownership. Bertens:Aduro Biotech Inc.: Equity Ownership. David:Aduro Biotech Inc.: Equity Ownership. Anderson:Gilead: Membership on an entity's Board of Directors or advisory committees; Oncoprep: Equity Ownership; Oncoprep: Equity Ownership; Gilead: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Acetylon: Equity Ownership; Acetylon: Equity Ownership; Millennuim: Membership on an entity's Board of Directors or advisory committees; Millennuim: Membership on an entity's Board of Directors or advisory committees; C4 Therapeutics: Equity Ownership; C4 Therapeutics: Equity Ownership; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees. Eenennaam:Aduro Biotech Inc.: Equity Ownership. Elsas:Aduro Biotech Inc.: Equity Ownership.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4417-4417 ◽  
Author(s):  
Holbrook E Kohrt ◽  
Ariane Thielens ◽  
Aurelien Marabelle ◽  
Idit Sagiv Barfi ◽  
Caroline Sola ◽  
...  

Natural killer (NK) cells mediate anti-lymphoma activity by spontaneous cytotoxicity and antibody-dependent cell-mediated cytotoxicity (ADCC) when triggered by rituximab, an anti-CD20 monoclonal antibody (mAb) used to treat patients with B cell lymphomas. The balance of inhibitory and activating signals determines the magnitude of NK cell's efficacy by spontaneous cytoxicity. Using a killer cell immunoglobulin-like receptor (KIR) transgenic murine model, we show that blockade of the interface of inhibitory KIRs with MHC class I antigens on lymphoma by anti-KIR antibodies prevents a tolerogenic interaction and augments NK cell spontaneous cytotoxicity. In combination with anti-CD20 mAbs, anti-KIR treatment induces enhanced NK cell-mediated, rituximab-dependent cytotoxicity against lymphoma in vitro and in vivo in syngeneic and KIR transgenic murine lymphoma models. Specifically targeting murine NK cells in vitro, anti-Ly49C/I F(ab')2 increased anti-CD20 mAb-mediated NK cell degranulation as measured by CD107a mobilization and interferon-γ release, as well as increased cytotoxicity as assessed by chromium release. In the syngeneic EL4-huCD20 lymphoma model, anti-Ly49C/I F(ab')2 enhanced the anti-lymphoma activity of anti-CD20 mAb in vivo (Fig 1A-1B) and was NK cell-dependent with efficacy abrogated by NK cell depletion with anti-Asialo-GM1. To validate these observations and the potential efficacy of a fully human anti-KIR mAb (IPH2101, lirilumab), we demonstrated, in vitro, dose-dependent KIR2DL3 saturation and tumor lysis following blockade of KIR2DL3/HLA-C with lirilumab. In the transgenic KIR murine model, lirilumab therapy improved survival in an NK cell-dependent manner in both a prophylactic and therapeutic HLA+ (221 HLA-Cw3) lymphoma model. In combination, lirilumab therapy synergistically enhanced rituximab's anti-lymphoma efficacy in vivo in an NK cell-dependent manner (Fig 2A-C). These results support a therapeutic strategy of combination, rituximab and KIR blockade through lirilumab, illustrating the potential efficacy of combining a tumor targeting therapy with an NK cell agonist thus stimulating the post-rituximab anti-lymphoma immune response. Disclosures: Thielens: Innate Pharma: Employment, Equity Ownership. Sola:Innate Pharma: Employment, Equity Ownership. Chanuc:Innate Pharma: Employment, Equity Ownership. Fuseri:Innate Pharma: Employment. Bonnafous:Innate Pharma: Employment, Equity Ownership. Vivier:Innate Pharma: Membership on an entity’s Board of Directors or advisory committees. Romagne:Innate Pharma: Employment, Equity Ownership, Membership on an entity’s Board of Directors or advisory committees. Andre:Innate-Pharma: Employment, Equity Ownership. Blery:Innate Pharma: Employment, Equity Ownership.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2396-2396
Author(s):  
Yongwei Zheng ◽  
Alexander W Wang ◽  
Mei Yu ◽  
Anand Padmanabhan ◽  
Benjamin E Tourdot ◽  
...  

