Single Dose Administration of rFVIIa and NN1731 in Two Hemophilia A Dogs.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3144-3144 ◽  
Author(s):  
Mirella Ezban ◽  
Lone Frost ◽  
Dorthe Viuff ◽  
Judi Møss ◽  
Mark Kloos ◽  
...  

Abstract Introduction: The objective of this pilot study was to evaluate and compare the pharmacokinetic and pharmacodynamic (PK/PD) profile of rFVIIa and NN1731 in two hemophilia A dogs. In addition, it was the aim to evaluate the use of TEG for monitoring rFVIIa/NN1731 activity after in vivo administration and to compare with ex vivo spiking data from a previous study. NN1731 is a new rFVIIa analoge with enhanced activity (Allen et al. Arterioscler. Thromb. Vasc. Biol.2007;27:683–689). In hemophilia patients as well as hemophilia dogs the clot formation is impaired and reflected in coagulation assays such as thromboelastography (TEG) and APTT. The choice of hemophilia dogs is based upon the knowledge that the pharmacokinetics of human coagulations factors (FVIII, FIX and rFVIIa) as well as the effective dose is similar to that in humans. In normal dogs, it is not possible to evaluate the effect of these procoagulant proteins in coagulation assays as no impaired clotting is observed. Methods: rFVIIa and NN1731 (280 μg/kg IV) were administered to two hemophilia dogs on separate days and plasma samples collected at different time points. FVIIa activity was measured by the FVIIa clot assay and values were used for pharmacokinetic assessment. The same pharmacokinetic models, a non-compartmental method and a two compartment model, respectively, were used as was the case in the First Human Dosing (FHD) trial of NN1731 (NN1731–1639). Analysis of PD markers in dogs included: APTT, PT and whole blood thromboelastography analysis, recently developed for use in hemophilia dogs. Results: Based on the FVIIa activity profile in the two dogs it was observed that the values obtained at the first time point (C5 min), were higher after treatment with NN1731 than after rFVIIa. All activity based assays including TEG demonstrated that NN1731 was cleared faster than rFVIIa., FVIIa activity (FVIIa clot assay), showed a rapid initial distribution and/or elimination of FVIIa activity (t1/2α:0.3 h) followed by a less rapid elimination phase (t½β:3.5 h). Similar profile and values were obtained for NN1731 in the FHD dose study (J. Møss et al, ISTH, 2007) Conclusions: This study indicates that in hemophilia A dogs, NN1731 and rFVIIa have distinct PK profiles and very similar to what is observed in man. All activity assays show the same qualitative profile, the FVIIa clot assay being the most sensitive assay. The TEG data obtained in vivo are in accordance with the values obtained after in vitro spiking. The data support the use of hemophilia dogs for evaluating the pharmacokinetic and pharmacodynamic profiles of FVIIa related proteins.

2012 ◽  
Vol 2012 ◽  
pp. 1-8
Author(s):  
Yunlan Li ◽  
Zhuyan Gao ◽  
Pu Guo ◽  
Qingshan Li

Di-phenyl-di-(2,4-difluobenzohydroxamato)tin(IV)(DPDFT), a new metal-based arylhydroxamate antitumor complex, showed highin vivoandin vitroantitumor activity with relative low toxicity, but no data was reported regarding its pharmacokinetics and dependent toxicity. In this paper, a rapid, sensitive, and reproducible HPLC methodin vivousing Diamonsil ODS column with a mixture of methanol and phosphoric acid in water (30 : 70, V/V, pH 3.0) as mobile phase was developed and validated for the determination of DPDFT. The plasma was deproteinized with methanol that contained acetanilide as the internal standard (I.S.). The photodiode array detector was set at a wavelength of 228 nm at room temperature and a linear curve over the concentration range 0.1~25 μg·mL-1(r= 0.9993) was obtained. The method was used to determine the concentration-time profiles for DPDFT in the plasma after single intravenous administration with doses of 5, 10, 15 mg·kg-1to rats. The pharmacokinetics parameter calculations and modeling were carried out using the 3p97 software. The results showed that the concentration-time curves of DPDFT in rat plasma could be fitted to two-compartment model.


