Transplantation of Primary Human CD34+CD38 - Hematopoietic Stem Cells Recapitulates Idiopathic Myelofibrosis in the NOD/scid/IL2rgKO Mice.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 260-260
Author(s):  
Noriyuki Saito ◽  
Fumihiko Ishikawa ◽  
Kazuya Shimoda ◽  
Shuro Yoshida ◽  
Yoriko Saito ◽  
...  

Abstract Idiopathic myelofibrosis (IMF) is characterized by clonal proliferation of abnormal myelomonocytic cells and megakaryocytes. These cells are thought to secrete various cytokines resulting in reactive fibrosis and increased collagen content in the bone marrow (BM), and the fibrotic changes in the BM leads to extramedullary hematopoiesis and increased frequency of CD34+ cells in the peripheral blood (PB). Although IMF is thought to originate from an abnormality at the level of hematopoietic stem cell (HSC), this has not been experimentally addressed using primary human IMF samples. To demonstrate the involvement of HSCs in the pathogenesis of IMF and to establish an in vivo model of IMF, we employed the newborn NOD/SCID/IL2rg-null xenotransplantation model that efficiently supports engraftment of normal and malignant human stem cells. We purified PB CD34+ cells and PB CD34+CD38- cells from six IMF patients, and intravenously transplanted the purified cells into newborn NOD/SCID/IL2rg-null recipients. In long-term observation of the recipient mice, we analyzed human CD45+ hematopoietic cell chimerism both in the PB and in the BM, suppression of murine normal hematopoiesis, and the fibrotic changes in the BM. Six out of thirteen recipients transplanted with patient HSCs exhibited human hematopoietic engraftment, and CD33+ myeloid cells accounted for 80.5+/−9.41% of all the engrafted CD45 + population (as compared with the recipients transplanted with normal HSCs). BM of all engrafted recipients demonstrated fibrotic changes associated with increased proliferation of fibroblasts and the presence of human megakaryocytes, recapitulating the clinical features of IMF. In the 7 remaining recipients, PB hCD45 chimerism was < 1.5% at thirty-two weeks and decreased over time and fibroblast proliferation could not be demonstrated in the BM at forty weeks. To investigate the origin of BM fibroblast, we performed FISH analysis using human and mouse centromeric probes and immuno-staining using anti-CD45 and anti-vimentin antibodies. Of sixty fibroblasts examined, fifty-four cells were of human origin. These findings demonstrate that the IMF-initiating cells are contained within the CD34+CD38- HSC fraction and these cells possess differentiation capacity to fibroblasts. The newborn NOD/SCID/IL2rg-null xenotransplantation model provides an in vivo model of primary human IMF that may lead to better understanding of the mechanisms of IMF pathogenesis including the identification of IMF stem cells and the development of novel therapeutic agents for IMF.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3715-3715
Author(s):  
Noriyuki Saito ◽  
Fumihiko Ishikawa ◽  
Kazuya Shimoda ◽  
Shuro Yoshida ◽  
Yoriko Saito ◽  
...  