Abstract Heparin-induced thrombocytopenia (HIT) is an immune-mediated disorder that can cause fatal arterial or venous thrombosis/thromboembolism. Immune complexes consisting of heparin, platelet factor 4 (PF4) and PF4/heparin-reactive antibodies are central to the pathogenesis of HIT. However, heparin, a glycosoaminoglycan, and PF4 are normal body constituents and it is as yet unclear what triggers the initial induction of pathogenic antibodies. Here we described detection of B cells among peripheral blood mononuclear cells (PBMCs) from each of 9 healthy adults that produced PF4/heparin-specific IgM antibodies following in vitro stimulation with ubiquitous pro-inflammatory molecules containing unmethylated CpG dinucleotides derived from bacterial and viral DNA. PF4/heparin-specific IgM-generating B cells were present at a frequency of at least 0.03 to 1 per thousand B cells present in the PBMC population. Similarly, splenic B cells isolated from unmanipulated wild-type mice consistently produced PF4/heparin-reactive antibodies following in vitro stimulation with CpG. In addition, wild-type mice produced PF4/heparin-reactive antibodies upon in vivo challenge with CpG whereas unchallenged wild-type mice did not. These findings demonstrate that both humans and mice possess pre-existing, inactive and tolerant PF4/heparin-specific B cells. We suggest that tolerance can be broken by a strong inflammatory stimulus, leading to activation of these B cells and production of antibodies that recognize PF4/heparin in vitro and in vivo. Consistent with this concept, mice lacking protein kinase Cd (PKCd), a signaling molecule of the B-cell survival factor BAFF (B-cell activation factor), that are known to have breakdown of B-cell tolerance to self-antigens, spontaneously produced anti-PF4/heparin antibodies in the absence of an inflammatory stimulus. Taken together, these findings demonstrate that breakdown of tolerance can lead to PF4/heparin-specific antibody production and that B-cell tolerance plays an important role in HIT pathogenesis. Disclosures: White II: Bayer: Membership on an entity’s Board of Directors or advisory committees; CSL-Behring: Membership on an entity’s Board of Directors or advisory committees; NIH: Membership on an entity’s Board of Directors or advisory committees; Asklepios: Membership on an entity’s Board of Directors or advisory committees; Wyeth: Membership on an entity’s Board of Directors or advisory committees; Entegrion: Membership on an entity’s Board of Directors or advisory committees; Biogen: Membership on an entity’s Board of Directors or advisory committees; Baxter: Membership on an entity’s Board of Directors or advisory committees.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4131-4131 ◽  
Author(s):  
Trinayan Kashyap ◽  
Irfana Muqbil ◽  
Amro Aboukameel ◽  
Boris Klebanov ◽  
Ramzi Mohammad ◽  
...  

Abstract Background: XPO1 (exportin-1/CRM1) mediates nuclear export of proteins containing leucine-rich amino-acid consensus sequences. XPO1 cargo proteins include many of the major tumor suppressor proteins (p53, IkB, pRB, FOXOs) and their export leads to the inactivation of cell cycle checkpoints. Overexpression of XPO1 has been reported to correlate with poor cancer prognosis. The Selective Inhibitor of Nuclear Export (SINE) compound, selinexor, binds covalently to the cargo pocket on XPO1, inhibits nuclear export which leads to cell cycle arrest and specific cancer cell death. Selinexor is currently in advanced clinical trials for patients with solid and hematological malignancies including patients with relapsed/refractory Diffuse Large B-Cell Lymphoma (DLBCL) (NCT02227251). Using preclinical models, we recently demonstrated that proteasome inhibitors (PI) can re-sensitize multiple myeloma that acquired resistance to selinexor. Here, we aimed to find if treatment with selinexor and bortezomib is beneficial for the treatment of DLBCL. Methods: DLBCLcell lines were treated with selinexor in combination with bortezomib. Cell viability was examined using standard viability assays after 72 hours of treatment. Whole cell protein lysates were evaluated by immunoblotting. NF-κB transcriptional activity was analyzed using an ELISA assay. WSU-DLCL2 cells were grown as sub-cutaneous tumors in ICR SCID mice. Tumor bearing mice were divided into 4 groups and were administered either vehicle, sub-maximum tolerated doses of selinexor (10 mg/kg p.o. twice a week, M, Th), bortezomib (1 mg/kg i.v. twice a week, M, TH) and the combination of selinexor (10 mg/kg p.o. twice a week) plus bortezomib (1 mg/kg i.v. twice a week). Results: The combination treatment of selinexor with bortezomib synergistically killed DLBCL cells compared to the single agents alone. Co-treatment with bortezomib enhanced selinexor mediated nuclear retention of IκB-α. Selinexor plus bortezomib treatment decreased NF-κB transcriptional activity. Finally, the combination of selinexor with bortezomib showed superior anti-tumor efficacy in the combination group compared to single agent treatments in WSU-DLCL2 xenograft model. Conclusions: Based on our results, inhibition of NF-κB transcriptional activity through forced nuclear retention of IκB appears to be an important mechanism underlying the synergistic effects of selinexor plus bortezomib in many different cell lines including DLBCL. The superior efficacy of selinexor plus bortezomib combination both in vitro and in vivo when compared to single agents along provides a rational for conducting clinical trials with these combinations in DLBCL patients. Disclosures Kashyap: Karyopharm Therapeutics: Employment, Equity Ownership. Klebanov:Karyopharm Therapeutics: Employment, Equity Ownership. Senapedis:Karyopharm Therapeutics: Employment, Equity Ownership. Shacham:Karyopharm Therapeutics: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Kauffman:Karyopharm Therapeutics Inc: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Landesman:Karyopharm Therapeutics: Employment, Equity Ownership.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1442-1442
Author(s):  
Xiangmeng Wang ◽  
Po Yee Mak ◽  
Wencai Ma ◽  
Xiaoping Su ◽  
Hong Mu ◽  
...  

