Mapping of Helper Epitopes to HPA-1a in Neonatal Alloimmune Thrombocytopenia with T-Cell Clones

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3040-3040 ◽  
Author(s):  
Rachel Rayment ◽  
Nick Willcox ◽  
David Roberts ◽  
Wendy J Pickford ◽  
Rosa Faner-Canet ◽  
...  

Abstract Background: The major cause of severe neonatal allo-immune thrombocytopenia (NAITP) in Caucasians is fetal-maternal incompatibility for the human platelet antigen-1 (HPA-1), which is determined by the dimorphism Leu (HPA-1a) or Pro (HPA-1b) at amino acid position 33 of β3 integrin glycoprotein IIIa. Maternal responsiveness to HPA-1a shows a very strong association with DR52a (DRB3*0101) and 33Leu is thought to create a binding motif for this MHC class II molecule, thereby conferring helper T-cell responsiveness. At present, there are no preventative measures, reliable predictors of severity or screening procedures to identify women at risk of HPA-1a alloimmunization. Since the T-cells that help HPA-1a antibody production represent an attractive target for both screening assays and specific therapy, the aim was to define the epitope(s) they recognize in detail. Methods: From the peripheral blood of three HLA DR52a positive mothers with anti-HPA-1a antibodies and affected babies, we generated a total of six stable long-term CD4+ T-cell clones that respond specifically to the HPA-1a+ glycoprotein sequence. They have enabled us to characterize, for the first time, the fine specificity and restriction of the HPA-1a helper epitope. The core epitope was mapped by testing the responsiveness (proliferation and cytokine production) of the clones to panels of synthetic peptides spanning the HPA-1a 33Leu polymorphism, including sequences of different lengths, with selected single amino acid substitutions, and with the polymorphic residue located at different positions. Restriction was defined using antigen-presenting cells sharing HLA-DR and by flow cytometric analysis of staining with peptide-DR52a tetramers. The results, together with structural analyses, were used to model the interactions between MHC class II, HPA-1a peptide and specific helper T-cell receptor. Results: The 6 Th clones showed clear specificity for their HPA-1a epitope, even when naturally processed from whole platelets; they recognized only GPIIIa peptides (or platelets) with 33Leu and not 33Pro. The results of screening panels of linear peptides with 33Leu at different positions are consistent with a “core” epitope of 25WCSDEALPL33. The clones also specifically bound tetramerized DR52a complexed with a peptide spanning these residues. Together, the results show that 25Trp, 28Asp and 33Leu of HPA-1a are each important for anchoring respectively in pockets 1, 4 and 9 in DR52a, whereas 33Pro of HPA-1b sterically hinders docking in pocket 9. Extra residues 34Gly-35Ser did not affect T-cell recognition, but certain clones preferred N-terminal 24Ala or 23Cys-24Ala extensions. It has been previously reported that T-cells from alloimunized women with anti-HPA-1a recognize a 33Leu peptide cyclized by disulfide bridges (circular-Leu; 26C*SDEALPLGSPRC*38) but not to the circularized 33Pro equivalent. Our T-cell clones also responded moderately to this circular-33Leu peptide, demonstrating that 25Trp anchor at pocket 1 may not be essential when anchoring in pocket 4 and 9 are strong. Conclusions: Characterization of the HPA-1a specific Th clones reveals that they all recognize the core epitope GPIIIa 25Trp-33Leu, with the polymorphic 33Leu selectively anchoring it in the strongly predisposing HLA-DR52a. Although predicted to lie outside the peptide-binding groove of DR52a, extra N-terminal sequences promote optimal recognition by some T-cells, but are no longer required if the sequence is cyclized. Despite differences in TCR gene usage, the clones show remarkable consistency in fine specificity, supporting our previous evidence from polyclonal T-cell responses from women with anti-HPA-1a antibodies. The identification of a single “core” epitope, and the uniformity of restriction by DR52a in alloimmunized women, opens the way to both diagnostic and therapeutic exploitation in NAITP due to anti-HPA-1a.