Abstract Idiopathic myelofibrosis (IMF) is characterized by clonal proliferation of abnormal myelomonocytic cells and megakaryocytes. These cells are thought to secrete various cytokines resulting in reactive fibrosis and increased collagen content in the bone marrow (BM), and the fibrotic changes in the BM lead to extramedullary hematopoiesis and increased frequency of CD34+ cells in the peripheral blood (PB). Although IMF is thought to originate from an abnormality at the level of hematopoietic stem cell (HSC), this has not been experimentally addressed using primary human IMF samples. To demonstrate the involvement of HSCs in the pathogenesis of IMF and to establish an in vivo model of IMF, we employed the newborn NOD/SCID/IL2rg-null xenotransplantation model that efficiently supports engraftment of normal and malignant human stem cells. We purified PB CD34+ cells and PB CD34+CD38− cells from four IMF patients, and intravenously transplanted the purified cells into newborn NOD/SCID/IL2rg-null recipients. In long-term observation of the recipient mice, we analyzed human CD45+ hematopoietic cell chimerism both in the PB and in the BM, suppression of murine normal hematopoiesis, and the fibrotic changes in the BM. Twelve out of nineteen recipients transplanted with patient CD34+ cells or CD34+CD38− cells exhibited human hematopoietic engraftment, and the frequency of CD33+ myeloid cells (82.5+/−12.2% among the engrafted CD45+ cells) was higher than that in the recipients transplanted with normal HSCs. These CD33+ cells expressed other myelo-monocytic markers such as CD14, CD11b, CD15, and HLA-DR. BM of all engrafted recipients demonstrated fibrotic changes associated with increased proliferation of fibroblasts and the presence of human megakaryocytes, recapitulating the clinical features of IMF. In the 7 remaining recipients, PB hCD45 chimerism was < 1.5% at thirty-two weeks and decreased over time and fibroblast proliferation could not be demonstrated in the BM at forty weeks. With FISH analysis using human X probe and immuno-staining using anti-TGF-beta1 antibody, we could confirm the TGF-beta1 production of human megakaryocytes in the recipient BM. To investigate the origin of BM fibroblasts, we performed FISH analysis using human X chromosome probe and mouse centromeric probe, and immuno-staining using anti-CD45 and anti-vimentin antibodies. Of one hundred fifty fibroblasts examined, one hundred thirty six cells (90.7%) were of human origin. These findings demonstrate that the IMF-initiating cells are contained within the CD34+CD38− HSC fraction and these cells possess differentiation capacity to fibroblasts. The newborn NOD/SCID/IL2rg-null xenotransplantation model provides an in vivo model of primary human IMF that may lead to better understanding of the mechanisms of IMF pathogenesis including the identification of IMF stem cells and the development of novel therapeutic agents for IMF.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 666-666
Author(s):  
Noriyuki Saito ◽  
Fumihiko Ishikawa ◽  
Kazuya Shimoda ◽  
Shuro Yoshida ◽  
Yoriko Saito ◽  
...  

Abstract Idiopathic myelofibrosis (IMF) is characterized by clonal proliferation of abnormal myelomonocytic cells and megakaryocytes. These abnormal cells secrete various cytokines resulting in reactive fibrosis and increased collagen content in the bone marrow (BM), and lead to extramedullary hematopoiesis and the appearance of CD34+ cells in the peripheral blood (PB). Although IMF is thought to originate at the level of hematopoietic stem cell (HSC), this has not been demonstrated directly in primary human IMF. To demonstrate the involvement of HSCs in the pathogenesis of IMF and to establish an in vivo model of IMF, we used the newborn NOD/SCID/IL2rg-null xenotransplantation model. We purified PB CD34+ cells from six IMF patients, transplanted 1–10 x10e4 cells intravenously into newborn NOD/SCID/IL2rg-null recipients and analyzed PB and BM human CD45+ hematopoietic cell chimerism, degree of suppression of murine hematopoiesis, presence of hallmark BM fibrosis and plasma TGF-b1 levels in the recipients at 6 months post-transplantation. Primary IMF PB CD34+ cells from five out of six patients engrafted in twelve out of twelve recipients. BM of all engrafted recipients demonstrated fibrotic changes associated with increased proliferation of murine fibroblasts, the presence of human megakaryocytes and elevated plasma TGF-b1 levels, recapitulating the clinical features of IMF. Three distinct patterns of human hematopoietic reconstitution were observed among the engrafted recipients: Predominantly malignant myelomonocytic engraftment in the PB and BM (n=4), Reconstitution of both normal human hematopoiesis (with mature B and T cells, myeloid cells and platelets) and malignant myelomonocytic cells (n=6) and Development of acute leukemia (n=2). Fibrotic change was seen even in the BM of recipients that showed normal human hematopoietic reconstitution, showing that in IMF, there is co-existence of both normal and malignant hematopoietic stem/progenitor cells in the PB CD34+ fraction. Furthermore, when 5–10 x 10e3 sorted PB CD34+CD38– cells from three patients were transplanted into six newborn NOD/SCID/IL2rg-null recipients, reconstitution with human myelomonocytic cells associated with BM fibrosis was demonstrated in all recipients, with compatible level of PB and BM chimerism with those transplanted with PB CD34+ cells. These findings demonstrate that the IMF-initiating cells are contained within the HSC fraction. The newborn NOD/SCID/IL2rg-null xenotransplantation model provides an in vivo model of primary human IMF that may lead to better understanding of the mechanisms of IMF pathogenesis including the identification of IMF stem cells and may be useful for development of novel therapeutic agents for IMF.


