Enrichment of CD34+ Hematopoietic Stem and Progenitor Cells from Human Bone Marrow Using a P-Selectin-Coated Microtube.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1219-1219
Author(s):  
Srinivas D. Narasipura ◽  
Jane L. Liesveld ◽  
Joel C. Wojciechowski ◽  
Nichola Charles ◽  
Karen Rosell ◽  
...  

Abstract Enrichment and purification of hematopoietic stem and progenitor cells (HSPCs) is important in transplantation therapies for hematological disorders and for basic stem cell research. Primitive CD34+ HSPCs have demonstrated stronger rolling adhesion than mature CD34- mononuclear cells on selectins (Blood2000; 95:478–486). We have exploited this differential rolling behavior to capture and purify HSPCs from bone marrow, by perfusing mononuclear cells through selectin-coated microtubes. Bone marrow mononuclear cells were perfused through the cell capture microtubes coated with adhesion molecules. These utilized a parallel plate flow chamber (Glycotech), and the P-selectin was adsorbed with laboratory tubing of appropriate lengths attached to the inlet, outlet, and vacuum ports of the gasket chamber. After perfusion, the device lumen was washed and captured cells were visualized and estimated by video microscopy. “Rolling” cells were defined as cells translating at less than 50% of the calculated hydrodynamic free stress velocity. Velocities of single cells were determined using a MATLAB program designed to measure the change in position of the cell centroid in a given time period. Adherent cells were eluted by high shear, calcium free buffer and air embolism. Immunofluorescence staining followed by flow cytometry was used to analyze CD34+ HSPCs. CD34+ HSPC purity of cells captured in adhesion molecule-coated devices was significantly higher than the fraction of CD34+ cells found in bone marrow- mononuclear cells (2.5 ± 0.8%). P-selectin coated surfaces yielded 16–20% CD34+ cell purity, while antibody coated surfaces yielded 12–18%. Although the CD34+ cell purities were comparable between selectin and antibody surfaces, the total number of CD34+ HSPCs captured was significantly higher in P-selectin devices (∼5.7–7.1 × 104) when compared to the antibody device (∼1.74–2.61 × 104). Furthermore, analysis for cells positive for CD133, a surface marker for more primitive HSPCs, depicted approximately 10–14 fold enrichment in P-selectin samples over control bone marrow mononuclear cells. The captured cells were viable and exhibited in vitro colony forming capabilities. Thus, P-selectin can be used in a compact flow device to capture and enrich HSPCs. This study supports the hypothesis that flow-based adhesion molecule-mediated capture may be a viable physiologic approach to the capture and purification of HSPCs.

2008 ◽  
Vol 54 (1) ◽  
pp. 77-85 ◽  
Author(s):  
Srinivas D Narasipura ◽  
Joel C Wojciechowski ◽  
Nichola Charles ◽  
Jane L Liesveld ◽  
Michael R King

Abstract Background: Enrichment and purification of hematopoietic stem and progenitor cells (HSPCs) is important in transplantation therapies for hematologic disorders and in basic stem cell research. Primitive CD34+ HSPCs have demonstrated stronger rolling adhesion on selectins than mature CD34− mononuclear cells (MNCs). We have exploited this differential rolling behavior to capture and purify HSPCs from bone marrow by perfusing MNCs through selectin-coated microtubes. Methods: Bone marrow MNCs were perfused through the cell-capture microtubes coated with adhesion molecules. We washed the device lumen and visualized and estimated captured cells by video microscopy. Adherent cells were eluted by high shear, calcium-free buffer, and air embolism. We used immunofluorescence staining followed by flow cytometry to analyze CD34+ HSPCs. Results: CD34+ HSPC purity of cells captured in adhesion molecule–coated devices was significantly higher than the fraction of CD34+ cells found in bone marrow MNCs [mean (SE) 2.5% (0.8%)]. P-selectin–coated surfaces yielded 16% to 20% CD34+ cell purity, whereas antibody-coated surfaces yielded 12% to 18%. Although CD34+ cell purity was comparable between selectin and antibody surfaces, the total number of CD34+ HSPCs captured was significantly higher in P-selectin devices (approximately 5.7 × 104 to 7.1 × 104) than antibody devices (approximately 1.74 × 104 to 2.61 × 104). Conclusions: P-selectin can be used in a compact flow device to capture HSPCs. Selectin-mediated capture of CD34+ HSPCs resulted in enrichment approximately 8-fold higher than the CD34+ cell population from bone marrow MNCs. This study supports the hypothesis that flow-based, adhesion molecule–mediated capture may be a viable alternative approach to the capture and purification of HSPCs.


