Cytotoxic CD8 T Cell Immune Responses to Wilms Tumor Protein (WT-1) Characterizes Immunosuppression-Responsive Myelodysplasia (MDS).

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 849-849 ◽  
Author(s):  
Elaine M. Sloand ◽  
Katayoun Rezvani ◽  
Agnes Yong ◽  
Daniel Douek ◽  
Roger Kurlander ◽  
...  

Abstract Clinical observations and experimental evidence link bone marrow failure in myelodysplastic syndrome (MDS) with a T cell-dominated immunologically-mediated pathophysiology in some patients. Indeed, among 129 patients treated with immunosuppression at NIH, trisomy 8 was associated with hematologic response to immunosuppression. We have demonstrated that trisomy 8 patients have oligoclonal CD8 T cell expansion, as determined by increased proportions of one or more T cell receptor (TCR) V beta subfamilies (Sloand et al. Blood106:841; 2005) which had cytotoxic activity toward trisomy 8 cell progenitors. Here we examine the response of cytotoxic T cells to cyclin D1 and Wilms tumor protein (WT-1); these candidate autoantigens had earlier been observed to be over-expressed in trisomy 8 CD34 cell in our microarray analysis (Chen et al. Blood 104:4210, 2004 ). Bone marrow mononuclear cells from 19 trisomy 8 patients (defined by cytogenetics and FISH) had significantly increased levels of WT-1 mRNA and protein expression compared to normal CD34 cells by real time PCR and immunoblot, respectively (p<0.001). When patient and control CD8 cells were cultured in the presence of WT-1- and cyclin D1-loaded HLA-A2-restricted antigen-presenting cells (using three different HLA-A0201- restricted epitopes of WT-1 and four different epitopes for CD1), eight patients’ CD8 cell tested positive for interferon gamma, indicating a cytotoxic response. Staining with labeled MHC class I A2-restricted tetramers used to measure WT-1-specific cells showed concordant results in all eight patients. Tetramer staining was increased in 12 of 14 trisomy 8 patients examined. Cytotoxic T cells specific for WT-1 were present within the expanded V β subfamilies previously found to suppress trisomy 8 cell proliferation in vitro. CD8 cells from another eight MDS patients without trisomy 8 but who had responded to immunosuppression, sampled prior to treatment, also demonstrated WT1-specific cytotoxic activity, but only two of 18 non-responders showed measurable levels of WT-1-specific cytotoxic T cells (entire treated cohort seen in Fig 1). We infer from these data an autoimmune pathophysiology for trisomy 8 MDS with: 1) over-expression of WT-1 by the aneuploid clone; 2) a specific cytotoxic CD8 T cell immune response to WT-1; 3) subsequent cytotoxic T cell marrow suppression by apoptosis, either by cross reactivity or a bystander effect; and 4) improvement in hematopoiesis after immunosuppression. Other MDS which is responsive to immunosuppression may also be mediated by WT1. Figure Figure

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 474-474
Author(s):  
Elaine M. Sloand ◽  
Katayoun Rezvani ◽  
John Barrett ◽  
Lori Mainwaring ◽  
Roger Kurlander ◽  
...  