Blood ◽  
2008 ◽  
Vol 111 (4) ◽  
pp. 1903-1912 ◽  
Author(s):  
Jun Seita ◽  
Masayuki Asakawa ◽  
Jun Ooehara ◽  
Shin-ichiro Takayanagi ◽  
Yohei Morita ◽  
...  

Interleukin (IL)-27, one of the most recently discovered IL-6 family cytokines, activates both the signal transducer and activator of transcription (STAT)1 and STAT3, and plays multiple roles in pro- and anti-inflammatory immune responses. IL-27 acts on various types of cells including T, B, and macrophage through the common signal-transducing receptor gp130 and its specific receptor WSX-1, but the effect of IL-27 on hematopoietic stem cells (HSCs) remains unknown. Here, we show that IL-27 together with stem cell factor (SCF) directly acts on HSCs and supports their early differentiation in vitro and in vivo. CD34−/lowc-Kit+Sca-1+lineage marker− (CD34−KSL) cells, a population highly enriched in mouse HSCs, were found to express both IL-27 receptor subunits. In vitro cultures of CD34−KSL cells with IL-27 and SCF resulted in an expansion of progenitors including short-term repopulating cells, while some of their long-term repopulating activity also was maintained. To examine its in vivo effect, transgenic mice expressing IL-27 were generated. These mice exhibited enhanced myelopoiesis and impaired B lymphopoiesis in the bone marrow with extramedullary hematopoiesis in the spleen. Moreover, IL-27 similarly acted on human CD34+ cells. These results suggest that IL-27 is one of the limited cytokines that play a role in HSC regulation.


Blood ◽  
1998 ◽  
Vol 91 (4) ◽  
pp. 1243-1255 ◽  
Author(s):  
Mo A. Dao ◽  
Ami J. Shah ◽  
Gay M. Crooks ◽  
Jan A. Nolta

Abstract Retroviral-mediated transduction of human hematopoietic stem cells to provide a lifelong supply of corrected progeny remains the most daunting challenge to the success of human gene therapy. The paucity of assays to examine transduction of pluripotent human stem cells hampers progress toward this goal. By using the beige/nude/xid (bnx)/hu immune-deficient mouse xenograft system, we compared the transduction and engraftment of human CD34+progenitors with that of a more primitive and quiescent subpopulation, the CD34+CD38− cells. Comparable extents of human engraftment and lineage development were obtained from 5 × 105 CD34+ cells and 2,000 CD34+CD38− cells. Retroviral marking of long-lived progenitors from the CD34+ populations was readily accomplished, but CD34+CD38− cells capable of reconstituting bnx mice were resistant to transduction. Extending the duration of transduction from 3 to 7 days resulted in low levels of transduction of CD34+CD38− cells. Flt3 ligand was required during the 7-day ex vivo culture to maintain the ability of the cells to sustain long-term engraftment and hematopoiesis in the mice.


Blood ◽  
2000 ◽  
Vol 95 (9) ◽  
pp. 2813-2820 ◽  
Author(s):  
Lisa Gallacher ◽  
Barbara Murdoch ◽  
Dongmei M. Wu ◽  
Francis N. Karanu ◽  
Mike Keeney ◽  
...  

Recent evidence indicates that human hematopoietic stem cell properties can be found among cells lacking CD34 and lineage commitment markers (CD34−Lin−). A major barrier in the further characterization of human CD34− stem cells is the inability to detect this population using in vitro assays because these cells only demonstrate hematopoietic activity in vivo. Using cell surface markers AC133 and CD7, subfractions were isolated within CD34−CD38−Lin− and CD34+CD38−Lin− cells derived from human cord blood. Although the majority of CD34−CD38−Lin− cells lack AC133 and express CD7, an extremely rare population of AC133+CD7− cells was identified at a frequency of 0.2%. Surprisingly, these AC133+CD7− cells were highly enriched for progenitor activity at a frequency equivalent to purified fractions of CD34+ stem cells, and they were the only subset among the CD34−CD38−Lin− population capable of giving rise to CD34+ cells in defined liquid cultures. Human cells were detected in the bone marrow of non-obese/severe combined immunodeficiency (NOD/SCID) mice 8 weeks after transplantation of ex vivo–cultured AC133+CD7− cells isolated from the CD34−CD38−Lin− population, whereas 400-fold greater numbers of the AC133−CD7− subset had no engraftment ability. These studies provide novel insights into the hierarchical relationship of the human stem cell compartment by identifying a rare population of primitive human CD34− cells that are detectable after transplantation in vivo, enriched for in vitro clonogenic capacity, and capable of differentiation into CD34+ cells.