Abstract Wnt/β-catenin signaling regulates self-renewal and proliferation of AML cells and is critical in AML initiation and progression. Overexpression of β-catenin is associated with poor prognosis. We previously reported that inhibition of Wnt/β-catenin signaling by C-82, a selective inhibitor of β-catenin/CBP, exerts anti-leukemia activity and synergistically potentiates FLT3 inhibitors in FLT3-mutated AML cells and stem/progenitor cells in vitro and in vivo (Jiang X et al., Clin Cancer Res, 2018, 24:2417). BCL-2 is a critical survival factor for AML cells and stem/progenitor cells and ABT-199 (Venetoclax), a selective BCL-2 inhibitor, has shown clinical activity in various hematological malignancies. However, when used alone, its efficacy in AML is limited. We and others have reported that ABT-199 can induce drug resistance by upregulating MCL-1, another key survival protein for AML stem/progenitor cells (Pan R et al., Cancer Cell 2017, 32:748; Lin KH et al, Sci Rep. 2016, 6:27696). We performed RNA Microarrays in OCI-AML3 cells treated with C-82, ABT-199, or the combination and found that both C-82 and the combination downregulated multiple genes, including Rac1. It was recently reported that inhibition of Rac1 by the pharmacological Rac1 inhibitor ZINC69391 decreased MCL-1 expression in AML cell line HL-60 cells (Cabrera M et al, Oncotarget. 2017, 8:98509). We therefore hypothesized that inhibiting β-catenin by C-82 may potentiate BCL-2 inhibitor ABT-199 via downregulating Rac1/MCL-1. To investigate the effects of simultaneously targeting β-catenin and BCL-2, we treated AML cell lines and primary patient samples with C-82 and ABT-199 and found that inhibition of Wnt/β-catenin signaling significantly enhanced the potency of ABT-199 in AML cell lines, even when AML cells were co-cultured with mesenchymal stromal cells (MSCs). The combination of C-82 and ABT-199 also synergistically killed primary AML cells (P<0.001 vs control, C-82, and ABT-199) in 10 out of 11 samples (CI=0.394±0.063, n=10). This synergy was also shown when AML cells were co-cultured with MSCs (P<0.001 vs control, C-82, and ABT-199) in all 11 samples (CI=0.390±0.065, n=11). Importantly, the combination also synergistically killed CD34+ AML stem/progenitor cells cultured alone or co-cultured with MSCs. To examine the effect of C-82 and ABT-199 combination in vivo, we generated a patient-derived xenograft (PDX) model from an AML patient who had mutations in NPM1, FLT3 (FLT3-ITD), TET2, DNMT3A, and WT1 genes and a complex karyotype. The combination synergistically killed the PDX cells in vitro even under MSC co-culture conditions. After PDX cells had engrafted in NSG (NOD-SCID IL2Rgnull) mice, the mice were randomized into 4 groups (n=10/group) and treated with vehicle, C-82 (80 mg/kg, daily i.p injection), ABT-199 (100 mg/kg, daily oral gavage), or the combination for 30 days. Results showed that all treatments decreased circulating blasts (P=0.009 for C-82, P<0.0001 for ABT-199 and the combination) and that the combination was more effective than each single agent (P<0.001 vs C-82 or ABT-199) at 2 weeks of therapy. The combination also significantly decreased the leukemia burden in mouse spleens compared with controls (P=0.0046) and single agent treated groups (P=0.032 or P=0.020 vs C-82 or ABT-199, respectively) at the end of the treatment. However, the combination did not prolong survival time, likely in part due to toxicity. Dose modifications are ongoing. These results suggest that targeting Wnt/β-catenin and BCL-2, both essential for AML cell and stem cell survival, has synergistic activity via Rac1-mediated MCL-1 inhibition and could be developed into a novel combinatorial therapy for AML. Disclosures Andreeff: SentiBio: Equity Ownership; Oncolyze: Equity Ownership; Oncoceutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Jazz Pharma: Consultancy; Amgen: Consultancy, Research Funding; Eutropics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Daiichi-Sankyo: Consultancy, Patents & Royalties: MDM2 inhibitor activity patent, Research Funding; Aptose: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Reata: Equity Ownership; Astra Zeneca: Research Funding; Celgene: Consultancy; United Therapeutics: Patents & Royalties: GD2 inhibition in breast cancer . Carter:novartis: Research Funding; AstraZeneca: Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5196-5196