Abstract Clinical observations and experimental evidence link bone marrow failure in myelodysplastic syndrome (MDS) with a T cell-dominated autoimmune process in some patients. Among 133 patients treated at NIH, predominantly with antithymocyte globulin, trisomy 8 as the sole karyotypic abnormality was specifically and significantly associated with favorable hematologic response to immunosuppresssion, as compared to patients with other cytogenetic abnormalities or with a normal karyotype. Trisomy 8 MDS patients show stable increases in the proportion of aneuploid bone marrow cells following immunosupppression (IST). We have reported that all of thirty patients with trisomy 8 had significant CD8 T cell expansion of one or more T cell receptor (TCR) Vβ subfamilies as measured by flow cytometry, and expanded subfamilies showed complimentary determining region 3 (CDR3) skewing by spectratyping. Sorted T cells of the expanded Vβ subfamilies, but none of the remaining subfamilies, specifically inhibit hematopoietic colony formation by trisomy 8 cell progenitors. Colony formation of cytogenetically normal cells from the same individuals was less or not inhibited. Here, we examined protein expression levels and measured the response of cytotoxic T cells to two antigens which we had found to be overexpressed in trisomy 8 CD34 cells by microarray analysis (Chen G et al, Blood In press): cyclin D1 (CD1) and Wilms tumor-1 antigen (WT1). Peripheral blood and bone marrow granulocytes of six trisomy 8 patients with refractory anemia all demonstrated WT1 expression levels 100–1000 x normal (N=38) by real time PCR; the three patients with normal cytogenetics had levels comparable to normal. Immunoblotting confirmed massively increased WT1 peptide in all six trisomy 8 patients tested, with five MDS patients of normal karyotype showing normal levels. Patient and control CD8 cells were cultured for 6 hours with WT1 and CD1-loaded HLA-A2-restricted antigen-presenting cells using three different peptides for WT1 and four for CD1. Cytotoxic CD8 T cells responses were identified by flow cytometric analysis of intracellular interferon-γ. Eight of 17 trisomy 8 patients showed significant responses (>8% CD8 cells activated compared to unstimulated samples; mean =5%) to WT1 but not to CD1 or non-peptide loaded antigen presenting cells. CD8 cell responses to WT1 measured using MHC class I A2-restricted tetramers were concordant with the results by intracellular staining in all 15 patients tested. In contrast, no responses to WT1 were seen in normal controls and five MDS patients lacking cytogenetic abnormalities. While PB of one of the three monosomy 7 patients showed upregulation of WT1, there was no cytotoxic lymphocyte response against the peptide; unlike trisomy 8 CD34 cells those from monosomy 7 patients did not express co-stimulatory molecules, HLA class I and B7.1. These data suggest an autoimmune pathophysiology for the cytopenia of trisomy 8 myelodysplasia with the following scenerio: WT1 is overexpressed by the trisomy 8 clone, resulting in a specific cytotoxic CD8 T cell immune response to WT1. Apoptotis of marrow cells results, either by cross reactivity or as a bystander effect. Improvement in hematopoiesis is seen following IST.


Blood ◽  
2011 ◽  
Vol 117 (9) ◽  
pp. 2691-2699 ◽  
Author(s):  
Elaine M. Sloand ◽  
J. Joseph Melenhorst ◽  
Zachary C. G. Tucker ◽  
Loretta Pfannes ◽  
Jason M. Brenchley ◽  
...  

Abstract Clinical observations and laboratory evidence link bone marrow failure in myelodysplastic syndrome (MDS) to a T cell–mediated immune process that is responsive to immunosuppressive treatment (IST) in some patients. Previously, we showed that trisomy 8 MDS patients had clonally expanded CD8+ T-cell populations that recognized aneuploid hematopoietic progenitor cells (HPC). Furthermore, microarray analyses showed that Wilms tumor 1 (WT1) gene was overexpressed by trisomy 8 hematopoietic progenitor (CD34+) cells compared with CD34+ cells from healthy donors. Here, we show that WT1 mRNA expression is up-regulated in the bone marrow mononuclear cells of MDS patients with trisomy 8 relative to healthy controls and non–trisomy 8 MDS; WT1 protein levels were also significantly elevated. In addition, using a combination of physical and functional assays to detect the presence and reactivity of specific T cells, respectively, we demonstrate that IST-responsive MDS patients exhibit significant CD4+ and CD8+ T-cell responses directed against WT1. Finally, WT1-specific CD8+ T cells were present within expanded T-cell receptor Vβ subfamilies and inhibited hematopoiesis when added to autologous patient bone marrow cells in culture. Thus, our results suggest that WT1 is one of the antigens that triggers T cell–mediated myelosuppression in MDS.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Z. Shen ◽  
M. Rodriguez-Garcia ◽  
M. V. Patel ◽  
C. R. Wira

AbstractRegulation of endometrial (EM) CD8+T cells is essential for successful reproduction and protection against pathogens. Suppression of CD8+T cells is necessary for a tolerogenic environment that promotes implantation and pregnancy. However, the mechanisms regulating this process remain unclear. Sex hormones are known to control immune responses directly on immune cells and indirectly through the tissue environment. When the actions of estradiol (E2), progesterone (P) and TGFβ on EM CD8+T cells were evaluated, cytotoxic activity, perforin and granzymes were directly suppressed by E2 and TGFβ but not P. Moreover, incubation of polarized EM epithelial cells with P, but not E2, increased TGFβ secretion. These findings suggest that E2 acts directly on CD8+T cell to suppress cytotoxic activity while P acts indirectly through induction of TGFβ production. Understanding the mechanisms involved in regulating endometrial CD8+T cells is essential for optimizing reproductive success and developing protective strategies against genital infections and gynecological cancers.


