Impaired Erythropoiesis in LYL-1 Deficient Mice.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1412-1412
Author(s):  
Claude Capron ◽  
Catherine Lacout ◽  
Yann Lecluse ◽  
Orianne Wagner-Ballon ◽  
Anna Lila Kaushik ◽  
...  

Abstract LYL-1 is a basic Helix-Loop-Helix (bHLH) transcription factor closely related to TAL. Both LYL-1 and TAL were originally identified through their implication in T acute lymphocytic leukemia. Their bHLH domain seems functionally equivalent suggesting that these two proteins share some biological function. However LYL-1 and TAL diverge largely outside the bHLH region and display a distinct, yet overlapping, expression pattern in hematopoietic cells. The role of TAL on erythropoiesis remains controversial: it is required for proper erythroid and megakaryocytic differentiation, plays an important role in the proliferation of early erythroid progenitors (BFU-E) but appears dispensable for baseline and stress erythropoiesis. This minor erythroid defect in TAL-null mice suggests that another transcription factor may replace TAL during erythroid differentiation. Since LYL-1 is also expressed in erythroid cells, we assessed its role in erythropoiesis using knock-in mice. We show that mice deficient for LYL-1 have impaired erythropoiesis. Erythroid progenitor and erythroblast numbers were significantly increased in the spleen of LYL-1−/− mice while in bone marrow (BM) erythroblasts we observed a partial differentiation blockade and enhanced apoptosis associated with decreased Bcl-xL expression. More importantly, LYL-1−/− BM cells are severely impaired in their erythroid lineage competitive reconstituting abilities. Indeed, the reconstitution capacity of erythroid lineage with LYL-1−/− cells was drastically reduced of about 10-fold. Despite this reduced BM erythropoiesis, LYL-1−/− mice had stimulated erythropoiesis. Indeed, we found a significant rise in both BFU-E and CFU-E and erythroblasts cloning efficiencies in the spleen of LYL-1−/− mice. Thus, we wondered if a compensatory mechanism by TAL and GATA-1 was operating in LYL-1−/− mice. TAL and GATA-1 transcripts were more expressed in the mature erythroblast populations from the spleen of LYL-1−/− mice compared to control. As GATA-1 is necessary to activate stress erythropoiesis we investigated the role of LYL-1 in stress erythropoiesis by treating mice with phenylhydrazine (PHZ). LYL-1−/− mice were extremely sensitive to PHZ treatment with a rapid and profound drop in hematocrit followed by rapid recovery and associated with a significant rise in circulating reticulocytes and an increase of spleen CFU-E and BFU-E. Moreover, LYL-1−/− erythroid progenitors in BM and spleen displayed EPO hyper-responsiveness. In conclusion, our results definitely show modified erythropoiesis in LYL-1−/− mice that parallels the defects described in TAL−/− mice. Our results suggest that both transcription factors may have partially redundant functions on erythropoiesis, in contrast to their distinct function in HSCs that we previously described. Finally, double TAL−/− and LYL-1−/− KO mice may help to precisely understand the transcriptional regulation of erythropoiesis.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2912-2912
Author(s):  
Petros Papadopoulos ◽  
Laura Gutierrez ◽  
Jeroen Demmers ◽  
Dimitris Papageorgiou ◽  
Elena Karkoulia ◽  
...  