Blood ◽  
2003 ◽  
Vol 101 (5) ◽  
pp. 1759-1768 ◽  
Author(s):  
Bernhard Schiedlmeier ◽  
Hannes Klump ◽  
Elke Will ◽  
Gökhan Arman-Kalcek ◽  
Zhixiong Li ◽  
...  

Ectopic retroviral expression of homeobox B4 (HOXB4) causes an accelerated and enhanced regeneration of murine hematopoietic stem cells (HSCs) and is not known to compromise any program of lineage differentiation. However, HOXB4 expression levels for expansion of human stem cells have still to be established. To test the proposed hypothesis that HOXB4 could become a prime tool for in vivo expansion of genetically modified human HSCs, we retrovirally overexpressed HOXB4 in purified cord blood (CB) CD34+ cells together with green fluorescent protein (GFP) as a reporter protein, and evaluated the impact of ectopic HOXB4 expression on proliferation and differentiation in vitro and in vivo. When injected separately into nonobese diabetic–severe combined immunodeficient (NOD/SCID) mice or in competition with control vector–transduced cells, HOXB4-overexpressing cord blood CD34+ cells had a selective growth advantage in vivo, which resulted in a marked enhancement of the primitive CD34+ subpopulation (P = .01). However, high HOXB4 expression substantially impaired the myeloerythroid differentiation program, and this was reflected in a severe reduction of erythroid and myeloid progenitors in vitro (P < .03) and in vivo (P = .01). Furthermore, HOXB4 overexpression also significantly reduced B-cell output (P < .01). These results show for the first time unwanted side effects of ectopic HOXB4 expression and therefore underscore the need to carefully determine the therapeutic window of HOXB4 expression levels before initializing clinical trials.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2685-2685
Author(s):  
A. Daisy Narayan ◽  
Jessica L. Chase ◽  
Adel Ersek ◽  
James A. Thomson ◽  
Rachel L. Lewis ◽  
...  

Abstract We used transplantation into 10 and 20 pre-immune fetal sheep recipients (55–65 days-old, term: 145 days) to evaluate the in vivo potential of hematopoietic elements derived from hESC. The in utero human/sheep xenograft model has proven valuable in assessing the in vivo hematopoietic activity of stem cells from a variety of fetal and post-natal human sources. Five transplant groups were established. Non-differentiated hESC were injected in one group. In the second and third group, embroid bodies differentiated for 8 days were injected whole or CD34+ cells were selected for injection. In the fourth and fifth group, hESC were differentiated on S17 mouse stroma layer and injected whole or CD34+ cells were selected for injection. The animals were allowed to complete gestation and be born. Bone marrow and peripheral blood samples were taken periodically up to over 12 months after injection, and PCR and flowcytometry was used to determine the presence of human DNA/blood cells in these samples. A total of 30 animals were analyzed. One primary recipient that was positive for human hematopoietic activity was sacrificed and whole bone marrow cells were transplanted into a secondary recipient. We analyzed the secondary recipient at 9 months post-injection by PCR and found it to be positive for human DNA in its peripheral blood and bone marrow. This animal was further challenged with human GM-CSF and human hematopoietic activity was noted by flowcytometry analyses of bone marrow and peripheral blood samples. Further, CD34+ cells enriched from its bone marrow were cultured in methylcellulose and human colonies were identified by PCR. We therefore conclude that hESC are capable of generating hematopoietic cells that engraft in 1° sheep recipients. These cells also fulfill the criteria for long-term engrafting hematopoietic stem cells as demonstrated by engraftment and differentiation in the 20 recipient.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2348-2348
Author(s):  
Hirotaka Kawano ◽  
Tomotoshi Marumoto ◽  
Michiyo Okada ◽  
Tomoko Inoue ◽  
Takenobu Nii ◽  
...  