Blood ◽  
2009 ◽  
Vol 113 (7) ◽  
pp. 1574-1580 ◽  
Author(s):  
Robert R. Jenq ◽  
Christopher G. King ◽  
Christine Volk ◽  
David Suh ◽  
Odette M. Smith ◽  
...  

Abstract Keratinocyte growth factor (KGF), which is given exogenously to allogeneic bone marrow transplantation (allo-BMT) recipients, supports thymic epithelial cells and increases thymic output of naive T cells. Here, we demonstrate that this improved T-cell reconstitution leads to enhanced responses to DNA plasmid tumor vaccination. Tumor-bearing mice treated with KGF and DNA vaccination have improved long-term survival and decreased tumor burden after allo-BMT. When assayed before vaccination, KGF-treated allo-BMT recipients have increased numbers of peripheral T cells, including CD8+ T cells with vaccine-recognition potential. In response to vaccination, KGF-treated allo-BMT recipients, compared with control subjects, generate increased numbers of tumor-specific CD8+ cells, as well as increased numbers of CD8+ cells producing interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α). We also found unanticipated benefits to antitumor immunity with the administration of KGF. KGF-treated allo-BMT recipients have an improved ratio of T effector cells to regulatory T cells, a larger fraction of effector cells that display a central memory phenotype, and effector cells that are derived from a broader T-cell–receptor repertoire. In conclusion, our data suggest that KGF can function as a potent vaccine adjuvant after allo-BMT through its effects on posttransplantation T-cell reconstitution.


Blood ◽  
1989 ◽  
Vol 74 (6) ◽  
pp. 2270-2277 ◽  
Author(s):  
S Cayeux ◽  
S Meuer ◽  
A Pezzutto ◽  
M Korbling ◽  
R Haas ◽  
...  

Abstract T cells generated during a second round of ontogeny after autologous bone marrow transplantation (ABMT) represent a unique model of early T- cell ontogeny in an autologous situation. Since grafted bone marrows were pretreated in vitro with the cyclophosphamide derivative ASTA Z 7557, circulating T cells had to be regenerated from reinfused hematopoietic progenitor cells. The T-cell population derived from 25 patients post-ABMT was phenotypically characterized: an increase in CD8+ cells, a low percentage of CD4+ cells, and a median of 12% CD56+ (NKH1+) cells were found. When the T cells were stimulated with phytohemagglutinin (PHA) and phorbol myristate acetate (PMA), defective interleukin-2 (IL-2) secretion was observed. In addition, proliferative responses of the T cells after activation through the antigen-receptor- dependent CD3 pathway, through the CD2 dependent alternative T-cell pathway, and by the lectin PHA were investigated. Despite the presence of CD2, CD3, alpha/beta chains of the T-cell receptor, and CD25+ IL-2 surface receptors, abnormal proliferative responses were obtained even in the presence of exogeneous IL-2. In experiments where the T-cell population was separated into CD4+ cells and CD8+ cells, both the CD4- and CD8+ subsets were unable to respond to activating and proliferating signals. Thus, T cells at early stages of ontogeny not only possess an intrinsic defect in IL-2 synthesis but, in addition, were unable to express functional IL-2 receptors in response to mitogenic stimuli.


1999 ◽  
Vol 190 (9) ◽  
pp. 1275-1284 ◽  
Author(s):  
Leo Lefrançois ◽  
Sara Olson ◽  
David Masopust

