The Obligate Role of TAK1 in the Survival of Hematopoietic Stem Cells and Progenitors in Mice.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 642-642
Author(s):  
Minghui Tang ◽  
Zhenbiao Xia ◽  
Shubin Zhang ◽  
Shanshan Zhang ◽  
Xudong Wei ◽  
...  

Abstract TGFβ1-activated kinase 1 (TAK1), a member of the MAPKKK family, is a key mediator of stress and proinflammatory signals. TAK1 can be activated by inflammation-mediating cytokines, including tumor necrosis factor-α (TNF-α and interleukin-1b (IL-1β), as well as by T- and B- cell receptors (TCR/BCR), and Toll-like receptors (TLRs) signals. Activated TAK1 induces the nuclear localization of NF-kB and the activation of JNK/AP1 by stimulating IKKβ and MKK3/MKK6 phosphorylation respectively. TAK1 has been found to play an important role in inflammation, immunity, T- and B-cell activation, and epithelial cell survival. The TAK1−/ − phenotype is lethal in mice at the early embryonic stage. We found higher levels of TAK1 expression and activity in hematopoietic stem cells and progenitors (HSC/Ps), and reduced expression and activity in differentiated mature hematopoietic cells. To study the role of TAK1 in bone marrow hematopoiesis, we generated inducible-TAK1 knockout mice by crossing TAK1loxp mice with Mx1Cre mice, the latter being an interferon-inducible Cre mouse line. After injection of polyI:C to induce the knockout, we found that all the TAK1 knockout mice died within 8 to 10 days after the first polyI:C injection, showing severe hematopoietic and other defects; heterozygotes were phenotypically comparable to wild-type control animals. The TAK1 deletion in these mice resulted in ablation of bone marrow hematopoiesis due to the loss of C-Kit+ HSC/Ps. Annexin-V staining showed a 3-fold increase in apoptosis in the C-Kit+ HSC/Ps from TAK1 mutant mice compared to those from littermate control mice. Almost all of the mutant animals showed intestinal bleeding as well as other hemorrhaging due to the significant reductions in platelet counts. In reciprocal bone marrow transplantation experiments, we found that the TAK1-mutant bone marrow microenvironment was able to support the growth and function of wild-type HSC/Ps, while HSC/Ps from TAK1−/ − mice failed to grow within the wild-type bone marrow microenvironment. These observations suggest that the bone marrow ablation phenotype which develops in TAK1-mutant mice is the result of intrinsic defects in HSC/P’s. We propose that TAK1-mutant HSC/Ps might mediate a survival signal for HSC/Ps stimulated by hematopoietic growth factors and cytokines, such as stem cell factor (SCF). The details of possible mechanisms by which this phenomenon might occur is currently under active investigation by our group.

1994 ◽  
Vol 14 (1) ◽  
pp. 382-390 ◽  
Author(s):  
S Okada ◽  
Z Q Wang ◽  
A E Grigoriadis ◽  
E F Wagner ◽  
T von Rüden

Mice lacking c-fos develop severe osteopetrosis with deficiencies in bone remodeling and exhibit extramedullary hematopoiesis, thymic atrophy, and altered B-cell development. In this study, we have used these mice to characterize in detail the developmental potential of hematopoietic stem cells lacking c-fos and to analyze how the lymphoid differentiation is altered. In c-fos -/- mice, B-cell numbers are reduced in the spleen, lymph nodes, and the peripheral blood as a result of a marked reduction (> 90%) in the number of clonogenic B-cell precursors. In contrast, the number and lineage distribution of myeloid progenitor cells are not affected. The thymic defects observed in a large number of these mice correlate with their health status, suggesting that this may be an indirect effect of the c-fos mutation. In vitro differentiation and bone marrow reconstitution experiments demonstrated that hematopoietic stem cells lacking c-fos can give rise to all mature myeloid as well as lymphoid cells, suggesting that the observed B lymphopenia in the mutant mice is due to an altered environment. Transplantation of wild-type bone marrow cells into newborn mutant mice resulted in the establishment of a bone marrow space and subsequent correction of the B-cell defect. These results demonstrate that hematopoietic stem cells lacking Fos have full developmental potential and that the observed defect in B-cell development is most likely due to the impaired bone marrow environment as a consequence of osteopetrosis.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2632-2632
Author(s):  
Masato Umikawa ◽  
Junke Zheng ◽  
HoangDinh Huynh ◽  
Chengcheng Zhang