1989 ◽  
Vol 170 (3) ◽  
pp. 1027-1032 ◽  
Author(s):  
J Gorski ◽  
C Irle ◽  
E M Mickelson ◽  
M J Sheehy ◽  
A Termijtelen ◽  
...  

A third allele at the DRB3 locus, DRw52c, represents an intermediate sequence between DRw52a and DRw52b and may have arisen by a gene conversion-like event. The recognition of cells bearing these molecules by a number of alloreactive and antigen-specific DR-restricted T cell clones was analyzed. On the basis of a theoretical model of HLA class II structure, distinct amino acid clusters have been identified as motifs controlling TCR recognition. These are located both in the cleft and in the alpha-helical edge of the MHC class II recognition platform. Motifs shared between two alleles may restrict public T cell clones.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1330-1330
Author(s):  
Sanja Stevanovic ◽  
Bart Nijmeijer ◽  
Marianke LJ Van Schie ◽  
Roelof Willemze ◽  
Marieke Griffioen ◽  
...  

Abstract Abstract 1330 Poster Board I-352 Immunodeficient mice inoculated with human leukemia can be used as a model to investigate Graft-versus-Leukemia (GvL) effects of donor lymphocyte infusions (DLIs). In addition to GvL reactivity, treatment with DLI induces xenogeneic Graft-versus-Host Disease (GvHD) in mice, characterized by pancytopenia and weight loss. In patients treated with DLI for relapsed or residual leukemia after allogeneic stem cell transplantation, immune responses against non-leukemic cells may also cause GvHD. It has been suggested that GvL reactivity and GvHD, which co-develop in vivo, can be separated and that distinct T cells exist with the specific capacity to mediate GvL reactivity or GvHD. Since adoptive T cell transfer models that allow analysis of separation of GvL and GvHD are rare, we aimed to establish whether GvL reactivity and xenogeneic GvHD could be separated using our model of human leukemia-engrafted NOD/scid mouse after treatment with human donor T cells. In this study, non-conditioned NOD/scid mice engrafted with primary human acute lymphoblastic leukemic cells were treated with CD3+ DLI. Established tumors were effectively eliminated by emerging human T cells, but also induced xenogeneic GvHD. Flowcytometric analysis demonstrated that the majority of emerging CD8+ and CD4+ T cells were activated (HLA-DR+) and expressed an effector memory phenotype (CD45RA-CD45RO+CCR7-). To investigate whether GvL reactivity and xenogeneic GvHD were mediated by the same T cells showing reactivity against both human leukemic and murine cells, or displaying distinct reactivity against human leukemic and murine cells, we clonally isolated and characterized the T cells during the GvL response and xenogeneic GvHD. T cell clones were analyzed for reactivity against primary human leukemic cells and primary NOD/scid hematopoietic (BM and spleen cells) and non-hematopoietic (skin fibroblasts) cells in IFN-g ELISA. Isolated CD8+ and CD4+ T cell clones were shown to recognize either human leukemic or murine cells, indicating that GvL response and xenogeneic GvHD were mediated by different human T cells. Flowcytometric analysis demonstrated that all BM and spleen cells expressed MHC class I, whereas only 1-3 % of the cells were MHC class II +. Primary skin fibroblasts displayed low MHC class I and completely lacked MHC class II expression. Xeno-reactive CD8+ T cell clones were shown to recognize all MHC class I + target cells and xeno-reactive CD4+ T cells clones displayed reactivity only against MHC class II + target cells. To determine the MHC restriction of xeno-reactive T cell clones, NOD/scid bone marrow (BM) derived dendritic cells (DC) expressing high levels of murine MHC class I and class II were tested for T cell recognition in the presence or absence of murine MHC class I and class II monoclonal antibodies in IFN-g ELISA. Xeno-reactive CD8+ T cell clones were shown to be MHC class I (H-2Kd or H-2Db) restricted, whereas xeno-reactive CD4+ T cell clones were MHC class II (I-Ag7) restricted, indicating that xeno-reactivity reflects genuine human T cell response directed against allo-antigens present on murine cells. Despite production of high levels of IFN-gamma, xeno-reactive CD8+ and CD4+ T cell clones failed to exert cytolytic activity against murine DC, as determined in a 51Cr-release cytotoxicity assay. Absence of cytolysis by CD8+ T cell clones, which are generally considered as potent effector cells, may be explained by low avidity interaction between human T cells and murine DC, since flowcytometric analysis revealed sub-optimal activation of T cells as measured by CD137 expression and T cell receptor downregulation upon co-culture with murine DC, and therefore these results indicate that xenogeneic GvHD in this model is likely to be mediated by cytokines. In conclusion, in leukemia-engrafted NOD/scid mice treated with CD3+ DLI, we show that GvL reactivity and xenogeneic GvHD are mediated by separate human T cells with distinct specificities. All xeno-reactive T cell clones showed genuine recognition of MHC class I or class II associated allo-antigens on murine cells similar as GvHD-inducing human T cells. These data suggest that our NOD/scid mouse model of human acute leukemia may be valuable for studying the effectiveness and specificity of selectively enriched or depleted T cells for adoptive immunotherapy. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3329-3329 ◽  
Author(s):  
Devi Gunasekera ◽  
Ruth A. Ettinger ◽  
Richard J. Hughes ◽  
Melinda S. Epstein ◽  
John C. Barrett ◽  
...  