Author(s):  
Marsha Crochiere ◽  
Boris Klebanov ◽  
Erkan Baloglu ◽  
Ori Kalid ◽  
Trinayan Kashyap ◽  
...  

Abstract Introduction: SINE are a family of small molecules that selectively inhibit nuclear export by forming a slowly reversible covalent bond with Cysteine 528 (Cys528) in the cargo binding pocket of Exportin 1 (XPO1/CRM1). SINE binding to XPO1 leads to forced nuclear retention and activation of major tumor suppressor proteins (TSPs) such as p53, FOXO, pRB and IkB, resulting in selective death of cancer cells. Selinexor is an orally bioavailable SINE compound currently in human phase I and II clinical trials for advanced hematological and solid cancers. Oral selinexor demonstrates maximal pharmacokinetic exposure at 1-2 hours in humans with associated increases in pharmacodynamic markers of XPO1 inhibition in 2-4 hours that last for up to 48 hours. The goal of this study was to develop a binding assay that would enable quantification of XPO1 occupancy in PBMCs from patients following oral administration of selinexor. Methods: To measure the binding of SINE to XPO1, biotinylated leptomycin B (LMB) was utilized. Biotinylated LMB binds covalently and irreversibly to Cys528 in the cargo-binding site of free XPO1 with activity confirmed to be similar to that of unmodified LMB in cytotoxicity assays. To measure SINE binding to XPO1 in vitro, cancer cell lines and PBMCs from normal human donors were treated with SINE compounds prior to treatment with biotinylated LMB. Any XPO1 that did not bind SINE instead binds to biotinylated LMB and can be quantified. In in vivo studies, mice were treated with selinexor, followed by collection of PBMCs for treatment with biotinylated LMB. After incubation with biotinylated LMB, cells were harvested, lysed, and protein lysates were subjected to pull-down experiments with streptavidin-conjugated beads followed by immunoanalysis of XPO1. Results: To evaluate selinexor-XPO1 binding kinetics in vitro, MM.1S, AML2, AML3, and HEL cells were treated with 0 - 10 µM of SINE compounds and unbound XPO1 was pulled down from cell lysates treated with biotinylated LMB. Immunoanalysis showed that 50% XPO1 occupancy with selinexor was achieved at 0.07 µM in MM.1S, 0.1 µM in AML2, 0.03 µM in AML3, and 0.12 µM in HEL cells. Selinexor-XPO1 occupancy experiments using human PBMCs isolated from donor whole blood showed 50% XPO1 occupancy at 0.05 µM. In mice, 50% XPO1 occupancy in PMBCs was achieved after 4 hours treatment with 1.2 mg/kg (3.6 mg/m2) selinexor, while 90% XPO1 occupancy was achieved at 8.1 mg/kg (24.3 mg/m2). Mice treated with a single dose of selinexor from 1.5 to 10 mg/kg for 4-96 hours revealed sustained, dose dependent XPO1 occupancy in PBMCs for up to 72 hours. Conclusions: We have developed a sensitive and robust assay to measure selinexor binding to XPO1 that can be used to evaluate drug exposure following treatment with oral selinexor in preclinical and clinical studies. Studies are ongoing to determine whether there is a correlation between XPO1 occupancy (pharmacodynamics measurement) with disease response in patients with solid and hematological malignancies. Disclosures Crochiere: Karyopharm: Employment. Klebanov:Karyopharm Therpeutics: Employment. Baloglu:Karyopharm: Employment. Kalid:Karyopharm Therapeutics: Employment. Kashyap:Karyopharm Therapeutics: Employment. Senapedis:Karyopharm: Employment. del Alamo:Karyopharm: Employment. Rashal:Karyopharm Therapeutics: Employment. Tamir:Karyopharm: Employment. McCauley:Karyopharm Therapeutics: Employment, Equity Ownership. Carlson:Karyopharm Therapeutics: Employment. Savona:Karyopharm: Consultancy, Equity Ownership; Gilead: Consultancy; Incyte: Consultancy; Celgene: Consultancy. Kauffman:Karyopharm Therapeutics, Inc: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties. Shacham:Karyopharm Therapeutics, Inc: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties. Landesman:Karyopharm Therapeutics: Employment.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 672-672
Author(s):  
Lars Mueller ◽  
Michael D. Milsom ◽  
Chad Harris ◽  
Rutesh Vyas ◽  
Kristina Brumme ◽  
...  