Abstract Abstract 2632 Angiopoietin-like proteins (Angptls) are a seven-member family of secreted glycoproteins that share sequence homology with angiopoietins. It is known that several members of the Angptl family including Angptl3 support ex vivo expansion of hematopoietic stem cells (HSCs). However, the physiological role of Angptls in the hematopoietic system is not well known. Here we show that Angptl3 is expressed by both bone marrow stromal cells and HSCs. To study the intrinsic effect of Angptl3 in mouse HSCs, we isolated the same number of HSCs from wild-type and Angptl3-null mice and performed reconstitution analysis. Adult bone marrow Angptl3-null HSCs showed decreased repopulation compared to wild-type HSCs, suggesting that Angptl3 has cell-autonomous effect on HSC activity. By contrast, HSCs isolated from liver of the null mice had enhanced HSC repopulation activity than their wild-type counterparts. To study whether this effect is caused by difference in homing, we injected CFSE labeled wild-type HSCs and Angptl3 null HSCs into lethally irradiated mice, and checked the homing to bone marrow, spleen, and liver. While homing of these two types of cells to bone marrow or spleen was not significantly different, Angptl3 null HSCs homed better to the liver than the wild-type HSCs. Our result suggests that Angptl3 is important for the retention of HSCs in the bone marrow, and the absence of Angptl3 leads HSCs to move to extramedullary organs such as liver. Disclosures: No relevant conflicts of interest to declare.


1994 ◽  
Vol 14 (1) ◽  
pp. 382-390
Author(s):  
S Okada ◽  
Z Q Wang ◽  
A E Grigoriadis ◽  
E F Wagner ◽  
T von Rüden

Mice lacking c-fos develop severe osteopetrosis with deficiencies in bone remodeling and exhibit extramedullary hematopoiesis, thymic atrophy, and altered B-cell development. In this study, we have used these mice to characterize in detail the developmental potential of hematopoietic stem cells lacking c-fos and to analyze how the lymphoid differentiation is altered. In c-fos -/- mice, B-cell numbers are reduced in the spleen, lymph nodes, and the peripheral blood as a result of a marked reduction (> 90%) in the number of clonogenic B-cell precursors. In contrast, the number and lineage distribution of myeloid progenitor cells are not affected. The thymic defects observed in a large number of these mice correlate with their health status, suggesting that this may be an indirect effect of the c-fos mutation. In vitro differentiation and bone marrow reconstitution experiments demonstrated that hematopoietic stem cells lacking c-fos can give rise to all mature myeloid as well as lymphoid cells, suggesting that the observed B lymphopenia in the mutant mice is due to an altered environment. Transplantation of wild-type bone marrow cells into newborn mutant mice resulted in the establishment of a bone marrow space and subsequent correction of the B-cell defect. These results demonstrate that hematopoietic stem cells lacking Fos have full developmental potential and that the observed defect in B-cell development is most likely due to the impaired bone marrow environment as a consequence of osteopetrosis.


2015 ◽  
Vol 39 (10) ◽  
pp. 1099-1110 ◽  
Author(s):  
Iordanis Pelagiadis ◽  
Eftichia Stiakaki ◽  
Christianna Choulaki ◽  
Maria Kalmanti ◽  
Helen Dimitriou

Author(s):  
Laura Mosteo ◽  
Joanna Storer ◽  
Kiran Batta ◽  
Emma J. Searle ◽  
Delfim Duarte ◽  
...  