The role of CD40 ligand (CD40L) in CD8 T cell activation was assessed by tracking antigen-specific T cells in vivo using both adoptive transfer of T cell receptor transgenic T cells and major histocompatibility complex (MHC) class I tetramers. Soluble antigen immunization induced entry of CD8 cells into the intestinal mucosa and cytotoxic T lymphocyte (CTL) differentiation, whereas CD8 cells in secondary lymphoid tissue proliferated but were not cytolytic. Immunization concurrent with CD40L blockade or in the absence of CD40 demonstrated that accumulation of CD8 T cells in the mucosa was CD40L dependent. Furthermore, activation was mediated through CD40L expressed by the CD8 cells, since inhibition by anti-CD40L monoclonal antibodies occurred after adoptive transfer to CD40L-deficient mice. However, mucosal CD8 T cells in normal and CD40−/− mice were equivalent killers, indicating that CD40L was not required for CTL differentiation. Appearance of virus-specific mucosal, but not splenic, CD8 cells also relied heavily on CD40–CD40L interactions. The mucosal CTL response of transferred CD8 T cells was MHC class II and interleukin 12 independent. The results established a novel pathway of direct CD40L-mediated CD8 T cell activation.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3533-3533
Author(s):  
Mathias Witzens-Harig ◽  
Dirk Hose ◽  
Michael Hundemer ◽  
Simone Juenger ◽  
Anthony D. Ho ◽  
...  

Abstract Introduction: The bone marrow (BM) is a site of induction of tumour antigen specific T cell responses in many malignancies. We have demonstrated in the BM of myeloma patients high frequencies of spontaneously generated CD8 memory T cells with specificity for the myeloma-associated antigen MUC1, which were not detectable in the peripheral blood (PB). Besides MUC1, carcinoembryonic antigen was recently identified as a tumour-associated antigen in a patient with multiple myeloma. Up to now, spontaneous CD4 T cell responses against myeloma-associated antigens have not been reported. We undertook this study to evaluate to what extent spontaneous CD4 T cell responses against myeloma antigens occur during myeloma progression and if MUC1 or carcinoembryonic antigen represent immunogenic targets of spontaneous CD4 and CD8 T cell responses. Methods: Altogether, 78 patients with multiple myeloma were included into the study. Presence of functionally competent antigen specific T cells was evaluated by ex vivo short term (40 h) IFN-γ Elispot analyses. CD4 T cell responses against MUC1 were assessed by stimulation of purified CD4 T cell fractions with antigen pulsed, autologous dendritic cells (DCs) pulsed with two synthetic 100 meric polypeptides (pp1-100ss and (137–157)5 tr) that can be processed and presented via multiple HLA-II alleles. CD4- or CD8 T cell reactivity against carcinoembryonic antigen was assessed on purified CD4- and CD8 T cell fractions by pulsing DCs with highly purified CEA derived from culture supernatants of an epithelial carcinoma cell line. CD8 responses against MUC1 were analyzed by stimulation of HLA-A2+ patients derived purified T cells with DCs loaded with HLA-A2 restricted MUC1-derived nonameric peptide LLLLTVLTV. As negative control antigen for MUC1 polypeptides and CEA human IgG was used for pulsing DCs at identical concentrations while HLA-A2-restricted peptide SLYNTVATL derived from HIV was used as control antigen for LLLLTVLTV. Test antigen specific reactivity was defined by significantly increased numbers of IFN-γ spots in triplicate test wells compared to control wells (p<0.05, students T test). Results: 8 out of 19 tested patients (42%) contained MUC1 specific CD8 T cells in their bone marrow, while MUC1 specific CD4 T cells were detected in the BM of 30% of the cases (3/10). Interestingly, in peripheral blood (PB) CD8 reactivity against MUC1 was detectable in only 1 out of 10 patients while CD4 reactivity in PB was not detectable at all (0/10). CEA was specifically recognized by BM CD8 T cells from 5 out of 30 patients (17%) and by BM CD4 T cells from 5 out of 18 patients (28%). CEA was not recognized by CD4 and CD8 T cells in the PB of the same patients (0/13). Conclusion: Spontaneous T helper responses against tumour-associated antigens occur in the BM at similar levels as antigen specific CD8 T cells responses while they are virtually undetectable in the PB. Compared to CEA, MUC1 induces CD8 T cell responses in a much higher proportion of myeloma patients. Nevertheless, our data suggest that CEA may trigger spontaneous T cell responses against multiple myeloma in a considerable number of patients. Thus, systematic functional analyses of this potential tumour antigen in multiple myeloma appears to be justified.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5212-5212 ◽  
Author(s):  
Zonghong Shao ◽  
Huijuan Jiang ◽  
Rong Fu