Abstract Abstract 672 Fanconi anemia (FA) is a recessive syndrome characterized by progressive fatal bone marrow failure and chromosomal instability. FA cells have inactivating mutations in a signaling pathway that is critical for maintaining genomic integrity and repairing DNA damage caused by cross-linking agents. Transgenic expression of the implicated genes corrects the phenotype of hematopoietic cells but previous attempts at gene therapy failed largely due to inadequate numbers of hematopoietic stem cells available for gene correction and autologous engraftment. Induced pluripotent stem cells (iPSC) constitute an alternate source of autologous cells, which are amenable to ex vivo expansion and genetic correction. While fibroblasts from a limited number of FA patients have been reported to fail to undergo reprogramming (Raya et al., Nature, 2009), reproducible observations and mechanistic studies ascertained in an extended panel of patient cells and murine knock-out models are lacking to date. We undertook direct reprogramming of ten unique human FA primary fibroblast samples of the FA-A, FA-C, FA-G, and FA-D2 complementation groups. Using standard four-factor reprogramming, no human FA iPSC colonies were obtained in cells defective in the FA pathway. By contrast, reprogramming of gene-corrected patient samples, augmented by hypoxia (5%O2), yielded multiple pluripotent iPSC lines, confirming a critical cell-intrinsic role of the FA pathway in reprogramming. To determine if gene-corrected FA iPSC could be therapeutically useful, we performed karyotype analyses and evaluated in vitro hematopoietic differentiation in three FA-A iPSC lines. These FA patient iPSC lines were karyotypically normal and showed a robust multilineage hematopoietic differentiation potential, resulting in erythroid and myeloid hematopoietic colony forming units to a similar degree as compared to normal donor iPSC controls. We hypothesized that the reprogramming resistance of FA cells is due to defective DNA repair and genomic instability. To explore the mechanisms of the reprogramming defect, we transduced wild type (wt) tail-tip fibroblasts (TTF) with the reprogramming vectors. We observed significantly increased FANCD2 foci formation during reprogramming (median percentage of FANCD2 foci: mock-transduced TTF 2.5%, reprogrammed TTF 20.5%, n=8, p<0.01) indicating activation of the FA pathway. Next, we examined reprogramming in FA-deficient mouse cells. We observed a significantly higher incidence of reprogramming-induced double-strand DNA breaks and senescence in Fanca−/− TTF as compared to wt controls (γH2AX foci: wt 13%, Fanca−/− 19%; senescence: wt 47%, Fanca−/− 62%, median percentage, p<0.01). To evaluate whether these changes contribute to the reprogramming resistance of FA cells, we quantified the reprogramming efficiency of Fanca−/−, Fancc−/− and littermate wt TTF. The efficiency was 0.06% for Fanca−/− (n=8) and 0.38% for Fancc−/− (n=12) as compared to 0.55% for wt controls (n=13; p<0.01 and <0.05, respectively). To directly test the role of the FA pathway in reprogramming, TTF were transduced with retroviral vectors co-expressing FANCA and enhanced green fluorescent protein (eGFP) or encoding only eGFP as a control. Under hypoxic conditions, gene-correction of the Fanca−/− TTF with FANCA resulted in a significant reduction of senescence and rescued the reprogramming efficiency of Fanca−/− TTF to wt levels. While significant chromosomal aberrations were observed in uncorrected Fanca−/− iPCS, gene-corrected Fanca−/− iPSC did not show any significant chromosomal imbalances when analyzed by comparative genomic hybridization. To evaluate the capacity of FA iPSC to form blood cells in vivo, we injected wt, control transduced or gene-corrected Fanca−/− iPCS (CD45.1+) into wt blastocysts (CD45.2+) and analyzed the contribution of iPSC-derived hematopoietic cells in embryonic day 14.5 fetal livers. We observed 1.8–4% wt iPSC chimerism (n=15), 0.4–0.9% Fanca−/− iPSC chimerism (n=3) and 1.5 to 2.5% chimerism in gene-corrected Fanca−/− iPSC (n=11). Our data demonstrate that reprogramming