Hematopoietic stem cells interact with bone marrow niches, including highly specialized blood vessels. Recent studies have revealed the phenotypic and functional heterogeneity of bone marrow endothelial cells. This has facilitated the analysis of the vascular microenvironment in steady state and malignant hematopoiesis. In this review, we provide an overview of the bone marrow microenvironment, focusing on refined analyses of the marrow vascular compartment performed in mouse studies. We also discuss the emerging role of the vascular niche in “inflamm-aging” and clonal hematopoiesis, and how the endothelial microenvironment influences, supports and interacts with hematopoietic cells in acute myeloid leukemia and myelodysplastic syndromes, as exemplar states of malignant myelopoiesis. Finally, we provide an overview of strategies for modulating these bidirectional interactions to therapeutic effect in myeloid malignancies.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 645-645
Author(s):  
Ashish Kumar ◽  
Weili Chen ◽  
John H. Kersey

Abstract Our understanding of the biology of MLL fusion gene leukemias is limited by the lack of knowledge of the effects of the different MLL fusion genes on expression of specific homoebox genes and the specific cell compartment(s) that are subsequently deregulated. In this study we investigated whether cellular deregulation was present in committed myeloid precursors and/or the multi-potent hematopoietic stem cells derived from Mll-AF9 knock-in mice. We used the murine knock-in model since it offers the advantage of a single copy of the Mll fusion gene under the control of the endogenous promoter that is present in every hematopoietic stem/progenitor cell. The Mll-AF9 knock-in mice display expansion of the myeloid compartment as early as 6 weeks of age (young adult) and develop myeloid leukemia at approximately 6 months. We purified hematopoietic stem cells (HSCs) and granulocyte-monocyte progenitors (GMPs) from wild type and Mll-AF9 young adult bone marrow. We depleted lineage positive cells using a magnetic separation system and purified the respective populations using fluorescence activated cell sorting with specific panels of antibodies (HSC=Li−/Thy1.1lo/IL-7R−/C-kit+/Sca-1+; GMP=Lin−/IL-7R−/Sca-1+/C-kit+/CD34+/CD16/32hi). We cultured these cells in methylcellulose supplemented with GM-CSF, IL-3, SCF and IL-6, conditions that promote the growth of myeloid colonies. We assessed growth deregulation by increased colony numbers at the end of 7 days of culture and by the predominance of dense, compact colony morphology, the latter comprised of immature myeloid cells. Culture of HSCs from Mll-AF9 and wild type mice yielded an identical number of colonies (1102 and 1315 colonies per 104 cells respectively, average). In contrast, GMPs from Mll-AF9 mice yielded almost four times the number of colonies compared to wild type GMPs (3331 and 920 colonies per 104 cells respectively, average). Additionally, Mll-AF9 GMPs formed a higher number of dense, compact colonies compared to Mll-AF9 HSCs (1314 and 352 colonies per 104 cells respectively, average). Neither HSCs nor GMPs from wild type mice formed dense, compact colonies. These results indicate a greater deregulation of GMPs compared to HSCs in Mll-AF9 mice. MLL fusion gene leukemias are characterized by over-expression of specific homeobox genes, and we have previously shown that Mll-AF9 bone marrow cells display increased expression of 5′ Hox-a genes and of the Hox co-factor Meis1 compared to wild type counterparts. We hypothesized that these genes are over-expressed in Mll-AF9 GMPs compared to wild type GMPs. Real time quantitative RT-PCR showed that expression levels of Hoxa7, Hoxa9 and Meis1 were increased in Mll-AF9 GMPs compared to wild type (2.7 ± 0.8, 11.7 ± 7.8 and 19 ± 11.3 fold respectively, mean ± SEM). Overall, these data support the hypothesis that the Mll-AF9 gene is “instructive” at the molecular level at least in part via specific homeobox gene over-expression, resulting in deregulation and expansion of specific progenitor/stem cells such as the GMP population. This expanded GMP population then becomes a target for secondary mutations and later development of leukemia. Future studies focused on understanding the biology of this compartment in Mll-AF9 mice will help in our understanding of the pathogenesis of leukemia and aid in the development of newer, more effective therapies.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4822-4822
Author(s):  
Kavitha Siva ◽  
Pekka Jaako ◽  
Kenichi Miharada ◽  
Emma Rörby ◽  
Mats Ehinger ◽  
...  

