Malignant B Cells Skew the Balance between Treg Cell and TH17 Cell Differentiation in B-Cell Non-Hodgkin Lymphoma (NHL).

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1347-1347
Author(s):  
Zhi-Zhang Yang ◽  
Anne J. Novak ◽  
Thomas E. Witzig ◽  
Stephen M. Ansell

Abstract Numerous clinical therapies have attempted to modulate tumor cell immunity, but for the most part, have proven unsuccessful. The inability to produce or augment an effective immune response is due in part to regulatory T (Treg) cells, which inhibit CD4 and CD8 T cell function. Our group has recently shown that Treg cell numbers are elevated in NHL tumors and that NHL B cells induce the development of Treg cells thereby inhibiting anti-tumor responses. The ability of NHL B cells to direct the cellular composition of their microenvironment is critical to our understanding of tumor immunity and we therefore wanted to determine if NHL B cells also directed the expansion or reduction of other T cell populations. IL-17-secreting CD4+ T cells (TH17), a newly characterized CD4+ T helper cell lineage, promote inflammation and play an important role in autoimmune disease. IL-17 has been shown to inhibit tumor cell growth suggesting a potential role for TH17 cells in anti-tumor immunity. We therefore set out to determine if TH17 cells were present in NHL tumors and whether or not their numbers were regulated by NHL B cells. Using unsorted mononuclear cells from malignant lymph nodes, we were unable to detect IL-17 expression in resting CD4+ T cells or CD4+ T cells activated with PMA/Ionomycin stimulation (less than 1%). However, IL-17-secreting CD4+ T cells could be detected in significant numbers in inflammatory tonsil and normal PBMCs. Interestingly, depletion of CD19+ NHL B cells from mononuclear cells obtained from patient biopsies resulted in detection of a clear population of IL-17-secreting CD4+ T cells (5%). These results suggest that NHL B cells suppress TH17 cell differentiation. The frequency of IL-17-secreting CD4+ T cells could not be further enhanced by the addition of exogenous TGF-b and IL-6, a cytokine combination favoring for TH17 differentiation, suggesting a further impairment of TH17 cell differentiation in the tumor microenvironment. In contrast, Foxp3 expression could be detected in resting CD4+ T cells (30%) and could be induced in CD4+CD25−Foxp3− T cells activated with TCR stimulation (28%). Contrary to the inhibition of TGF-b-mediated TH17 differentiation, Foxp3 expression could be dramatically upregulated by TGF-b in intratumoral CD4+ T cells (35%). In addition, lymphoma B cells strongly enhanced Foxp3 expression in intratumoral CD4+CD25−Foxp3−. Furthermore, when added together, the frequency of Foxp3+ T cells and Foxp3-inducible cells reached up to 60% of CD4+ T cells in tumor microenvironment of B-cell NHL. These findings suggest that the balance of effector TH17 cells and inhibitory Treg cells is disrupted in B-cell NHL and significantly favors the development of inhibitory Treg cells. Our data indicate that lymphoma B cells are key factor in regulating differentiation of intratumoral CD4+ T cells toward inhibitory CD4+ T cells.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1551-1551
Author(s):  
Zhi-Zhang Yang ◽  
Anne Novak ◽  
Thomas E. Witzig ◽  
Stephen M. Ansell