Abstract Abstract 2348 Since the successful establishment of human embryonic stem cells (ESCs) in 1998, transplantation of functional cells differentiated from ESCs to the specific impaired organ has been expected to cure its defective function [Thomson JA et al., Science 282:1145–47, 1998]. For the establishment of the regenerative medicine using ESCs, the preclinical studies utilizing animal model systems including non-human primates are essential. We have demonstrated that non-human primate of common marmoset (CM) is a suitable experimental animal for the preclinical studies of hematopoietic stem cells (HSCs) therapy [Hibino H et al., Blood 93:2839–48, 1999]. Since then we have continuously investigated the in vitro and in vivo differentiation of CM ESCs to hematopoietic cells by the exogenous hematopoietic gene transfer. In earlier study, we showed that the induction of CD34+ cells having a blood colony forming capacity from CM ESCs is promoted by lentiviral transduction of TAL1 cDNA [Kurita R et al., Stem Cells 24:2014-22,2006]. However those CD34+ cells did not have a bone marrow reconstituting ability in irradiated NOG (NOD/Shi-scid/IL-2Rγnull) mice, suggesting that transduction of TAL1 gene is not enough to induce functional HSCs which have self-renewal capability and multipotency. Thus we tried to find other hematopoietic genes being able to promote hematopoietic differetiation more efficiently than TAL1. We selected 6 genes (LYL1, HOXB4, BMI1, GATA2, c-MYB and LMO2) as candidates for factors that induce the differentiation from ESCs to HSCs, based on the comparison of gene expression level between human ESCs and HSCs by Digital Differential Display from the Uni-Gene database at the NCBI web site (http://www.ncbi.nlm.nih.gov/UniGene/). Then, we transduced the respective candidate gene in CM ESCs (Cj11), and performed embryoid body (EB) formation assay to induce their differentiation to HSCs for 9 days. We found that lentiviral transduction of LYL1, a basic helix-loop-helix transcription factor, in EBs derived from Cj11, one of CM ESC lines, markedly increased the number of cells positive for CD34, a marker for hematopoietic stem/progenitors. The lymphoblastic leukemia 1 (LYL1) was originally identified as the factor of a chromosomal translocation, resulting in T cell acute lymphoblastic leukemia [Mellentin JD et al., Cell 58:77-83.1989]. These class II bHLH transcription factors regulate gene expression by binding to target gene sequences as heterodimers with E-proteins, in association with Gata1 and Gata2 [Goldfarb AN et al., Blood 85:465-71.1995][Hofmann T et al., Oncogene 13:617-24.1996][Hsu HL et al., Proc Natl Acad Sci USA 91:5947-51.1994]. The Lyl1-deficient mice display the reduction of B cells and impaired long-term hematopoietic reconstitution capacity [Capron C et al., Blood 107:4678-4686. 2006]. And, overexpression of Lyl1 in mouse bone marrow cells induced the increase of HSCs, HPCs and lymphocytes in vitro and in vivo [Lukov GL et al., Leuk Res 35:405-12. 2011]. These information indicate that LYL1 plays important roles in hematopoietic differentiation in primate animals including human and common marmoset. To examine whether overexpression of LYL1 in EBs can promote hematopoietic differentiation in vitro we performed colony-forming unit (CFU) assay, and found that LYL1-overexpressing EBs showed the formation of multi-lineage blood cells consisting of erythroid cells, granulocytes and macrophages. Next, we analyzed gene expression level by RT-PCR, and found that the transduction of LYL1 induced the expression of various hematopoietic genes. These results suggested that the overexpression of LYL1 can promote the differentiation of CM ESCs to HSCs in vitro. Furthermore we found that the combined overexpression of TAL1 and LYL1 could enhance the differentiation of CD34+ cells from CM ESCs than the respective overexrpession of TAL1 or LYL1. Collectively, our novel technology to differentiate hematopoietic cells from ESCs by the transduction of specific transcription factors is novel, and might be applicable to expand human hematopoietic stem/progenitor cells in vitro for future regenerative medicine to cure human hematopoietic cell dyscrasias. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1192-1192
Author(s):  
Hirotaka Kawano ◽  
Tomotoshi Marumoto ◽  
Takafumi Hiramoto ◽  
Michiyo Okada ◽  
Tomoko Inoue ◽  
...  