activates the FA pathway. Gene-correction rescues the reprogramming block of FA cells and protects FA iPSC from genomic instability, thus yielding an expandable source of autologous stem cells with hematopoietic differentiation capacity that may be explored for future use in regenerative medicine. Disclosures: Daley: iPierian, Inc: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Epizyme, Inc: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Verastem, Inc: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Solasia, KK: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; MPM Capital, Inc: Consultancy, Membership on an entity's Board of Directors or advisory committees; Johnson & Johnson: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 237-237 ◽  
Author(s):  
Michael P. Rettig ◽  
Matthew Holt ◽  
Julie Prior ◽  
Sharon Shacham ◽  
Michael Kauffman ◽  
...  

Abstract Background Exportin 1 (XPO1) also called CRM1, is a widely expressed nuclear export protein, transporting a variety of molecules including tumor suppressor proteins and cell cycle regulators. Targeted inhibition of XPO1 is a new strategy to restore multiple cell death pathways in various malignant diseases. SINEs are novel, orally available, small molecule Selective Inhibitors of Nuclear Export (SINE) that specifically bind to XPO1 and inhibit its function. Methods We used WST-1 cell proliferation assays, flow cytometry, and bioluminescence imaging to evaluate the efficacy of multiple SINEs to induce apoptosis alone and in combination with cytarabine (AraC) or doxorubicin in vitro in chemotherapy sensitive and resistant murine acute promyelocytic leukemia (APL) cells. This murine model of APL was previously generated by knocking in the human PML-RARa cDNA into the 5’ regulatory sequence of the cathepsin G locus (Westervelt et al. Blood, 2003). The abnormal co-expression of the myeloid surface antigen Gr1 and the early hematopoietic markers CD34 and CD117 identify leukemic blasts. These Gr1+CD34+CD117+ APL cells partially retain the ability to terminally differentiate toward mature granulocytes (mimicking more traditional AML models) and can be adoptively transferred to secondary recipients, which develop a rapidly fatal leukemia within 3 weeks after tumor inoculation. To assess the safety and efficacy of SINEs in vivo, we injected cryopreserved APL cells intravenously via the tail vein into unconditioned genetically compatible C57BL/6 recipients and treated leukemic and non-leukemic mice (n=15/cohort) with 15 mg/kg of the oral clinical staged SINE KPT-330 (currently in Phase 1 studies in patients with solid tumors and hematological malignancies) alone or in combination with 200 mg/kg cytarabine every other day for a total of 2 weeks. Peripheral blood was obtained weekly from mice for complete blood counts and flow cytometry to screen for development of APL. Results The first generation SINE, KPT214, inhibited the proliferation of murine APL cell lines in a dose and time dependent manner with IC50 values ranging from of 95 nM to 750 nM. IC50 values decreased 2.4-fold (KPT-185) and 3.5-fold (KPT-249) with subsequent generations of the SINEs. Consistent with the WST-1 results, Annexin V/7-aminoactinomycin D flow cytometry showed a significant increase of APL apoptosis within 6 hours of KPT-249 application. Minimal toxicity against normal murine lymphocytes was observed with SINEs even up to doses of 500 nM. Additional WST-1 assays using AraC-resistant and doxorubicin-resistant APL cell lines demonstrated cell death of both chemotherapy-resistant cell lines at levels comparable to the parental chemosensitive APL cell lines. Combination therapy with low dose KPT-330 and AraC showed additive effects on inhibition of cell proliferation in vitro. This additive effect of KPT-330 and chemotherapy on APL killing was maintained in vivo. As shown in Figure 1, treatment with AraC or KPT-330 alone significantly prolonged the survival of leukemic mice from a median survival of 24 days (APL + vehicle) to 33 days or 39 days, respectively (P < 0.0001). Encouragingly, combination therapy with AraC + KPT-330 