Abstract Background: Our previous work has shown that malignant B cells induce the development of intratumoral Treg cells that inhibit the host anti-tumor response. In contrast to an increase in Treg cells, we found that the number of effector T helper cells (TH1, TH2 and TH17) was low in B-cell NHL tumors, suggesting an imbalance between Treg and TH cells in the tumor microenvironment. Understanding the mechanism(s) of this imbalance is important to the development of treatments to enhance host immunity and in previous work we have shown that signaling through CD70, CD80 and CD86 plays a role. Since soluble factors, particularly TGF-β, have an important role in directing T-cell differentiation, we evaluated in this study the role of TGF-β in the lymphoma microenvironment. Goal: To determine the effect of TGF-β on the generation of intratumoral TH1, TH17 and Treg cells in human B-cell NHL. Results: Human B-cell NHL specimens were obtained from consenting patients and were used for all experiments. Using an ELISA assay, we found that malignant B cells variably secrete TGF-β - median 100 pg/ml per million cells (range: undetectable −229 pg/ml, n=7). Using flow cytometry, we showed that addition of exogenous TGF-β enhanced the expression of Foxp3+ in activated CD4+ or CD4+CD45RA+ or CD4+CD45RO+ nodal T cells, suggesting that TGF-β promotes the generation of Treg cells in tumor microenvironment. In contrast, TGF-β suppressed expression of IFN-g in activated CD4+ T cells and inhibited the up-regulation of IL-12 and IL-23-induced IFN-γ expression in CD4+ cells, indicating that TGF-β suppresses the generation of TH1 cells. TGF-β alone slightly inhibited IL-17 expression in CD4+ T cells; however, TGF-β, in the presence of IL-6 and IL-23, upregulated IL-17 expression in CD4+ T cells, suggesting proinflammatory cytokines are able to reverse the suppression induced by TGF-β. These results indicate that TGF-β plays an important role in the regulation of intratumoral TH17 cell generation. In additional experiments, TGF-β was found to exert a suppressive effect on the proliferation of both CD4+ and CD8+ intratumoral T cells. However, treatment with TGF-β enhanced IL-2 production by intratumoral CD4+ T cells detected by intracellular staining of flow cytometry. Interruption of IL-2 signaling by anti-IL-2 Ab abolished the upregulation of TGF-β-mediated Foxp3 expression and enhanced the production of IL-17 in CD4+ T cells. Furthermore, treatment with anti-IL-2 Ab reversed the inhibition of NHL B cell-mediated TH17 cell generation. Conclusion: These results suggest that TGF-β controls the generation of TH1, TH17 and Treg cells contributing to the imbalance of effector TH cells and inhibitory Treg cells in the tumor microenvironment of B-cell NHL through IL-2. Since malignant B-cells produce TGF-β, these results further support the important role of malignant B cells in the regulation of intratumoral T cell generation and the host immune response.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Cheng-Lin Lang ◽  
Min-Hui Wang ◽  
Kuan-Yu Hung ◽  
Sung-Hao Hsu ◽  
Chih-Kang Chiang ◽  
...  

Background and Objectives. Hyperparathyroidism and hyperphosphatemia contribute to the inflammatory effects in chronic hemodialysis (HD) patients. Interleukin-17-producingCD4+effector memory T (Th17) cells and CD4+CD25+Foxp3 regulatory T (Treg) cells both play critical roles in immune activation and inflammation. We investigated the relationship between the Treg and Th17 cells and the phosphate level in chronic HD patients.Methods. 105 patients aged ≥35 years on chronic HD over 3 months were enrolled. The peripheral blood mononuclear cells were collected, cultured, and stimulated by phytohemagglutinin-L, phorbol myristate acetate, and ionomycin at different time points for T cell differentiation.Results. The T cell differentiation was as follows: Th17 cells (mean ± standard deviation (SD): 25.61% ± 10.2%) and Treg cells (8.45% ± 4.3%). The Th17 cell differentiation was positively correlated with the phosphate and albumin levels and negatively correlated with age. The Treg cell differentiation was negatively correlated with albumin level and age. In the nondiabetes group (n=53), the Th17 cell differentiation was predominantly correlated with the phosphate and iPTH (intact parathyroid hormone) levels as well as the dialysis vintage.Conclusion. Higher phosphate and iPTH levels and longer dialysis duration may increase Th17 cell differentiation, especially in the nondiabetic chronic HD patients.


2021 ◽  
Vol 23 (1) ◽  
pp. 177
Author(s):  
Aoi Okubo ◽  
Youhei Uchida ◽  
Yuko Higashi ◽  
Takuya Sato ◽  
Youichi Ogawa ◽  
...  

Th17 cells play an important role in psoriasis. The differentiation of naïve CD4+ T cells into Th17 cells depends on glycolysis as the energy source. CD147/basigin, an integral transmembrane protein belonging to the immunoglobulin superfamily, regulates glycolysis in association with monocarboxylate transporters (MCTs)-1 and -4 in cancer cells and T cells. We examined whether CD147/basigin is involved in the pathogenesis of psoriasis in humans and psoriasis-model mice. The serum level of CD147 was increased in patients with psoriasis, and the expression of CD147 and MCT-1 was elevated in their dermal CD4+ RORγt+ T cells. In vitro, the potential of naïve CD4+ T cells to differentiate into Th17 cells was abrogated in CD147−/− T cells. Imiquimod (IMQ)-induced psoriatic dermatitis was significantly milder in CD147−/− mice and bone marrow chimeric mice lacking CD147 in the hematopoietic cells of myeloid lineage. These findings demonstrate that CD147 is essential for the development of psoriasis via the induction of Th17 cell differentiation.