2021 ◽  
Vol 7 (1) ◽  
pp. 11
Author(s):  
Jaromír Vašíček ◽  
Andrej Baláži ◽  
Miroslav Bauer ◽  
Andrea Svoradová ◽  
Mária Tirpáková ◽  
...  

Hematopoietic stem and progenitor cells (HSC/HPCs) of human or few animal species have been studied for over 30 years. However, there is no information about rabbit HSC/HPCs, although they might be a valuable animal model for studying human hematopoietic disorders or could serve as genetic resource for the preservation of animal biodiversity. CD34 marker is commonly used to isolate HSC/HPCs. Due to unavailability of specific anti-rabbit CD34 antibodies, a novel strategy for the isolation and enrichment of rabbit HSC/HPCs was used in this study. Briefly, rabbit bone marrow mononuclear cells (BMMCs) were sorted immunomagnetically in order to remove all mature (CD45+) cells. The cells were depleted with overall purity about 60–70% and then cultured in a special medium designed for the expansion of CD34+ cells. Quantitative Polymerase Chain Reaction (qPCR) analysis confirmed the enrichment of primitive hematopoietic cells, as the expression of CD34 and CD49f increased (p < 0.05) and CD45 decreased (p < 0.001) at the end of culture in comparison to fresh BMMCs. However, cell culture still exhibited the presence of CD45+ cells, as identified by flow cytometry. After gating on CD45− cells the MHCI+MHCII−CD38+CD49f+CD90−CD117− phenotype was observed. In conclusion, rabbit HSC/HPCs might be isolated and enriched by the presented method. However, further optimization is still required.


Author(s):  
Omika Katoch ◽  
Mrinalini Tiwari ◽  
Namita Kalra ◽  
Paban K. Agrawala

AbstractDiallyl sulphide (DAS), the pungent component of garlic, is known to have several medicinal properties and has recently been shown to have radiomitigative properties. The present study was performed to better understand its mode of action in rendering radiomitigation. Evaluation of the colonogenic ability of hematopoietic progenitor cells (HPCs) on methocult media, proliferation and differentiation of hematopoietic stem cells (HSCs), and transplantation of stem cells were performed. The supporting tissue of HSCs was also evaluated by examining the histology of bone marrow and in vitro colony-forming unit–fibroblast (CFU-F) count. Alterations in the levels of IL-5, IL-6 and COX-2 were studied as a function of radiation or DAS treatment. It was observed that an increase in proliferation and differentiation of hematopoietic stem and progenitor cells occurred by postirradiation DAS administration. It also resulted in increased circulating and bone marrow homing of transplanted stem cells. Enhancement in bone marrow cellularity, CFU-F count, and cytokine IL-5 level were also evident. All those actions of DAS that could possibly add to its radiomitigative potential and can be attributed to its HDAC inhibitory properties, as was observed by the reversal radiation induced increase in histone acetylation.


Stem Cells ◽  
1999 ◽  
Vol 17 (6) ◽  
pp. 339-344 ◽  
Author(s):  
John Eugenes Chisi ◽  
Joanna Wdzieczak&hyphen;Bakala ◽  
Josiane Thierry ◽  
Cecile V. Briscoe ◽  
Andrew C. Riches

Sign in / Sign up

Export Citation Format

Share Document