Abstract Abstract 3329 Development of inhibitory antibodies that block factor VIII (FVIII) pro-coagulant function requires T-cell help. In order for T-cell stimulation to occur, one or more FVIII-derived peptides must first bind effectively to MHC Class II (e.g. HLA-DRB1) receptors on the surface of antigen presenting cells. If this Class II-peptide complex is recognized by a receptor on a helper T cell, then high-avidity Class II-peptide-T-cell receptor interactions can (but may not) cause proliferation and cytokine secretion leading to anti-FVIII antibody production. Thus the initial binding of a FVIII peptide to a Class II receptor can initiate an HLA-restricted cascade of events that leads to inhibitor formation in hemophilia A (HA) patients. Non-hemophilic, non-synonymous single nucleotide polymorphisms (ns-SNPs) in the human F8 gene were identified previously (Viel et al., Blood 109:3713–24, 2007) that result in the FVIII sequence variations R484H, R776G, D1241E and M2238V. Recombinant FVIII proteins with R484, R776, either D1241 or E1241, and M2238 are currently used therapeutically. The potential immunogenicity of FVIII peptides corresponding to these sequence variations is now being analyzed directly using in vitro assays employing cellular fractions of HA blood, recombinant proteins and synthetic peptides. These studies are motivated by a concern that some HA patients who express even very low levels of their endogenous, hemophilic FVIII, which should tend to promote immune tolerance to exogenous FVIII, could in principle develop inhibitors provoked solely by amino acid sequence mismatch(es) at sites in FVIII encoded by ns-SNPs. This could happen in patients with specific HLA types if their corresponding Class II receptors presented a FVIII peptide that then stimulated a helper T-cell response. Synthetic FVIII peptides containing both alternate sequences encoded by these 4 ns-SNPs were tested for binding to the monomeric extracellular domains of 10 common DRB1 alleles using competitive binding assays. The results are as follows: (1) 484: R484 peptides had strong affinity (IC50 < 1 mM) for DRB1*15:01 and DRB1*03:01; H484 peptides had moderate affinity (IC50 = 1–10 mM) for DRB1*03:01 and DRB1*15:01; both R484 and H484 peptides bound with moderate affinity to DRB1*11:04 and DRB1*04:04; (2) 776: R776 and G776 peptides had moderate affinity for DRB1*09:01; (3) 1241: E1241 peptides had strong affinity for DRB1*09:01 and moderate affinity for DRB1*01:01, D1241 peptides bound weakly (IC50 = 30–50 mM) to DRB1*09:01 and DRB1*01:01; (4) 2238: Both M2238 and V2238 peptides had strong affinity for DRB1*03:01 and moderate affinity binding to DRB1*01:01, DRB1*11:04, DRB1*11:01 and DRB1*04:04. Results of the binding assays compared reasonably well with computer-predicted affinities of the peptides for some of the better-characterized HLA-DRB1 alleles. T-cell stimulation and MHC Class II tetramer staining experiments (which can unambiguously identify antigen-specific T cells) were next carried out using CD4 T cells from (1) 4 HA subjects (1 with a current inhibitor, 1 with a previous inhibitor and 2 without inhibitors) whose F8 gene encoded the V2238 variant and therefore had been treated with a therapeutic FVIII produce that was mismatched at this site with respect to the endogenous sequence encoded by their hemophilic F8 gene; and (2) from 4 HA subjects with the M2238 variant. All 8 patients expressed either the DRB1*03:01 or DRB1*11:01 alleles (one expressed both). No peptides corresponding to regions encoded by either version of this ns-SNP were recognized as T-cell epitopes by CD4 cells from these subjects, despite moderate to strong binding affinity of the peptides for DR0301 and DR1101 proteins. This suggests that the immunogenicity of these FVIII regions in HA patients who express these F8 and HLA genotype combinations may be less than might have been anticipated based on the binding data. HA patients with HLA-DRB1 receptors that do not effectively bind peptides encoded by ns-SNPs in the F8 gene would be expected to have a low risk of developing helper T-cell responses to FVIII sequences encoded by these ns-SNPs. Thus, the negative as well as positive peptide-binding assay results have significant clinical and pharmaceutical relevance. Results of assays such as those described above could be useful in developing improved methods to assess the relative risk of individual HA patients developing an inhibitor. Disclosures: Pratt: Bayer, CSL Behring, Pfizer: Research Funding; Puget Sound Blood Center: Patents & Royalties.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3665-3665
Author(s):  
Caroline E. Rutten ◽  
Simone A.P. van Luxemburg-Heijs ◽  
Inge Jedema ◽  
Mirjam Heemskerk ◽  
Roelof Willemze ◽  
...  