Blood ◽  
2010 ◽  
Vol 115 (3) ◽  
pp. 530-540 ◽  
Author(s):  
Won-Woo Lee ◽  
Seong Wook Kang ◽  
Jihoon Choi ◽  
Seung-Hyun Lee ◽  
Kamini Shah ◽  
...  

Abstract In humans, interleukin-1β (IL-1β) has been suggested as an essential cytokine for developing IL-17– or IL-17A–producing CD4+ T helper 17 (Th17) cells. However, little is known about the relationship of IL-1 receptor expression and Th17 cell differentiation. We report here the presence of 2 distinct CD4+ T-cell populations with and without expression of IL-1RI that correlates with the capacity to produce IL-17 in naive and memory CD4+ T cells of human peripheral blood. IL-1RI+ memory CD4+ T cells had increased gene expression of IL17, RORC, and IRF4 even before T-cell receptor triggering, indicating that the effect of IL-1β is programmed in these cells via IL-1RI. Although CD4+ T cells from umbilical cord blood did not express IL-1RI, the cytokines IL-7, IL-15, and transforming growth factor-β (TGF-β) up-regulated IL-1RI expression on naive CD4+ T cells, suggesting that IL-1RI+ naive CD4+ T cells develop in periphery. Furthermore, IL-17 production from the cytokine-treated naive CD4+ T cells was induced by IL-1β and this induction was blocked by IL-1R antagonist. These results indicate that human Th17 cell differentiation is regulated via differential expression of IL-1RI, which is controlled by IL-7 and IL-15.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Zheying Liu ◽  
Liya Liu ◽  
Yun Zhong ◽  
Mingbo Cai ◽  
Junbi Gao ◽  
...  

Abstract Objective To investigate the mechanism of LncRNA H19 in Th17 cell differentiation and endometrial stromal cells (ESCs) proliferation in endometriosis (EMS). Methods LncRNA H19, miR-342-3p and IER3 expressions were detected by qRT-PCR and western blot. The percentage of Th17 cells/CD4+ T cells was detected by flow cytometry. IL-17 level was measured by ELISA. The interaction of miR-342-3p and IER3 was confirmed by Luciferase reporter assay. Results LncRNA H19 and IER3 expressions were down-regulated in mononuclear cells from peritoneal fluid (PFMCs) of patients with EMS or under Th17 differentiation conditions, whereas miR-342-3p expression was up-regulated and the percentage of Th17 cells was increased in PFMCs of patients with EMS or under Th17 differentiation conditions. Over-expression of LncRNA H19 decreased IL-17 level and the percentage of Th17 cells/CD4+ T cells. Besides, we confirmed that miR-342-3p could target to IER3 and negatively regulate IER3 expression. LncRNA H19 over-expression suppressed Th17 differentiation and ESC proliferation through regulating miR-342-3p/IER3. In vivo experiments showed LncRNA H19 over-expression suppressed the growth of Th17 cell differentiation-induced endometriosis-like lesions. Conclusion LncRNA H19 was down-regulated in PFMC of patients with EMS or under Th17 polarizing conditions, and LncRNA H19 over-expression suppressed Th17 cell differentiation and ESCs proliferation through miR-342-3p/IER3 pathway.


Cytokine ◽  
2012 ◽  
Vol 60 (1) ◽  
pp. 277-283 ◽  
Author(s):  
Young-Don Joo ◽  
Won-Sik Lee ◽  
Hae-Jeong Won ◽  
Soung-Min Lee ◽  
Hye Ran Kim ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Hamid R. Razzaghian ◽  
Zohreh Sharafian ◽  
Ashish A. Sharma ◽  
Guilaine K. Boyce ◽  
Kelsey Lee ◽  
...  