further prolonged survival compared to monotherapy (P < 0.0001), with some mice being cured of the disease. Similar in vivo studies with the AraC-resistant and doxorubicin-resistant APL cells are just being initiated. Conclusions Our data suggests that the addition of a CRM1 inhibitor to a chemotherapy regimen offers a promising avenue for treatment of AML. Disclosures: Shacham: Karyopharm Therapeutics Inc.: Employment, Equity Ownership, Membership on an entity’s Board of Directors or advisory committees, Patents & Royalties. Kauffman:Karyopharm Therapeutics Inc.: Employment, Equity Ownership, Membership on an entity’s Board of Directors or advisory committees, Patents & Royalties. McCauley:Karyopharm Therapeutics, Inc: Employment, Equity Ownership.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 672-672
Author(s):  
Elizabeth R Macari ◽  
Alison Taylor ◽  
David Raiser ◽  
Kavitha Siva ◽  
Katherine McGrath ◽  
...  

Abstract Ribosomal protein (RP) mutations are found in many diseases, including Diamond Blackfan anemia (DBA), where defective erythropoiesis, craniofacial abnormalities and increased cancer risk are major complications. RP mutations cause p53 activation through accumulation of free RPs that bind and sequester MDM2, the negative regulator of p53. We previously characterized a zebrafish mutant in rps29, a gene found mutated in DBA patients. Rps29-/- embryos have hematopoietic and endothelial defects, including decreased cmyb and flk1 expression and defects in hemoglobinization. Consistent with other animal models of RP dysfunction, p53 knockdown in rps29-/- embryos rescued these defects. To uncover novel compounds that correct the phenotypes of DBA, we performed a chemical screen in rps29-/- embryos. Several structurally distinct calmodulin (CaM) inhibitors successfully rescued hemoglobin (Hb) levels in the mutant embryo. To confirm that CaM inhibitors could rescue mammalian models of DBA, we applied them to human and murine models. Treating cord blood-derived CD34+ cells deficient in RPS19 with the CaM inhibitor, trifluoperazine (TFP), relieved the erythroid differentiation block. Injection of TFP in a DBA murine model significantly increased red blood cell number and Hb levels. Mechanistic studies in A549 cells infected with lentivirus expressing RPS19 shRNA demonstrated that TFP blocks p53 nuclear accumulation and induction of multiple p53 transcriptional target genes (p<0.05). Through p53 genetic manipulation, we determined that TFP inhibits p53 transcriptional activity through its c-terminal domain (CTD). Since this region has many residues that can be phosphorylated by CaM-dependent kinases, we hypothesized that TFP blocked phosphorylation of residues in the CTD. To test this hypothesis, phosphomimetic mutants were transfected into Saos2 cells and p53 transcriptional activity in response to TFP was evaluated using p21mRNA levels. TFP treatment of cells containing WT p53 or a transactivation domain mutant, S15D, resulted in a 4-fold reduction in p21 mRNA levels, while all four phosphomimetic mutants in the CTD had attenuated responses to TFP (<2-fold). The common CaM-dependent kinases that phosphorylate these CTD residues are Chk1 and Chk2. Investigation of the role of Chk1 and Chk2 found that a chk2 morpholino and multiple inhibitors of Chk2, but not Chk1, rescued Hb levels in the rps29-/- embryo (p<0.05). Chk2 inhibitors also mimic CaM inhibition in our in vitro assays. In conclusion, we have shown a novel mechanism by which CaM inhibitors mediate p53 activity through the CTD and can rescue the phenotypes of multiple in vitro and in vivo models of DBA. Our data strongly suggests that CaM or Chk2 inhibitors may be effective therapies for DBA patients, and a clinical trial is being planned with TFP. Disclosures Ebert: Genoptix: Consultancy, Patents & Royalties; H3 Biomedicine: Consultancy; Celgene: Consultancy. Zon:FATE Therapeutics: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Other: Founder; Scholar Rock: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Other: Founder.


Sign in / Sign up

Export Citation Format

Share Document