Abstract Mismatching for HLA-DPB1 in unrelated donor hematopoietic stem cell transplantation (URD-SCT) has been associated with a significant decreased risk of disease relapse, indicating that HLA-DP might be a target for a graft versus leukemia (GVL) effect in HLA-class II expressing hematological malignancies. To determine whether a specific GVL effect could be caused by allo-HLA-DP specific T cells, we analyzed the immune response in a patient with a refractory immunocytoma responding to donor lymphocyte infusion (DLI) after HLA-DP mismatched URD-SCT. Patient and donor were fully matched for HLA-A, -B, -C, -DR and -DQ, but differed for both HLA-DP alleles (donor HLA-DPB1*0402/0501; patient HLA-DPB*020102/0301). The patient received a T cell depleted URD-SCT after a non-myeloablative conditioning regimen, resulting in mixed chimerism (75% donor) without GVHD. Because of a hematological relapse, a single DLI was given 6 months after SCT, resulting in a profound anti-leukemic effect with only grade I GVHD, treated with topical corticosteroids. 6 weeks after DLI, malignant cells in peripheral blood (PB) had dropped from 72% to 47%. 7 weeks later, only 3% malignant cells were present, and after 4 months, complete remission and conversion to full donor chimerism in the absence of GVHD was observed. To determine whether allo-HLA-DP specific T cells were involved in the immune response, leukemia-reactive donor T cell clones were isolated from PB or bone marrow at different time points during the response to DLI. Patient derived T cells were overnight stimulated with irradiated leukemic cells harvested before transplantation, and clonal IFNγ producing T cells were sorted and expanded. 21 CD4+ T cell clones, 19 CD8+ T cell clones and 6 NK cell clones were tested for recognition of patient or donor derived cells as measured by IFNγ production and cytotoxic activity. The CD8+ or NK clones did not recognize patient leukemic cells. However, all 21 CD4+ clones produced INFγ in response to patient leukemic cells but not to donor cells. To determine whether these CD4+ T cell clones were capable of killing the leukemic cells, a CFSE based cytotoxicity assay was performed. 8 clones showed 30–90% lysis of the leukemic cell population. To further analyze the specificity of these CD4+ clones, blocking and panel studies were performed. Blocking with the HLA-DP specific mAb B7.21 abrogated IFNγ production by all clones, confirming HLA-DP restricted recognition. A panel study using 12 unrelated EBV-LCL expressing different HLA-DP alleles identified 18 clones specific for HLA-DPB1*0301, and 3 clones specific for HLA-DPB1*0201. To analyze the polyclonality of the immune response, the distribution of TCR Vβ chains was characterized by RT-PCR and sequence reactions. 7 different Vβs were found within the HLA-DPB1*0301 specific clones and 3 different Vβs within the HLA-DPB1*0201 specific clones. T cells using the same Vβ could be isolated at different time points during the clinical response, demonstrating the significance of this anti-HLA-DP response. In conclusion, we observed in a patient with an HLA-class II positive B cell malignancy a profound GVL effect without GVHD, caused by a polyclonal immune response comprising both T helper and cytotoxic CD4+ HLA-DP specific T cell clones directed against both HLA-DP alleles. These data indicate that in HLA-class II expressing hematological malignancies HLA-DP mismatched SCT may be preferable over a fully matched SCT making use of HLA-DP as a specific target for immunotherapy.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3062-3062 ◽  
Author(s):  
Sanja Stevanovic ◽  
Cornelis A.M. van Bergen ◽  
Simone A.P. van Luxemburg-Heijs ◽  
Jessica C. Harskamp ◽  
C.J.M. Halkes ◽  
...  