Abstract The ordered assembly of a functional preinitiation complex (PIC), composed of general transcription factors (GTFs) is a prerequisite for the transcription of protein coding genes by RNA polymerase II. TFIID, comprised of the TATA binding protein (TBP) and 13 TBP-associated factors (TAFs), is the GTF that is thought to recognize the promoter sequences allowing site-specific PIC assembly. Transcriptional cofactors, such as SAGA (Spt-Ada-Gcn5-acetyltransferase), are also necessary to have tightly regulated transcription initiation. However, a new era on the role of the GTFs and specifically on the role of TFIID in tissue specific and promoter specific transcriptional regulation has emerged in the light of novel findings regarding the differentiation programs of different cell types1. TAF10 is a subunit of both the TFIID and the SAGA co-activator HAT complexes2. The role of TAF10 is indispensable for early embryonic transcription and mouse development as knockout (KO) embryos die early in gestation between E3.5 and E5.5, around the stage when the supply of maternal protein becomes insufficient3. However, when analyzing TFIID stability and transcription it was noted that not all cells and tissues were equally affected by the loss of TAF10. The contribution of the two TAF10-containing complexes (TFIID, SAGA) to erythropoiesis remains elusive. Ablation of TAF10 specifically in erythroid cells by crossing the TAF10-Lox with the EpoR-Cre mouse led to a differentiation block at around E13.5 with erythroid progenitor cells accumulating at a higher percentage (26% in the KO embryos vs 16% in the WTs at E12.5) at the double positive stage KIT+CD71+ and giving rise to fewer mature TER119+ cells in the fetal liver. At E13.5 embryos were dead with almost no erythroid cells in the fetal liver. Gene expression analysis of the fetal liver cells of the embryos revealed down-regulation of GATA1 expression and its target genes, bh1&bmaj/min globins and KLF1 transcription factor while expression of other genes known to have a role in mouse hematopoiesis remained unaffected (MYB, GATA2, PU.1). In order to get insight to the role of TAF10 during erythropoiesis we analyzed the composition of both TAF10-containing complexes (TFIID and SAGA) by mass spectrometry. We found that their stoichiometry changes slightly but not fundamentally during erythroid differentiation and development (human fetal liver erythroid progenitors, human blood erythroid progenitors and mouse erythroid progenitor cells) and no major rearrangements were generated in the composition of the TFIID as it was reported in other cell differentiation programs (e.g. skeletal differentiation, hepatogenesis). Additionally, we found GATA1 transcription factor only in the fetal liver and not in the adult erythroid cells in the mass spectrometry data of TAF10 immunoprecipitations (IPs), an interaction that we confirmed by reciprocal IP of TAF10 and GATA1 in MEL and mouse fetal liver cells. Most importantly, we checked whether TAF10 binding is enriched on the GATA1 locus in human erythroid cells during the fetal and the adult stage in erythroid proerythroblasts and we found that there is enriched binding of TAF10 in the palindromic GATA1 site in the fetal stage. Our results support a developmental role for TAF10 in GATA1 regulated genes, including GATA1 itself, during erythroid differentiation emphasizing the crosstalk between the transcriptional machinery and activators in erythropoiesis. References 1. Goodrich JA, Tjian R (2010) Unexpected roles for core promoter recognition factors in cell-type-specific transcription and gene regulation. Nature reviews Genetics 11: 549-558 2 .Timmers HT, Tora L (2005) SAGA unveiled. Trends Biochem Sci 30: 7-10 3. Mohan WS, Jr., Scheer E, Wendling O, Metzger D, Tora L (2003) TAF10 (TAF(II)30) is necessary for TFIID stability and early embryogenesis in mice. Mol Cell Biol 23: 4307-4318 Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 148-148
Author(s):  
Timothy M Chlon ◽  
Emily Stepanchick ◽  
Analise Sulentic ◽  
Kathleen Hueneman ◽  
Daniel Starczynowski

Abstract Germline mutations in the RNA Helicase gene DDX41 cause inherited susceptibility to Myelodysplastic Syndrome (MDS) and Acute Myeloid Leukemia (AML). These mutations are always heterozygous and are typically frameshifts, causing loss of protein expression. We recently reported that at least one functional copy of DDX41 is essential for hematopoiesis, and that DDX41 is required for ribosome biogenesis. While biallelic DDX41 mutations cause dramatic defects in hematopoiesis, the role of heterozygous mutations in Myelodysplastic Syndrome pathogenesis is not yet understood. Recent clinical studies have pointed out that some patients bearing germline DDX41 mutations have idiopathic cytopenias of unknown significance (ICUS) prior to MDS onset, suggesting that underlying hematopoietic defects precede and potentially contribute to the onset of MDS/AML (Choi et al., Haemotologica 2021). It has also been noted that the majority of DDX41-mutant MDS patients have refractory anemia, indicating that the erythroid lineage is particularly effected in these patients (Sebert et al., Blood 2019). Since ribosome defects are a common cause of inherited anemias and also contribute to MDS pathogenesis, we characterized the effect of heterozygous DDX41 mutations on erythropoiesis in murine and human models. Mice that have been transplanted with Ddx41 +/- bone marrow develop anemia at 12-15 months post-transplant, indicating that detection of erythroid defects in vivo is aging-dependent. We characterized the effect of heterozygosity of Ddx41 on erythroid progenitor function in vitro and found that Ddx41 +/- bone marrow from young mice yields fewer BFU-E in colony assays but comparable numbers of myeloid colonies. Liquid culture erythroid differentiation of Ddx41 +/- bone marrow produces fewer CD71+ Ter119+ progenitors than controls. To characterize the effect of heterozygous DDX41 mutations on human erythropoiesis, we generated induced pluripotent stem cells bearing heterozygous frameshift mutations in DDX41 using CRISPR. We found that these DDX41 +/- iPSC lines produced CD43+/CD34+ hematopoietic progenitor cells (HPC) with equal efficiency as unmodified control iPSC. However, once these HPC were induced to differentiate down the erythroid lineage in liquid culture, they made fewer CD71+ GLYA+ erythroid progenitors and fewer hemoglobinized cells. The DDX41 +/- HPC also produced fewer BFU-E in colony assays. Mechanistically, we found that the in vitro-derived erythroid progenitors from both mice and human iPSC had decreased protein translation, suggesting that ribosome defects underlie the observed erythroid differentiation defects. In diseases such as Diamond Blackfan Anemia and Dyskeratosis Congenita, ribosome defects lead to p53 activation which reduces cell cycle progression in erythroid progenitors. To test the role of p53 in the erythroid defects caused by Ddx41 heterozygosity, we crossed Ddx41 +/- mice with p53-knockout mice and found that loss of p53 fully rescued the BFU-E colony formation of Ddx41 +/- bone marrow HPC. We confirmed this finding using CRISPR-mediated knockout of p53 in Ddx41 +/- BM HPC. Collectively, these results suggest that a mild ribosome defect in DDX41 +/- HPC causes a deficit in erythropoiesis that results in anemia with aging. It is likely that this anemia causes stress in the bone marrow and a selective environment in which malignant hematopoietic stem and progenitor cells arise, leading to MDS and AML. Disclosures Starczynowski: kurome Inc: Consultancy.