2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


1992 ◽  
Vol 68 (06) ◽  
pp. 687-693 ◽  
Author(s):  
P T Larsson ◽  
N H Wallén ◽  
A Martinsson ◽  
N Egberg ◽  
P Hjemdahl

SummaryThe significance of platelet β-adrenoceptors for platelet responses to adrenergic stimuli in vivo and in vitro was studied in healthy volunteers. Low dose infusion of the β-adrenoceptor agonist isoprenaline decreased platelet aggregability in vivo as measured by ex vivo filtragometry. Infusion of adrenaline, a mixed α- and β-adrenoceptor agonist, increased platelet aggregability in vivo markedly, as measured by ex vivo filtragometry and plasma β-thromboglobulin levels. Adrenaline levels were 3–4 nM in venous plasma during infusion. Both adrenaline and high dose isoprenaline elevated plasma von Willebrand factor antigen levels β-Blockade by propranolol did not alter our measures of platelet aggregability at rest or during adrenaline infusions, but inhibited adrenaline-induced increases in vWf:ag. In a model using filtragometry to assess platelet aggregability in whole blood in vitro, propranolol enhanced the proaggregatory actions of 5 nM, but not of 10 nM adrenaline. The present data suggest that β-adrenoceptor stimulation can inhibit platelet function in vivo but that effects of adrenaline at high physiological concentrations are dominated by an α-adrenoceptor mediated proaggregatory action.


1979 ◽  
Vol 41 (03) ◽  
pp. 465-474 ◽  
Author(s):  
Marcia R Stelzer ◽  
Thomas S Burns ◽  
Robert N Saunders

SummaryThe relationship between the effects of suloctidil in vivo as an antiplatelet agent and in vitro as a modifier of platelet serotonin (5-HT) parameters was investigated. Suloctidil was found to be effective in reducing platelet aggregates formation in the retired breeder rat as determined using the platelet aggregate ratio method (PAR) with an ED50 of 16.1 mg/kg 24 hours post administration. In contrast to the hypothesis that 5-HT depletion is involved in the anti-aggregatory mechanism of suloctidil, no correlation was found between platelet 5- HT content and this antiplatelet activity. Reduction of platelet 5-HT content required multiple injections of high doses (100 mg/kg/day) of suloctidil. Suloctidil administration for 8 days at 100 mg/kg/day, which lowered platelet 5-HT content by 50%, resulted in no permanent effect on ex vivo platelet 5-HT uptake or thrombin-induced release, nor alteration in the plasma 5-HT level. However, these platelets exhibited a short-lived, significant increase in percent leakage of 5-HT after 30 minutes of incubation. Therefore, suloctidil treatment at high doses may with time result in platelet 5-HT depletion, however this effect is probably not related to the primary anti-aggregatory activity of the drug.


1977 ◽  
Vol 37 (01) ◽  
pp. 154-161 ◽  
Author(s):  
B. A Janik ◽  
S. E Papaioannou

SummaryUrokinase, streptokinase, Brinase, trypsin, and SN 687, a bacterial exoprotease, have been evaluated in an ex vivo assay system. These enzymes were injected into rabbits and the fibrinolytic activity as well as other coagulation parameters were measured by in vitro techniques. Dose-response correlations have been made using the euglobulin lysis time as a measure of fibrinolytic activity and the 50% effective dose has been determined for each enzyme. Loading doses, equal to four times the 50% effective dose, were administered to monitor potential toxicity revealing that Brinase, trypsin, and SN 687 were very toxic at this concentration.Having established the 50% effective dose for each enzyme, further testing was conducted where relevant fibrinolytic and coagulation parameters were measured for up to two days following a 50% effective dose bolus injection of each enzyme. Our results have demonstrated that urokinase and streptokinase are plasminogen activators specifically activating the rabbit fibrinolytic system while Brinase, trypsin and SN 687 increase the general proteolytic activity in vivo.The advantages of this ex vivo assay system for evaluating relative fibrinolytic potencies and side effects for plasminogen activators and fibrinolytic proteases have been discussed.