Abstract Abstract 3062 T cell depletion of the graft in allogeneic hematopoietic stem cell transplantation (alloSCT) prevents the occurrence of severe acute Graft-versus-Host Disease (GvHD), but also impairs post-transplant anti-tumor and anti-viral immunity. Early intervention with donor lymphocyte infusion (DLI) after alloSCT may prevent relapse of the malignancy and improve immune reconstitution, but can be associated with reintroduction of GvHD. Since under non-inflammatory conditions HLA class II molecules are predominantly expressed on hematopoietic cells, DLI consisting of only CD4+ T cells can selectively target residual patient (pt) HLA class II + hematopoietic cells without inducing severe GvHD. However, recently in two pts with acute myeloid leukemia we observed severe GvHD after prophylactic CD4+ DLI following a 10/10 HLA allele matched, but HLA-DPB1 mismatched unrelated donor alloSCT. Both pts received a T cell depleted SCT after a non-myeloablative conditioning regimen, resulting in mixed chimerism (>97 % donor) at 3 months after alloSCT, and no GvHD. A single infusion of 0.5*106 purified CD4+ T cells/kg was administered 3.5 months after alloSCT, resulting in a decreasing pt chimerism coinciding with grade 1 skin GvHD, followed by grade 3–4 colonic GvHD 3–8 weeks later. Both pts were successfully treated with immune suppression and are in complete remission (CR) more than one year later. During the clinical immune responses high percentages of activated CD4+ (30–74 %) and CD8+ T cells (9–56 %) were demonstrated in peripheral blood (PB). Using cell sorting, we clonally isolated 777 and 289 CD4+, and 204 and 34 CD8+ T cell clones from pts 1 and 2, respectively, and tested these clones for recognition of multiple pt and donor derived target cells using IFNg ELISA. None of the CD8+ clones were alloreactive. In contrast, 3 and 8 % of the CD4+ T cell clones from pts 1 and 2, respectively, recognized various pt hematopoietic cells, but not donor cells, indicating alloreactivity. Retroviral transduction of donor EBV-LCL with pt HLA-DPB1 alleles identified specific recognition of the mismatched alleles for 2 and 7 % of all CD4+ T cell clones isolated, respectively. The remaining alloreactive CD4+ T cell clones showed a hematopoiesis-restricted minor histocompatibility antigen recognition pattern, since they failed to recognize pt skin fibroblasts pretreated with IFNg to upregulate HLA class II expression. In contrast, the majority of HLA-DPB1 specific CD4+ T cell clones recognized pt IFNg treated skin fibroblasts, indicating a direct role as mediators of GvHD after HLA-DPB1 mismatched CD4+ DLI. Since both pts were in CR, but mixed chimeric at the time of CD4+ DLI, we hypothesized that residual pt HLA-DP+ hematopoietic cells after alloSCT may have served as antigen presenting cells (APC) to induce the HLA-DPB1 specific CD4+ T cell response. Lineage specific chimerism analysis of PB samples prior to CD4+ DLI showed complete donor chimerism in the B cell and myeloid compartments, whereas predominantly pt chimerism (89–100% pt) was demonstrated in the T cell compartment. Flowcytometric analysis showed that 5–25 % of the pt CD4+ and CD8+ T cells were activated and expressed HLA-DP. CMV tetramer analysis demonstrated that 31 % of CD8+ T cells from pt 1 and 10 % from pt 2 were CMV specific, which had expanded as a consequence of CMV reactivation. We hypothesize that the HLA-DPB1 specific CD4+ T cell response has been induced by upregulated HLA-DP expression on activated pt T cells due to preexisting CMV infection, and/or by residual pt derived skin-resident APC, resulting in limited skin GvHD. We demonstrated CMV infection in a colon biopsy at the time of colonic GvHD, suggesting that local production of cytokines by pt derived CMV specific T cells may have upregulated HLA class II expression on non-hematopoietic cells and enhanced the HLA-DPB1 specific CD4+ T cell response, resulting in exacerbation of GvHD. In conclusion, we show in two pts that GvHD after prophylactic CD4+ DLI administered early after HLA-DPB1 mismatched T cell depleted alloSCT was caused by alloreactive CD4+ T cells directed against pt mismatched HLA-DPB1 alleles. Our results suggest that the presence of active viral infections inducing immune responses by residual pt T cells at the time of prophylactic HLA class II mismatched CD4+ DLI increases the likelihood of development of GvHD by influencing HLA class II expression on pt hematopoietic and non-hematopoietic cells. Disclosures: No relevant conflicts of interest to declare.