Blood ◽  
1986 ◽  
Vol 67 (6) ◽  
pp. 1607-1610
Author(s):  
Z Estrov ◽  
C Roifman ◽  
YP Wang ◽  
T Grunberger ◽  
EW Gelfand ◽  
...  

To analyze the role of T lymphocytes in human erythropoiesis, we evaluated the effect of recombinant interleukin 2 (IL 2) on marrow CFU- E and BFU-E colony formation in vitro. IL 2 resulted in an increase in CFU-E and BFU-E colony numbers in a dose-dependent manner. This increase could be prevented by anti-Tac, a monoclonal antibody to the IL 2 receptor. Moreover, anti-Tac on its own resulted in an overall decrease in colony numbers. Depletion of marrow adherent cells did not alter the effect of either IL 2 or anti-Tac on colony growth. Following the removal of marrow T lymphocytes, CFU-E and BFU-E colony formation proceeded normally; however, the effects of IL 2 and anti-Tac were markedly diminished. Readdition of T lymphocytes to the cultures restored the IL 2 effect. Although T lymphocytes were not themselves essential for in vitro erythropoiesis, our studies suggest that IL 2 and IL 2-responsive T cells can regulate both early and mature stages of erythroid differentiation.


2013 ◽  
Vol 2013 ◽  
pp. 1-20 ◽  
Author(s):  
Ram Babu Undi ◽  
Ravinder Kandi ◽  
Ravi Kumar Gutti

The production of different types of blood cells including their formation, development, and differentiation is collectively known as haematopoiesis. Blood cells are divided into three lineages erythriod (erythrocytes), lymphoid (B and T cells), and myeloid (granulocytes, megakaryocytes, and macrophages). Haematopoiesis is a complex process regulated by several mechanisms including microRNAs (miRNAs). miRNAs are small RNAs which regulate the expression of a number of genes involved in commitment and differentiation of hematopoietic stem cells. Evidence shows that miRNAs play an important role in haematopoiesis; for example, myeloid and erythroid differentiation is blocked by the overexpression of miR-15a. miR-221, miR-222, and miR-24 inhibit the erythropoiesis, whereas miR-150 plays a role in B and T cell differentiation. miR-146 and miR-10a are downregulated in megakaryopoiesis. Aberrant expression of miRNAs was observed in hematological malignancies including chronic myelogenous leukemia, chronic lymphocytic leukemia, multiple myelomas, and B cell lymphomas. In this review we have focused on discussing the role of miRNA in haematopoiesis.


2000 ◽  
Vol 113 (15) ◽  
pp. 2705-2713
Author(s):  
K. Sawada ◽  
Y. Konishi ◽  
M. Tominaga ◽  
Y. Watanabe ◽  
J. Hirano ◽  
...  

