Hb Dothan [β25/26 (B7/B8)/(-GTG/-GLY)/Gly+Glu→Glu]; A Novel Mechanism Leading to a M-Hemoglobin.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1440-1440
Author(s):  
Ferdane Kutlar ◽  
Lee Hilliard ◽  
Lina Zhuang ◽  
Niren Patel ◽  
Abdullah Kutlar

Abstract Hereditary methemoglobinemia is a relatively rare disorder usually manifesting with cyanosis at birth. The more common form results from the deficiency of the enzyme, NADH-Cytochrome b5 reductase (methemoglobin reductase, diaphorase) and displays an autosomal recessive inheritance pattern. Less common are the so-called M-hemoglobins with an autosomal dominant pattern, which result from amino acid substitutions in the heme binding pocket of α, β, or less commonly γ-globin chains. The majority of the M-hemoglobin (Hb) variants occur from substitutions in the E or F-helices, which constitute the heme binding pocket, most commonly from amino acid substitutions involving the conserved proximal (F8) or distal (E11) histidine residues. Here we report a new Hb variant due to a three nucleotide deletion (-GTG between codons 25 and 26 of the β globin gene causing a single amino acid (-Gly) deletion in the B helix (B7/B8) of the β-globin chain that leads to methemoglobinemia with a novel mechanism. The propositus is a 9 month old Caucasian boy from Dothan AL who was found to have a low O2 saturation prior to an ENT procedure. He was referred to cardiology at Children’s Health System, Birmingham, AL to rule out a congenital heart disease. A low O2 saturation (85–86%) was confirmed. Cardiac catheterization excluded the structural abnormality of the heart. Cooximetry showed a normal PaO2 but confirmed a low O2 saturation. Methemoglobin level was 20%, while methemoglobin reductase activity was in the low–normal range but when repeated was found to be normal. His growth and development have been normal. On alkaline electrophoresis an abnormal hemoglobin band was observed. The patient’s blood was sent to the Hemoglobinopathy Laboratory of the Sickle Cell Center at MCG, Augusta, GA for definite identification of the variant. CBC revealed a RBC of 4.3 M/mm3, HGB 13.6 g/dL, HCT 40.8 %, MCV 95.2 fl, MCH 31.8 pg MCHC 33.4 g/dL, Retics 4.4 %. Isoelectrofocusing (IEF) on agarose showed the presence of an abnormal Hb with approximately the same isoelectric point (pI) as Hb F. Quantitation of Hb components by Cation Exchange HPLC revealed 62.7% Hb A, 27.9% Hb X, 3.0% Hb A2, and 6.4% Hb F. By globin chain analyses with reversed phase HPLC, βχ was detected as 37.6% of the total beta chains. Isopropanol stability test gave strongly positive results. P50 was found to be 24.8 mm Hg in the patient and 26.4 in the control (slightly increased oxygen affinity). Peptide analysis was done using mass spectrometry (Alphalyse, Palo Alto, CA) where tryptic digests of purified Hb X (95.0% enriched) and normal control (97.0% Hb A) were analyzed and compared. Peptide 19–30 of helix-B fragment revealed 1314 Da mass in control, whereas peptide 19–29 (with –Gly) of helix-B fragment of Hb X gave 1257 Da mass, confirming the deletion of a Gly residue. The corresponding deletion of three nucleotides (-GTG) in the genomic DNA (codons 25–26: GTGGAG→GAG ) was demonstrated by polymerase chain reaction (PCR) amplification and direct sequencing of β-globin gene and confirmed by cDNA sequencing of β-globin mRNA. No abnormality was detected in the sequences of δ, Gγ, Aγ, α1 and α2 globin genes. The three nucleotide deletion between codons 25 and 26 (-GTG) of the β-globin gene causes a one amino acid (-Gly) deletion in the B helix (B7/B8) of the β-globin chain, however does not alter the amino acid composition of β-globin chain after the deletion point but results in a shorter (145 AA, instead of the normal 146) mutant β-globin chain. As a result close spatial contact of amino acids in tertiary structure of hemoglobin is altered completely. Most importantly, distal histidine at residue 63 of E7 helix now becomes Gly leading to methemoglobin formation. A similar variant was previously reported in a Japanese baby, Hb Higashitochigi (Fujisawa et al, Hemoglobin, 17:467, 1993) where a three nucleotide deletion in codons 24/25 also resulted in the loss of a single Gly residue with a similar outcome. These two cases differ from the known M-hemoglobins all of which result from single amino acid substitution in the E or F-helices thus altering the heme pocket. Hb Dothan and Hb Higashitochigi represent a novel mechanism for M-hemoglobin generation where an in frame deletion alters the tertiary structure of the globin chain with alterations in the structure of E-helix and loss of the distal histidine residue.