1985 ◽  
Vol 162 (6) ◽  
pp. 2107-2124 ◽  
Author(s):  
S S Zamvil ◽  
P A Nelson ◽  
D J Mitchell ◽  
R L Knobler ◽  
R B Fritz ◽  
...  

Class II-restricted T cell clones specific for myelin basic protein (MBP) have been generated from PL/J and (PL/J X SJL/J)F1 [((PLSJ)F1] mice following sensitization to rat MBP. Of 17 T cell clones generated from (PLSJ)F1 mice, 5 are I-Au(A alpha uA beta u) restricted, one is restricted to I-As(A alpha sA beta s), 10 are restricted to hybrid I-A(u X s)F1 (A alpha sA beta u) determinants, and one clone is restricted to hybrid I-E(u X s) (E alpha uE beta s) molecules. Thus, of 16 I-A-restricted T cell clones generated from (PLSJ)F1 mice, only one is I-As-restricted, reflecting a lack of priming to MBP in association with I-As. T cell clones restricted to I-Au and to I-E (E alpha u E beta s) molecules recognize mouse (self) MBP. Furthermore, only the five T cell clones restricted to I-Au molecules recognize a determinant in common with mouse (self) MBP within the encephalitogenic N-terminal peptide. Three such I-Au restricted T cell clones, derived independently, cause paralysis in 100% of (PL/J X SJL/J)F1 mice tested. Acute, chronic unremitting, and chronic relapsing paralysis are all induced following injection of these clones. Administration of greater numbers of cloned T cells causes acute and fatal experimental allergic encephalomyelitis, while administration of lower numbers of cloned T cells is associated with chronic unremitting and relapsing paralysis. Paralysis induced with T cell clones shares many clinical, immunologic, and histologic aspects with human demyelinating diseases such as multiple sclerosis. Histopathology reveals perivascular lymphocytic infiltration, demyelination, and remyelination. These studies demonstrate the utility of T cell clones for analyzing the association between class II major histocompatibility complex molecules and disease susceptibility.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1245-1245 ◽  
Author(s):  
Sanja Stevanovic ◽  
Marieke Griffioen ◽  
Marianke LJ Van Schie ◽  
Roelof Willemze ◽  
J.H. Frederik Falkenburg ◽  
...  