Abstract Abstract 4822 Hematopoiesis is a complex process where a limited number of stem cells give rise to all mature blood cells. It involves interplay of several factors, many of which are yet to be identified. In a search for novel regulators of hematopoiesis, we chose to study SPARC (Secreted Protein Acidic and Rich in Cysteine, also known as Osteonection and BM40) because it is downregulated upon hematopoietic differentiation (Bruno et al., Mol Cell Biol, 2004) and might therefore play a role in the regulation of hematopoietic stem cells (HSC). SPARC is a matricellular protein that forms a major component of bone and is ubiquitously expressed in a variety of tissues. It is the founding member of a family of SPARC-like proteins. Several publications have indicated an important role for SPARC in hematopoiesis. In particular – knockdown of SPARC in zebrafish embryos resulted in an altered number of circulating blood cells, and a knockout mouse model showed thrombocytopenia and reduced erythroid colony formation. We carried out an in depth phenotypic and functional analysis of the hematopoietic system of SPARC knockout mice; using it as a model to gain insight into the role of SPARC in hematopoiesis. These mice are viable and fertile but show severe osteopenia and age-onset cataract at about six months of age. They also show an altered response to tumour growth and wound healing. We used mice (129SVJ background) (Gilmour et al. EMBO, 1998) that were less than six months old. These mice had normal peripheral blood counts and the bone marrow and spleen showed no alterations in morphology or cellularity. A detailed phenotypic analysis of precursors within the bone marrow showed no significant differences in myelo-erythroid precursors as compared to wild types (n=6). Though in vitro, the precursors showed lower ability to form BFU-E (n=5, p=0.048). In transplantations of lethally irradiated recipient mice, SPARC knockout cells gave rise to multi-lineage long-term reconstitution. Also, when competed with wild type cells, they provided reconstitution as well as their wild type counterparts. When SPARC knockout mice (n=8) were transplanted with wild type cells, there was normal reconstitution, indicating that a SPARC deficient niche can fully support normal hematopoiesis. We also tested if SPARC deficient mice respond differently to hematopoietic stress. We subjected mice (n=7) to sub lethal dose of irradiation and to experimentally induced anemia (n=7) and followed recovery by analyzing peripheral blood counts. In both SPARC knockouts and wild type mice, the blood counts recovered in a similar fashion. In conclusion, we find that SPARC is dispensable for murine hematopoiesis. It is possible that there are compensatory mechanisms involving other members of the SPARC family that ultimately lead to normal hematopoiesis in the murine model. In humans, SPARC maps to the deleted region in 5q MDS and has been reported to be 71 % down regulated in patient samples (Lehmann et al. Leukemia, 2007). It is the most prominent gene that is up regulated in response to lenalidomide, a drug that inhibits the malignant clone (Pellagatti et al. PNAS, 2007). SPARC is thus increasingly speculated to be involved in the pathophysiology of this hematopoetic disease. We analysed the expression levels of SPARC mRNA in the hematopoietic stem/progenitor cell compartment and found high expression levels in the CD34+ fraction of human cord blood cells. In contrast, there is very low level of SPARC expression in all compartments of murine HSCs. Therefore SPARC function may play a more important role in human hematopoiesis than in murine blood cell regulation. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 600-600
Author(s):  
Manabu Matsunawa ◽  
Ryo Yamamoto ◽  
Masashi Sanada ◽  
Aiko Sato ◽  
Yusuke Shiozawa ◽  
...  