1988 ◽  
Vol 08 (02) ◽  
pp. 90-99 ◽  
Author(s):  
H. Schröder ◽  
K. Schrör

ZusammenfassungOrganische Nitrate unterschiedlicher chemischer Struktur sowie Nitroprussidnatrium und Molsidomin (bzw. ihre biologisch aktiven Metaboliten) können die (primäre) Aggregation und Sekretion von Humanthrombozyten in vitro und ex vivo hemmen. Eine solche Wirkung wird für Molsidomin (SIN-1) und Nitroprussidnatrium in vitro in Konzentrationen beobachtet, die in der gleichen Größenordnung liegen wie die vasodilatierenden Effekte der Substanzen. Dagegen sind für eine direkte Antiplättchenwirkung organischer Nitrate (Glyzeryltrinitrat, Isosorbiddinitr at, Isosorbidmononitrate, Teopranitol) in vitro Konzentrationen erforderlich, die ca. 100- bis 1000fach höher sind als die Plasmaspiegel der Substanzen nach therapeutischer Dosierung bzw. die Konzentrationen, die isolierte Gefäßstreifen relaxieren. Als gemeinsamer Wirkungsmechanismus der direkten thrombozy-tenfunktionshemmenden und gefäßerweiternden Wirkung all dieser Substanzen kann heute eine Stickoxid-(NO)-vermittelte Stimulation der cGMP-Bildung angenommen werden, das aus organischen Nitraten als »Pro-drug« entsteht. Die Freisetzung von NO, eines »endothelial cell-derived relaxing factors« (EDRF) aus Nitroprussidnatrium und SIN-1 erfolgt spontan. Dagegen erfordert die Freisetzung von NO aus organischen Nitraten einen enzymatischen Stoffwechselweg, der in isolierten Thrombozyten nicht vorhanden ist. Eine Antiplättchenwirkung organischer Nitrate in vivo bzw. ex vivo wird daher über die Stimulation eines endothelialen, thrombozyteninhibitorischen Faktors erklärt. Hierbei sind Prostazyklin sowie ein bisher unbekannter Endothel-zellfaktor neben einer synergistischen Wirkung organischer Nitrate mit endogenem Prostazyklin in Diskussion. Eine thrombozytenfunktionshemmen-de Wirkung organischer Nitrate könnte in Kombination mit ihren hämody-namischen Effekten auch für die an-tianginöse Wirkung in der Klinik bedeutsam sein, insbesondere zur Verhinderung vasospastischer Zustände bei der instabilen Angina pectoris.


2018 ◽  
Vol 24 (9) ◽  
pp. 989-992 ◽  
Author(s):  
Samir Gorasiya ◽  
Juliet Mushi ◽  
Ryan Pekson ◽  
Sabesan Yoganathan ◽  
Sandra E. Reznik

Background: Preterm birth (PTB), or birth that occurs before 37 weeks of gestation, accounts for the majority of perinatal morbidity and mortality. As of 2016, PTB has an occurrence rate of 9.6% in the United States and accounts for up to 18 percent of births worldwide. Inflammation has been identified as the most common cause of PTB, but effective pharmacotherapy has yet to be developed to prevent inflammation driven PTB. Our group has discovered that N,N-dimethylacetamide (DMA), a readily available solvent commonly used as a pharmaceutical excipient, rescues lipopolysaccharide (LPS)-induced timed pregnant mice from PTB. Methods: We have used in vivo, ex vivo and in vitro approaches to investigate this compound further. Results: Interestingly, we found that DMA suppresses cytokine secretion by inhibiting nuclear factor-kappa B (NF-κB). In ongoing work in this exciting line of investigation, we are currently investigating structural analogs of DMA, some of them novel, to optimize this approach focused on the inflammation associated with PTB. Conclusion: Successful development of pharmacotherapy for the prevention of PTB rests upon the pursuit of multiple strategies to solve this important clinical challenge.


Sign in / Sign up

Export Citation Format

Share Document