Abstract Donor lymphocyte infusion (DLI) following allogeneic stem cell transplantation (alloSCT) can be a curative treatment for patients with hematological malignancies. The therapeutic benefit of DLI is attributed to a graft versus leukemia (GvL) reactivity mediated by donor T cells recognizing allo-antigens on malignant cells of the patient. Donor T cells, however, often recognize allo-antigens which are broadly expressed in non-malignant tissues of the patient, thereby causing severe graft versus host disease (GvHD). In contrast to HLA class I molecules which are ubiquitously expressed on all nucleated cells, HLA class II molecules are predominantly expressed on cells of the hematopoietic system, and therefore CD4+ T cells may selectively mediate GvL reactivity without GvHD. Several clinical studies have indeed demonstrated that CD8-depleted DLI after alloSCT can lead to clinical remissions with reduced incidence of GvHD. Since in most of these studies DLI was contaminated with CD8+ T cells, it remained unclear whether CD4+ T cells alone are capable of mediating GvL reactivity. To assess the capacity of purified CD4+ T cells to solely exert GvL reactivity we compared the anti-tumor effects of CD4+ DLI and CD3+ DLI in a NOD/SCID mouse model of human acute leukemia. Iv injection of primary human leukemic cells from three different patients reproducibly resulted in engraftment of leukemia in mice, as monitored by peripheral blood analysis. Three weeks after inoculation of leukemic cells, established tumors were treated by infusion of human donor T cells. In mice treated with CD4+ DLI (5*106 CD4+ T cells), the emergence of activated (HLA-DR+) T cells coincided with rapid disappearance of leukemic cells, showing similar kinetics as for CD3+ DLI (consisting of 5*106 CD4+ T cells and 3*106 CD8+ T cells). To analyze the specific reactivity of T cells responsible for the anti-leukemic effect, we clonally isolated human CD45+ T cells during the anti-tumor response following CD4+ DLI in which the donor was matched for HLA class I and mismatched for the HLA-DR (DRB1*1301), -DQ (DQB1*0603) and –DP (DPB1*0301/0401) alleles of the patient. A total number of 134 CD4+ T cell clones were isolated expressing various different TCR Vbeta chains. Most of the isolated CD4+ T cell clones (84%) were shown to be alloreactive, as determined by differential recognition of patient and donor EBV-transformed B cells (EBV-LCL) in IFN-g ELISA. A substantial number of these CD4+ T cell clones also exerted cytolytic activity (17%), as demonstrated by specific reactivity with patient EBV-LCL but not donor EBV-LCL in a 10 hr 51Cr-release cytotoxicity assay. Further characterization of the specificity of 20 CD4+ T cell clones using blocking studies with HLA class II specific monoclonal antibodies illustrated HLA class II restricted recognition directed against HLA-DR (n=3), HLA-DQ (n=16) and HLA-DP (n=1) molecules of the patient. Of the 127 alloreactive CD4+ T cell clones, only 36 clones directly recognized primary leukemic cells of the patient. Flowcytometric analysis demonstrated that HLA class II, and in particular HLA-DQ, molecules were expressed at relatively low levels on patient leukemic cells as compared to patient EBV-LCL. Upregulation of HLA class II and costimulatory molecules on patient leukemic cells upon differentiation in vitro into leukemic antigen presenting cells (APC) resulted in recognition of patient leukemic cells by all alloreactive CD4+ T cell clones. Therefore, we hypothesize that the alloreactive CD4+ T cells have been induced in vivo by patient leukemic cells, which, upon interaction with T cells or other environmental factors, acquired an APC phenotype. In conclusion, our data show that alloreactive CD4+ T cells can be potent effector cells and sole mediators of strong antitumor responses in a NOD/SCID mouse model for human acute leukemia.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3247-3247
Author(s):  
Anita N. Stumpf ◽  
Edith D. van der Meijden ◽  
Cornelis A.M. van Bergen ◽  
Roelof Willemze ◽  
J.H. Frederik Falkenburg ◽  
...  