Abstract Hematopoietic stem cell (HSC) transplantation is the most successful cellular therapy for the malignant hematopoietic diseases such as leukemia, and early recovery of host’s hematopoiesis after HSC transplantation has eagerly been expected to reduce the regimen related toxicity for many years. For the establishment of the safer and more efficient cell source for allogeneic or autologous HSC transplantation, HSCs differentiated from embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) that show indefinite proliferation in an undifferentiated state and pluripotency, are considered to be one of the best candidates. Unfortunately, despite many recent efforts, the HSC-specific differentiation from ESCs and iPSCs remains poor [Kaufman, DS et al., 2001][Ledran MH et al., 2008]. In this study, we developed the new method to differentiate HSC from non-human primate ESC/iPSC. It has been reported that common marmoset (CM), a non-human primate, is a suitable experimental animal for the preclinical studies of HSC therapy [Hibino H et al., 1999]. We have been investigated the hematopoietic differentiation of CM ESCs into HSCs, and previously reported that the induction of CD34+ cells having a blood colony forming capacity from CM ESCs were promoted by lentiviral transduction of TAL1 cDNA [Kurita R et al., 2006]. However, those CD34+ cells did not have a bone marrow reconstituting ability in irradiated NOG (NOD/Shi-scid/IL-2Rγnull) mice, suggesting that transduction of TAL1 gene was not sufficient to induce functional HSCs which have self-renewal capability and multipotency. Thus, we tried to find other hematopoietic genes being able to promote hematopoietic differetiation more efficiently than TAL1. We selected 6 genes (LYL1, HOXB4, BMI1, GATA2, c-MYB and LMO2) as candidates for factors that induce the differentiation of ESCs into HSCs, based on the previous study of hematopoietic differentiation from human and mouse ESCs. And CM ESCs (Cj11) lentivirally transduced with the respective candidate gene were processed for embryoid body (EB) formation to induce their differentiation into HSCs for 9 days. We found that lentiviral transduction of LYL1 (lymphoblastic leukemia 1), a basic helix-loop-helix transcription factor, in EBs markedly increased the proportion of cells positive for CD34 (approximately 20% of LYL1-transduced cells). RT-PCR showed that LYL1-transduced EBs expressed various hematopoietic genes, such as TAL1, RUNX1 and c-KIT. To examine whether these CD34+ cells have the ability to differentiate into hematopoietic cells in vitro, we performed colony-forming unit (CFU) assay, and found that CD34+ cells in LYL1-transduced EBs could form multi-lineage blood colonies. Furthermore the number of blood colonies originated from CD34+CD45+ cells in LYL1-transduced EBs was almost the same as that from CD34+CD45+ cells derived from CM bone marrow. These results suggested that enforced expression of LYL1 in CM ESCs promoted the emergence of HSCs by EB formation in vitro. The LYL1 was originally identified as the factor of a chromosomal translocation, resulting in T cell acute lymphoblastic leukemia [Mellentin JD et al., 1989]. The Lyl1-deficient mice display the reduction of B cells and impaired long-term hematopoietic reconstitution capacity [Capron C et al., 2006]. And, transduction of Lyl1 in mouse bone marrow cells induced the increase of HSCs and lymphocytes in vitro and in vivo [Lukov GL et al., 2011]. Therefore we hypothesized that LYL1 may play essential roles in bone marrow reconstitution by HSCs differentiated from CM ESCs. To examine this, we transplanted CD34+ cells derived from LYL1-transduced CM ESCs into bone marrow of sublethally irradiated NOG mice, and found that about 7% of CD45+ cells derived from CM ESCs were detected in peripheral blood (PB) of recipient mice at 8 weeks after transplant (n=4). Although CM CD45+ cells disappeared at 12 weeks after transplant, CD34+ cells (about 3%) were still found in bone marrow at the same time point. Given that TAL1-transduced EBs derived from CM ESCs could not reconstitute bone marrow of irradiated mice at all, LYL1 rather than TAL1 might be a more appropriate transcription factor that can give rise to CD34+ HSCs having the enhanced capability of bone marrow reconstitution from CM ESCs. We are planning to do in vivo study to prove this hypothesis in CM. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document