Newborns are frequently affected by mucocutaneous candidiasis. Th17 cells essentially limit mucosal invasion by commensal Candida spp. Here, we sought to understand the molecular basis for the developmental lack of Th17 cell responses in circulating blood neonatal T cells. Naive cord blood CD4 T cells stimulated in Th17-differentiating conditions inherently produced high levels of the interleukin-22 immunoregulatory cytokine, particularly in the presence of neonatal antigen-presenting cells. A genome-wide transcriptome analysis comparing neonatal and adult naïve CD4 T cells ex vivo revealed major developmental differences in gene networks regulating Small Drosophila Mothers Against Decapentaplegic (SMAD) and Signal Transducer and Activator of Transcription 3 (STAT3) signaling. These changes were functionally validated by experiments showing that the requirement for TGF-β in human Th17 cell differentiation is age-dependent. Moreover, STAT3 activity was profoundly diminished while overexpression of the STAT3 gene restored Th17 cell differentiation capacity in neonatal T cells. These data reveal that Th17 cell responses are developmentally regulated at the gene expression level in human neonates. These developmental changes may protect newborns against pathological Th17 cell responses, at the same time increasing their susceptibility to mucocutaneous candidiasis.


2021 ◽  
Author(s):  
Marie Goepp ◽  
Siobhan Crittenden ◽  
You Zhou ◽  
Adriano G Rossi ◽  
Shuh Narumiya ◽  
...  

Background and Purpose: Regulatory T (Treg) cells are essential for control of inflammatory processes by suppressing Th1 and Th17 cells. The bioactive lipid mediator prostaglandin E2 (PGE2) promotes inflammatory Th1 and Th17 cells and exacerbates T cell-mediated autoimmune diseases. However, the actions of PGE2 on the development and function of Treg cells, particularly under inflammatory conditions, are debated. In this study, we examined whether PGE2 had a direct action on T cells to modulate de novo differentiation of Treg cells. Experimental Approach: We employed an in vitro T cell culture system of TGF-β-dependent Treg induction from naive T cells. PGE2 and selective agonists for its receptors, and other small molecular inhibitors were used. Mice with specific lack of EP4 receptors in T cells were used to assess Treg cell differentiation in vivo. Human peripheral blood T cells from healthy individuals were used to induce differentiation of inducible Treg cells. Key Results: TGF-β-induced Foxp3 expression and Treg cell differentiation in vitro was markedly inhibited by PGE2, which was due to interrupting TGF-β signalling. EP2 or EP4 agonism mimicked suppression of Foxp3 expression in WT T cells, but not in T cells deficient in EP2 or EP4, respectively. Moreover, deficiency of EP4 in T cells impaired iTreg cell differentiation in vivo. PGE2 also appeared to inhibit the conversion of human iTreg cells. Conclusion and Implications: Our results show a direct, negative regulation of iTreg cell differentiation by PGE2, highlighting the potential for selectively targeting the PGE2-EP2/EP4 pathway to control T cell-mediated inflammation.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Shiguang Yu ◽  
Morgan Tripod ◽  
Ulus Atasoy ◽  
Jing Chen

After antigen and/or different cytokine stimulation, CD4+ T cells activated and differentiated into distinct T helper (Th) cells via differential T cell signaling pathways. Transcriptional regulation of the activation and differentiation of naïve CD4+ T cells into distinct lineage Th cells such as Th17 cells has been fully studied. However, the role of RNA-binding protein HuR in the signaling pathways of their activation and differentiation has not been well characterized. Here, we used HuR conditional knockout (HuR KO) CD4+ T cells to study mechanisms underlying HuR regulation of T cell activation and differentiation through distinct signaling pathways. Our work showed that, mechanistically, HuR positively promoted CD3g expression by binding its mRNA and enhanced the expression of downstream adaptor Zap70 and Malt1 in activated CD4+ T cells. Compared to WT Th0 cells, HuR KO Th0 cells with reduced Bcl-2 expression are much more susceptible to apoptosis than WT Th0 cells. We also found that HuR stabilized IL-6Rα mRNA and promoted IL-6Rα protein expression, thereby upregulating its downstream phosphorylation of Jak1 and Stat3 and increased level of phosphorylation of IκBα to facilitate Th17 cell differentiation. However, knockout of HuR increased IL-22 production in Th17 cells, which was due to HuR deficiency in reducing IL-22 transcription repressor c-Maf expression. These results highlight the importance of HuR in TCR signaling and IL-6/IL-6R axis driving naïve CD4+ T cell activation and differentiation into Th17 cells.


Sign in / Sign up

Export Citation Format

Share Document