Abstract Frequent pathway mutation involving multiple components of the RNA splicing machinery is a cardinal feature of myeloid neoplasms showing myeloid dysplasia, in which the major mutational targets include U2AF35, ZRSR2, SRSF2 and SF3B1. Among these, SF3B1 mutations were strongly associated with MDS subtypes characterized by increased ring sideroblasts, such as refractory anemia and refractory cytopenia with multiple lineage dysplasia with ring sideroblasts, suggesting the critical role of SF3B1 mutations in these MDS subtypes. However, currently, the molecular mechanism of SF3B1mutation leading to the ring sideroblasts formation and MDS remains unknown. The SF3B1 is a core component of the U2-small nuclear ribonucleoprotein (U2 snRNP), which recognizes the 3′ splice site at intron–exon junctions. It was demonstrated that Sf3b1 null mice were shown to be embryonic lethal, while Sf3b1 +/- mice exhibited various skeletal alterations that could be attributed to deregulation of Hox gene expression due to haploinsufficiency of Sf3b1. However, no detailed analysis of the functional role of Sf3b1 in hematopoietic system in these mice has been performed. So, to clarify the role of SF3B1 in hematopoiesis, we investigated the hematological phenotype of Sf3b1 +/- mice. There was no significant difference in peripheral blood counts, peripheral blood lineage distribution, bone marrow total cellularity or bone marrow lineage composition between Sf3b1 +/+ and Sf3b1 +/- mice. Morphologic abnormalities of bone marrow and increased ring sideroblasts were not observed. However, quantitative analysis of bone marrow cells from Sf3b1 +/- mice revealed a reduction of the number of hematopoietic stem cells (CD34 neg/low, cKit positive, Sca-1 positive, lineage-marker negative: CD34-KSL cells) measured by flow cytometry analysis, compared to Sf3b1 +/+ mice. Whereas examination of hematopoietic progenitor cells revealed a small decrease in KSL cell populations and megakaryocyte - erythroid progenitors (MEP) in Sf3b1 +/- mice, and common myeloid progenitors (CMP), granulocyte - monocyte progenitors (GMP) and common lymphoid progenitors (CLP) remained unchanged between Sf3b1 +/+ and Sf3b1 +/- mice. In accordance with the reduced number of hematopoietic stem cells in Sf3b1 +/- mice, the total number of colony-forming unit generated from equal number of whole bone marrow cells showed lower colony number in Sf3b1 +/- mice in vitro. Competitive whole bone marrow transplantation assay, which irradiated recipient mice were transplanted with donor whole bone marrow cells from Sf3b1 +/+ or Sf3b1 +/- mice with an equal number of competitor bone marrow cells, revealed impaired competitive whole bone marrow reconstitution capacity of Sf3b1 +/- mice in vivo. These data demonstrated Sf3b1 was required for hematopoietic stem cells maintenance. To further examine the function of hematopoietic stem cells in Sf3b1 +/- mice, we performed competitive transplantation of purified hematopoietic stem cells from Sf3b1 +/+ or Sf3b1 +/- mice into lethally irradiated mice together with competitor bone marrow cells. Sf3b1 +/- progenitors showed reduced hematopoietic stem cells reconstitution capacity compared to those from Sf3b1 +/+ mice. In serial transplantation experiments, progenitors from Sf3b1 +/- mice showed reduced repopulation ability in the primary bone marrow transplantation, which was even more pronounced after the second bone marrow transplantation. Taken together, these data demonstrate that Sf3b1 plays an important role in normal hematopoiesis by maintaining hematopoietic stem cell pool size and regulating hematopoietic stem cell function. To determine the molecular mechanism underlying the observed defect in hematopoietic stem cells of Sf3b1 +/- mice, we performed RNA-seq analysis. We will present the results of our biological assay and discuss the relation of Sf3b1 and hematopoiesis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 350-350
Author(s):  
Kyung-Hee Chang ◽  
Amitava Sengupta ◽  
Ramesh C Nayak ◽  
Angeles Duran ◽  
Sang Jun Lee ◽  
...  