In all vertebrate species, the homeobox gene goosecoid serves as a marker of the Spemann organizer tissue. One function of the organizer is the induction of neural tissue. To investigate the role of goosecoid in neuronal differentiation of mammalian cells, we have introduced goosecoid into PC12 cells. Expression of goosecoid resulted in reduced cell proliferation and enhanced neurite outgrowth in response to NGF. Expression of goosecoid led to a decrease in the percentage of S-phase cells and to upregulation of the expression of the neuron-specific markers MAP-1b and neurofilament-L. Analysis of goosecoid mutants revealed that these effects were independent of either DNA binding or homodimerization of Goosecoid. Coexpression of the N-terminal portion of the ets transcription factor PU.1, a protein that can bind to Goosecoid, repressed neurite outgrowth and rescued the proliferation of PC12 cultures. In contrast, expression of the bHLH transcription factor HES-1 repressed goosecoid-mediated neurite outgrowth without changing the proportion of S-phase cells. These results suggest that goosecoid is involved in neuronal differentiation in two ways, by slowing the cell cycle and stimulating neurite outgrowth, and that these two events are separately regulated.


Blood ◽  
2020 ◽  
Vol 136 (2) ◽  
pp. 235-246 ◽  
Author(s):  
Yuanting Chen ◽  
Jie Xiang ◽  
Fenghua Qian ◽  
Bastihalli T. Diwakar ◽  
Baiye Ruan ◽  
...  

Abstract Anemic stress induces stress erythropoiesis, which rapidly generates new erythrocytes to restore tissue oxygenation. Stress erythropoiesis is best understood in mice where it is extramedullary and occurs primarily in the spleen. However, both human and mouse stress erythropoiesis use signals and progenitor cells that are distinct from steady-state erythropoiesis. Immature stress erythroid progenitors (SEPs) are derived from short-term hematopoietic stem cells. Although the SEPs are capable of self-renewal, they are erythroid restricted. Inflammation and anemic stress induce the rapid proliferation of SEPs, but they do not differentiate until serum erythropoietin (Epo) levels increase. Here we show that rather than directly regulating SEPs, Epo promotes this transition from proliferation to differentiation by acting on macrophages in the splenic niche. During the proliferative stage, macrophages produce canonical Wnt ligands that promote proliferation and inhibit differentiation. Epo/Stat5-dependent signaling induces the production of bioactive lipid mediators in macrophages. Increased production of prostaglandin J2 (PGJ2) activates peroxisome proliferator-activated receptor γ (PPARγ)-dependent repression of Wnt expression, whereas increased production of prostaglandin E2 (PGE2) promotes the differentiation of SEPs.


Blood ◽  
1996 ◽  
Vol 88 (5) ◽  
pp. 1576-1582 ◽  
Author(s):  
M Silva ◽  
D Grillot ◽  
A Benito ◽  
C Richard ◽  
G Nunez ◽  
...  

Abstract Erythropoietin (Epo), the hormone that is the principal regulator of red blood cell production, interacts with high-affinity receptors on the surface of erythroid progenitor cells and maintains their survival. Epo has been shown to promote cell viability by repressing apoptosis; however, the molecular mechanism involved is unclear. In the present studies we have examined whether Epo acts as a survival factor through the regulation of the bcl-2 family of apoptosis-regulatory genes. We addressed this issue in HCD-57, a murine erythroid progenitor cell line that requires Epo for proliferation and survival. When HCD-57 cells were cultured in the absence of Epo, Bcl-2 and Bcl-XL but not Bax were downregulated, and the cells underwent apoptotic cell death. HCD-57 cells infected with a retroviral vector encoding human Bcl-XL or Bcl-2 rapidly stopped proliferating but remained viable in the absence of Epo. Furthermore, endogenous levels of bcl-2 and bcl-XL were downregulated after Epo withdrawal in HCD-57 cells that remained viable through ectopic expression of human Bcl-XL, further indicating that Epo specifically maintains the expression of bcl-2 and bcl-XL. We also show that HCD-57 rescued from apoptosis by ectopic expression of Bcl-XL can undergo erythroid differentiation in the absence of Epo, demonstrating that a survival signal but not Epo itself is necessary for erythroid differentiation of HCD-57 progenitor cells. Thus, we propose a model whereby Epo functions as a survival factor by repressing apoptosis through Bcl-XL and Bcl-2 during proliferation and differentiation of erythroid progenitors.