Abstract Objective To investigate the proportion and activation of myeloid- derived suppressor cells (MDSC) in bone marrow from patients with myelodysplastic syndromes (MDS). Methods The proportion of MDSC (Lin-HLA-DR-CD33+) in bone marrow of 30 MDS patients and 19 normal controls were measured by flow cytometry assay(FCM). MDSC and CD8+ T cell were isolated from bone marrow of 14 MDS patients and 14 normal controls among them by FCM and microbeads. The expressions of arginase 1(ARG1) and inducible nitric oxide synthase (iNOS) were analyzed by qPCR and western bolting. Co-cultures with CD8+ T cell were proved the MDSC-mediated inhibition of CD8+ T cell. Results MDS patient’s median MDSC were 7.29% which was higher than that of controls (2.91%). The expression of ARG1 and iNOS mRNA in MDSC of high-risk MDS patients was higher than that of low-risk MDS patients. But the protein of ARG1 was overexpressed rather than that of iNOS. After co-cultured, the apoptosis ratio of CD8+ T cells of MDS((64.17±4.86) %) was increased compared to pure CD8+ T cells ( (54.58±9.95)%). Further more, the production of IFN-γsecreted by CD8+ T cells co-cultured with MDSC ((551.94±47.39) pg/ml)was lower than that of pure CD8+ T cells ((586.04±46.65) pg/ml) There was no significant difference in level of TNF-βbetween co-cultured with MDSC and pure CD8+ cells. Conclusion The proportion of MDSC in bone marrow was increased significantly in MDS. MDSC overexpressed ARG1 in patients with MDS and correlated to the malignant degree of this disease. Further more, MDSC can increased the apoptosis ratio of CD8+ T cell, and inhibited the secretion of IFN-γ. These findings suggested MDSC mediated the response of immunosuppression in MDS. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4564-4564 ◽  
Author(s):  
Maddalena Noviello ◽  
Francesco Manfredi ◽  
Tommaso Perini ◽  
Giacomo Oliveira ◽  
Filippo Cortesi ◽  
...  

Abstract Background:Allogeneic Hematopoietic Stem Cell Transplantation (HSCT) is the only cure for high-risk acute myeloid leukemia (AML). Unfortunately, relapse still remains the major cause of death after HSCT. We investigated if T-cell dysfunction is associated to post-transplant relapse. Patients and Methods: To this,we longitudinally analyzed the T-cell dynamics in bone marrow (BM) and peripheral blood (PB) of 32 AML patients receiving HSCT from HLA identical (HLAid, 20 pts) or HLA haploidentical (haplo, 12 pts) donors. Samples were analysed by multi-parametric flow cytometry to investigate the expression of inhibitory receptors (IRs) on CD4 and CD8 T-cell subsets defined by CD45RA, CD62L and CD95 expression, and to assess the proportion of regulatory T cells (Tregs; CD4+CD25+FoxP3+). Results were also analyzed with the BH-SNE algorithm, an unbiased computational method for the analysis of FACS data. To evaluate T-cell effector functions, the CD107a degranulation assay was performed and the production of cytokines (IL-2, IFNg and TNFa) was measured by intracellular staining. BM and PB were collected 60 days after HSCT and at relapse (median 237 days; 16 pts) or, when complete remission was maintained (CR; 16 pts), at 1 year. Samples from 8 healthy donors (HD) were used as controls. Results:After transplant, BM and PB T cells showed a lower CD4/CD8 ratio (p<0.01) and a preferential late differentiation profile (p<0.05) when compared to HD. A higher proportion of BM Tregs was documented at relapse (p<0.01), independently from the donor source. We next investigated the expression of several IRs as T-cell exhaustion markers. After haplo-HSCT, PD-1, CTLA-4, 2B4 and Tim-3 were significantly upregulated in BM and PB T cells at all time-points, compared to HD and independently from the clinical outcome. Conversely, after HLAid-HSCT, at the late time-point, patients who relapsed, displayed a higher frequency of BM infiltrating T cells expressing PD-1, CTLA-4 and Tim-3 than CR pts (p<0.05) and HD (p<0.01). We then investigated the profile of each T-cell subset in our cohort. In the BM of HD the IR expression was confined to effector memory and effectors. While a similar IR distribution was observed in CR, at relapse, PD-1, 2B4 and Tim-3 were also upregulated in BM infiltrating central memory (p<0.01) and memory stem T cells (p<0.05). Interestingly, at relapse, leukemia expressed PD-L1 (9/9 cases) and Galectin-9 (6/9). The levels of Tim-3 on BM CD8 cells associates with that of Galectin-9 on autologous blasts (p<0.05), suggesting a preferential role for this immunomodulatory axis after HSCT. Based on phenotype similarities, the BH-SNE algorithm positioned HD samples separately from transplanted pts in bi-dimensional maps. 93 significant clusters were identified. Clusters associated with relapse after HLA-id (5) and after haplo (15) were composed of T cells expressing multiple IRs, while CR-specific clusters were diminished in IR fluorescence. To verify whether the T-cell exhaustion phenotypic profile at relapse associates with functional impairment, we evaluated T-cell effector functions upon polyclonal stimulation. Strikingly, we observed a lower degranulation ability of CD8 cells at relapse when compared to CR (p<0.05). In two patients, selected based on samples availability, we isolated and expanded by rapid expansion protocol (REP) T cells expressing one or more IRs (IR+) or no IR (IR-). Expansion rates were high and similar in IR+ and IR- T cells (mean fold increase 624 and 781, respectively at day 21). The degranulation ability measured ex-vivo in those patients (mean 4.4% on CD8 cells) was dramatically increased upon REP expansion (95% and 88.9% for IR+ and IR-, respectively). Similarly, the frequency of IFN-g producing CD8 cells increased in IR+ and IR- cells upon REP, indicating that the T-cell dysfunction observed at relapse can be efficiently reversed. We next challenged IR+ and IR- T cells against autologous blasts. Preliminary results suggest that IR+ T cells are enriched in leukemia specificity (elimination index of 66% and 44% in IR+ and IR- cells respectively at an E/T ratio of 100:1). Conclusions: After HSCT, the molecular signature of exhausted CD8 cells in relapsing pts includes PD-1, CTLA-4, 2B4 and Tim-3. The expression of IRs on early differentiated central memory and memory stem T cells at relapse suggests a wide, though reversible, immunological dysfunction mediated by AML relapsing blasts. Disclosures Bondanza: TxCell: Research Funding; MolMed SpA: Research Funding; Formula Pharmaceuticals: Honoraria. Ciceri:MolMed SpA: Consultancy. Bonini:TxCell: Membership on an entity's Board of Directors or advisory committees; Molmed SpA: Consultancy.