Abstract In the bone marrow (BM), hematopoietic stem cells and progenitors (HSC/P) reside in specific anatomical niches. Among these niches, a functional osteoblast (Ob)-macrophage (MΦ) niche has been described where Ob and MΦ (so called "osteomacs") are in direct relationship. A connection between innate immunity surveillance and traffic of hematopoietic stem cells/progenitors (HSC/P) has been demonstrated but the regulatory signals that instruct immune regulation from MΦ and Ob on HSC/P circulation are unknown. The adaptor protein sequestosome 1 (Sqstm1), contains a Phox bemp1 (PB1) domain which regulates signal specificities through PB1-PB1 scaffolding and processes of autophagy. Using microenvironment and osteoblast-specific mice deficient in Sqstm1, we discovered that the deficiency of Sqstm1 results in macrophage contact-dependent activation of Ob IKK/NF-κB, in vitro and in vivo repression of Ccl4 (a CCR5 binding chemokine that has been shown to modulate microenvironment Cxcl12-mediated responses of HSC/P), HSC/P egress and deficient BM homing of wild-type HSC/P. Interestingly, while Ccl4 expression is practically undetectable in wild-type or Sqstm1-/- Ob, primary Ob co-cultured with wild-type BM-derived MΦ strongly upregulate Ccl4 expression, which returns to normal levels upon genetic deletion of Ob Sqstm1. We discovered that MΦ can activate an inflammatory pathway in wild-type Ob which include upregulation of activated focal adhesion kinase (p-FAK), IκB kinase (IKK), nuclear factor (NF)-κB and Ccl4 expression through direct cell-to-cell interaction. Sqstm1-/- Ob cocultured with MΦ strongly upregulated p-IKBα and NF-κB activity, downregulated Ccl4 expression and secretion and repressed osteogenesis. Forced expression of Sqstm1, but not of an oligomerization-deficient mutant, in Sqstm1-/- Ob restored normal levels of p-IKBα, NF-κB activity, Ccl4 expression and osteogenic differentiation, indicating that Sqstm1 dependent Ccl4 expression depends on localization to the autophagosome formation site. Finally, Ob Sqstm1 deficiency results in upregulation of Nbr1, a protein containing a PB1 interacting domain. Combined deficiency of Sqstm1 and Nbr1 rescues all in vivo and in vitro phenotypes of Sqstm1 deficiency related to osteogenesis and HSC/P egression in vivo. Together, this data indicated that Sqstm1 oligomerization and functional repression of its PB1 binding partner Nbr1 are required for Ob dependent Ccl4 production and HSC/P retention, resulting in a functional signaling network affecting at least three cell types. A functional ‘MΦ-Ob niche’ is required for HSC/P retention where Ob Sqstm1 is a negative regulator of MΦ dependent Ob NF-κB activation, Ob differentiation and BM HSC/P traffic to circulation. Disclosures Starczynowski: Celgene: Research Funding. Cancelas:Cerus Co: Research Funding; P2D Inc: Employment; Terumo BCT: Research Funding; Haemonetics Inc: Research Funding; MacoPharma LLC: Research Funding; Therapure Inc.: Consultancy, Research Funding; Biomedical Excellence for Safer Transfusion: Research Funding; New Health Sciences Inc: Consultancy.


2012 ◽  
Vol 1266 (1) ◽  
pp. 72-77 ◽  
Author(s):  
Fumio Arai ◽  
Kentaro Hosokawa ◽  
Hirofumi Toyama ◽  
Yoshiko Matsumoto ◽  
Toshio Suda

Sign in / Sign up

Export Citation Format

Share Document