Abstract Patients with relapsed hematological malignancies after HLA-matched hematopoietic stem cell transplantation (HSCT) can be effectively treated with donor lymphocyte infusion (DLI). Donor-derived T cells mediate beneficial graft-versus-leukemia (GvL) effect but may also induce detrimental graft-versus-host disease (GvHD). These T cell responses are directed against polymorphic peptides which differ between patient and donor due to single nucleotide polymorphisms (SNPs). These so called minor histocompatibility antigens (mHag) are presented by HLA class I or II, thereby activating CD8+ and CD4+ T cells, respectively. Although a broad range of different HLA class I restricted mHags have been identified, we only recently characterized the first autosomal HLA class II restricted mHag phosphatidylinositol 4-kinase type 2 beta (LB-PI4K2B-1S; PNAS, 2008, 105 (10), p.3837). As HLA class II is predominantly expressed on hematopoietic cells, CD4+ T cells may selectively confer GvL effect without GvHD. Here, we present the molecular identification of four new autosomal HLA class II restricted mHags recognized by CD4+ T cells induced in a patient with relapsed chronic myeloid leukemia (CML) after HLAmatched HSCT who experienced long-term complete remission after DLI with only mild GvHD of the skin. By sorting activated CD4+ T cells from bone marrow mononuclear cells obtained 5 weeks after DLI, 17 highly reactive mHag specific CD4+ T cell clones were isolated. Nine of these T cell clones recognized the previously described HLADQ restricted mHag LB-PI4K2B-1S. The eight remaining T cell clones were shown to exhibit five different new specificities. To determine the recognized T cell epitopes, we used our recently described recombinant bacteria cDNA library. This method proved to be extremely efficient, since four out of five different specificities could be identified as new HLA-class II restricted autosomal mHags. The newly identified mHags were restricted by different HLA-DR molecules of the patient. Two mHags were restricted by HLA-DRB1 and were found to be encoded by the methylene-tetrahydrofolate dehydrogenase 1 (LBMTHFD1- 1Q; DRB1*0301) and lymphocyte antigen 75 (LB-LY75-1K; DRB1*1301) genes. An HLA-DRB3*0101 restricted mHag was identified as LB-PTK2B-1T, which is encoded by the protein tyrosine kinase 2 beta gene. The fourth mHag LB-MR1-1R was restricted by HLA-DRB3*0202 and encoded by the major histocompatibility complex, class I related gene. All newly identified HLA class II restricted mHags exhibit high population frequencies of 25% (LB-MR1-1R), 33% (LB-LY75-1K), 68% (LB-MTHFD1- 1Q), and 70% (LB-PTK2B-1T) and the genes encoding these mHags show selective (LY- 75) or predominant (MR1, MTHFD1, PTK2B) expression in cells of hematopoietic origin as determined by public microarray databases. All T cell clones directed against the newly identified mHags recognized high HLA class II-expressing B-cells, mature dendritic cells (DC) and in vitro cultured leukemic cells with antigen-presenting phenotype. The clone recognizing LB-MTHFD1-1Q also showed direct recognition of CD34+ CML precursor cells from the patient. In conclusion, we molecularly characterized the specificity of the CD4+ T cell response in a patient with CML after HLA-matched HSCT who went into long-term complete remission after DLI. By screening a recombinant bacteria cDNA library, four new different CD4+ T cell specificities were characterized. Our screening method and results open the possibility to identify the role of CD4+ T cells in human GvL and GvHD, and to explore the use of hematopoiesis- and HLA class II-restricted mHag specific T cells in the treatment of hematological malignancies.


Sign in / Sign up

Export Citation Format

Share Document