Blood ◽  
2001 ◽  
Vol 98 (2) ◽  
pp. 467-474 ◽  
Author(s):  
Patricia A. Taylor ◽  
Christopher J. Lees ◽  
Herman Waldmann ◽  
Randolph J. Noelle ◽  
Bruce R. Blazar

The promotion of alloengraftment in the absence of global immune suppression and multiorgan toxicity is a major goal of transplantation. It is demonstrated that the infusion of a single modest bone marrow dosage in 200 cGy-irradiated recipients treated with anti-CD154 (anti-CD40L) monoclonal antibody (mAb) resulted in chimerism levels of 48%. Reducing irradiation to 100 or 50 cGy permitted 24% and 10% chimerism, respectively. In contrast, pan–T-cell depletion resulted in only transient engraftment in 200 cGy-irradiated recipients. Host CD4+ cells were essential for alloengraftment as depletion of CD4+ cells abrogated engraftment in anti-CD154–treated recipients. Strikingly, the depletion of CD8+ cells did not further enhance engraftment in anti-CD154 mAb–treated recipients in a model in which rejection is mediated by both CD4+ and CD8+ T cells. However, anti-CD154 mAb did facilitate engraftment in a model in which only CD8+ T cells mediate rejection. Furthermore, CD154 deletional mice irradiated with 200 cGy irradiation were not tolerant of grafts, suggesting that engraftment promotion by anti-CD154 mAb may not simply be the result of CD154:CD40 blockade. Together, these data suggest that a CD4+regulatory T cell may be induced by anti-CD154 mAb. In contrast to anti-CD154 mAb, anti-B7 mAb did not promote donor engraftment. Additionally, the administration of either anti-CD28 mAb or anti-CD152 (anti–CTLA-4) mAb or the use of CD28 deletional recipients abrogated engraftment in anti-CD154 mAb–treated mice, suggesting that balanced CD28/CD152:B7 interactions are required for the engraftment-promoting capacity of anti-CD154 mAb. These data have important ramifications for the design of clinical nonmyeloablative regimens based on anti-CD154 mAb administration.


Sign in / Sign up

Export Citation Format

Share Document