FEBS Journal ◽  
2007 ◽  
Vol 274 (13) ◽  
pp. 3363-3373 ◽  
Author(s):  
Augustin Ofiteru ◽  
Nadia Bucurenci ◽  
Emil Alexov ◽  
Thomas Bertrand ◽  
Pierre Briozzo ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1590-1590
Author(s):  
Donald Lavelle ◽  
Kestis Vaitkus ◽  
Mahipal Singh ◽  
Maria Hankewych ◽  
Joseph DeSimone

Abstract The human Gγ-globin and Aγ-globin genes differ by the presence of a single amino acid, either glycine or alanine, at position 136. The ratio of Gγ/Aγ-globin expression is approximately 7/3 at birth and changes to 2/3 in the adult. The mechanism responsible for this developmental switch is unknown. In the baboon, the duplicated γ-globin genes differ by the presence of a single amino acid at position 75. The Iγ-globin gene contains isoleucine at position 75, while the Vγ-globin gene contains valine at this position. The ratio of expression of the Iγ and Vγ-globin chains also differs in the fetal and adult stages. The Iγ/Vγ ratio is 3/2 in the fetus and 2/3 in the adult. Thus the pattern of expression of the baboon Iγ-globin gene is analogous to the human Gγ-globin gene, and that of the Vγ-globin gene is analogous to the human Aγ-globin gene. During stress erythropoiesis, moderately increased HbF levels are observed (5–10% HbF) and the Iγ/Vγ-globin chains are expressed in the characteristic adult ratio. Decitabine treatment reactivates HbF expression to high levels (50–70% HbF) and Iγ/Vγ ratios of approximately 1:1 have been observed following decitabine treatment. Thus decitabine treatment alters the Iγ/Vγ ratio but does not cause a complete reversion to the fetal pattern of expression. HbF is also reactivated to high levels in cultured baboon BFUe. In this investigation the pattern of expression of the Iγ- and Vγ-globin genes in cultured baboon CD34+ bone marrow (BM) cells was analyzed to determine whether reactivation of HbF in culture was associated with a change in the pattern of expression of the Iγ-and Vγ-globin genes. CD34+ cells were enriched from baboon BM using the 12.8 monoclonal antibody in combination with immunomagnetic microbead columns (Miltenyi) and cultured in Iscove’s media supplemented with 30% fetal bovine serum, stem cell factor (SCF; 200ng/ml), erythropoietin (EPO; 2U/ml), and dexamethasone (Dex; 1μM). The pattern of globin chain expression in d12 cultures, cord blood (CB) of a 58d fetus, and peripheral blood (PB) of adult baboons following phlebotomy and decitabine treatment was compared by HPLC analysis of hemolysates. The baboon 58d CB contained >90% HbF and the ratio of Iγ/Vγ was 1.85. In the adult (phlebotomized) PB the level of HbF was 8.1% and the Iγ/Vγ ratio was 0.75 thus confirming that the ratio of the baboon Iγ and Vγ-globin chains differs in the fetal and adult stages of development in a manner similar to that of the human Gγ and Aγ-globin chains. Following decitabine treatment (PA 7002) an HbF level of 55% was attained with an Iγ/Vγ ratio of 1.1. Hemolysates prepared from d12 cultures of CD34+ baboon (PA 7002) BM cells grown in the presence of SCF, EPO, and Dex contained 57.6% HbF, nearly the same level observed following decitabine treatment in vivo. The Iγ/Vγ ratio was 1.94, markedly different from that observed in this same baboon following decitabine in vivo and, moreover, nearly identical to the fetal ratio. Thus HbF reactivation in cultured adult baboon CD34+ BM cells was associated with a change in the ratio of expression of the two baboon γ-globin genes to that characteristic of the fetal stage. Recapitulation of the fetal pattern of γ-globin chain expression in cultured baboon CD34+ progenitors demonstrates yet another advantage of the baboon model for investigations of hemoglobin switching.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 289
Author(s):  
Kathleen K. M. Glover ◽  
Danica M. Sutherland ◽  
Terence S. Dermody ◽  
Kevin M. Coombs