Blood ◽  
1993 ◽  
Vol 82 (4) ◽  
pp. 1071-1079 ◽  
Author(s):  
M Leonard ◽  
M Brice ◽  
JD Engel ◽  
T Papayannopoulou

Abstract Although the formation of terminally differentiated erythroid cells has been shown to require the presence of a functional GATA-1 gene in vivo, the role of this transcription factor and other members of the GATA family at earlier stages of erythroid differentiation is unclear. In this report, the expression of GATA-1, GATA-2, and GATA-3 has been examined in enriched peripheral blood progenitors before and after culture in a well-characterized liquid culture system. In addition primary leukemic cells as well as several erythroleukemic and nonerythroid cell lines were analyzed for GATA factor expression. The results show that the profile of GATA factor expression in erythroid cells is distinct from that of myeloid or lymphoid lineages. Erythroleukemic cell lines express little or no GATA-3, but high levels of GATA-1 and GATA-2. When they are induced to display the terminal erythroid phenotype, little change in the level of GATA-1 is detected but a significant decline in the levels of GATA-2 is observed commensurate with the degree of maturation achieved by the cells. Enrichment of erythroid progenitors from peripheral blood leads to selection of cells that express both GATA-1 and GATA-2. As the enriched populations are cultured in suspension in the presence of multiple cytokines, the levels of both GATA-1 and GATA-2 initially increase. However, in cultures containing only erythropoietin, which show exclusive erythroid differentiation, the levels of GATA-1 continue to increase, whereas GATA-2 expression declines as erythroid maturation progresses. In contrast, cultures lacking Epo (ie, with interleukin-3 and kit ligand) display limited progression towards both the myeloid and erythroid pathways, and high levels of expression of both GATA-1 and GATA-2 are maintained. Despite the initial upregulation of GATA-1 expression in the latter cultures, terminal erythroid differentiation does not occur in the absence of erythropoietin. These results indicate that GATA-1 upregulation is associated with both the initiation and the maintenance of the erythroid program, but that these two processes appear to be under separate regulatory control. Thus, the dynamic changes in the levels of different GATA factors that occur during primary erythroid differentiation suggest that the levels of these factors may influence the progression to specific hematopoietic pathways.


Blood ◽  
1985 ◽  
Vol 66 (5) ◽  
pp. 1162-1170 ◽  
Author(s):  
JL Villeval ◽  
U Testa ◽  
G Vinci ◽  
H Tonthat ◽  
A Bettaieb ◽  
...  

Abstract The expression of carbonic anhydrase (CA) as a marker of erythroid differentiation was investigated by immunologic and enzymatic procedures. A polyclonal anti-CA antibody was obtained by immunizing rabbits with purified CA I isozyme. This antibody is reactive with CA I but not with CA II. Within blood cells, CA I was only present in erythrocytes, whereas CA II was also detected in platelet lysates by enzymatic assay. Concerning marrow cells, identifiable erythroblasts and some blast cells expressed CA I. Most of the glycophorin A-positive marrow cells were clearly labeled by the anti-CA I antibody. However, rare CA I-positive cells were not reactive with anti-glycophorin A antibodies. We therefore investigated whether these cells were erythroid precursors or progenitors. In cell sorting experiments of marrow cells with the FA6 152 monoclonal antibody, which among hematopoietic progenitors is reactive only with CFU-E and a part of BFU- E, was performed, CA I+ cells were found mainly in the positive fraction. The percentage of CA I+ cells nonreactive with anti- glycophorin A antibodies contained in the two fractions was in the same range as the percentage of erythroid progenitors identified by their capacity to form colonies. In addition, the anti-CA I antibody labeled blood BFU-E-derived colonies as early as day 6 of culture, whereas in similar experiments with the anti-glycophorin A antibodies, they were stained three or four days later. No labeling was observed in CFU-GM- or CFU-MK-derived colonies. The phenotype of the day 6 cells expressing CA I was similar to that of erythroid progenitors (CFU-E or BFU-E): negative for glycophorin A and hemoglobin, and positive for HLA-DR antigen, the antigen identified by FA6 152, and blood group A antigen. Among the cell lines tested, only HEL cells expressed CA I, while K562 was unlabeled by the anti-CA I antibody. In contrast, HEL and K562 cells expressed CA II as detected by a biochemical technique. Synthesis of CA I, as with other erythroid markers such as glycophorin A and hemoglobin, was almost abolished after 12-O-tetradecanoyl-phorbol-13 acetate treatment of HEL cells. In conclusion, CA I appears to be an early specific marker of the erythroid differentiation, expressed by a cell with a similar phenotype as an erythroid progenitor.


Blood ◽  
2018 ◽  
Vol 131 (23) ◽  
pp. 2568-2580 ◽  
Author(s):  
Chang Liao ◽  
Ross C. Hardison ◽  
Mary J. Kennett ◽  
Bradley A. Carlson ◽  
Robert F. Paulson ◽  
...  

Key Points Selenoproteins, and in particular SelenoW, are required for stress erythroid progenitor proliferation and maturation. Macrophages require selenoproteins to maintain erythropoietic niche competency.


Sign in / Sign up

Export Citation Format

Share Document