Studies of conditionally lethal mutants can help delineate the structure-function relationships of biomolecules. Temperature-sensitive (ts) mammalian reovirus (MRV) mutants were isolated and characterized many years ago. Two of the most well-defined MRV ts mutants are tsC447, which contains mutations in the S2 gene encoding viral core protein σ2, and tsG453, which contains mutations in the S4 gene encoding major outer-capsid protein σ3. Because many MRV ts mutants, including both tsC447 and tsG453, encode multiple amino acid substitutions, the specific amino acid substitutions responsible for the ts phenotype are unknown. We used reverse genetics to recover recombinant reoviruses containing the single amino acid polymorphisms present in ts mutants tsC447 and tsG453 and assessed the recombinant viruses for temperature-sensitivity by efficiency-of-plating assays. Of the three amino acid substitutions in the tsG453 S4 gene, Asn16-Lys was solely responsible for the tsG453ts phenotype. Additionally, the mutant tsC447 Ala188-Val mutation did not induce a temperature-sensitive phenotype. This study is the first to employ reverse genetics to identify the dominant amino acid substitutions responsible for the tsC447 and tsG453 mutations and relate these substitutions to respective phenotypes. Further studies of other MRV ts mutants are warranted to define the sequence polymorphisms responsible for temperature sensitivity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Suman Pokhrel ◽  
Benjamin R. Kraemer ◽  
Scott Burkholz ◽  
Daria Mochly-Rosen

AbstractIn December 2019, a novel coronavirus, termed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was identified as the cause of pneumonia with severe respiratory distress and outbreaks in Wuhan, China. The rapid and global spread of SARS-CoV-2 resulted in the coronavirus 2019 (COVID-19) pandemic. Earlier during the pandemic, there were limited genetic viral variations. As millions of people became infected, multiple single amino acid substitutions emerged. Many of these substitutions have no consequences. However, some of the new variants show a greater infection rate, more severe disease, and reduced sensitivity to current prophylaxes and treatments. Of particular importance in SARS-CoV-2 transmission are mutations that occur in the Spike (S) protein, the protein on the viral outer envelope that binds to the human angiotensin-converting enzyme receptor (hACE2). Here, we conducted a comprehensive analysis of 441,168 individual virus sequences isolated from humans throughout the world. From the individual sequences, we identified 3540 unique amino acid substitutions in the S protein. Analysis of these different variants in the S protein pinpointed important functional and structural sites in the protein. This information may guide the development of effective vaccines and therapeutics to help arrest the spread of the COVID-19 pandemic.


Biochemistry ◽  
1998 ◽  
Vol 37 (33) ◽  
pp. 11629-11636 ◽  
Author(s):  
M. Carmen Thomas ◽  
Stuart P. Ballantine ◽  
Susanne S. Bethell ◽  
Satty Bains ◽  
Paul Kellam ◽  
...  

2021 ◽  
Author(s):  
Vishal Shinde ◽  
Nara Sobreira ◽  
Elizabeth S Wohler ◽  
George Maiti ◽  
Nan Hu ◽  
...  

Abstract Keratoconus is a common corneal defect with a complex genetic basis. By whole exome sequencing of affected members from 11 multiplex families of European ancestry, we identified 23 rare, heterozygous, potentially pathogenic variants in 8 genes. These include nonsynonymous single amino acid substitutions in HSPG2, EML6 and CENPF in two families each, and in NBEAL2, LRP1B, PIK3CG and MRGPRD in three families each; ITGAX had nonsynonymous single amino acid substitutions in two families and an indel with a base substitution producing a nonsense allele in the third family. Only HSPG2, EML6 and CENPF have been associated with ocular phenotypes previously. With the exception of MRGPRD and ITGAX, we detected the transcript and encoded protein of the remaining genes in the cornea and corneal cell cultures. Cultured stromal cells showed cytoplasmic punctate staining of NBEAL2, staining of the fibrillar cytoskeletal network by EML6, while CENPF localized to the basal body of primary cilia. We inhibited the expression of HSPG2, EML6, NBEAL2 and CENPF in stromal cell cultures and assayed for the expression of COL1A1 as a readout of corneal matrix production. An upregulation in COL1A1 after siRNA inhibition indicated their functional link to stromal cell biology. For ITGAX, encoding a leukocyte integrin, we assayed its level in the sera of 3 affected families compared with 10 unrelated controls to detect an increase in all affecteds. Our study identified genes that regulate the cytoskeleton, protein trafficking and secretion, barrier tissue function and response to injury and inflammation, as being relevant to keratoconus.


Sign in / Sign up

Export Citation Format

Share Document