Apolipoprotein E Receptor 2′ Mediates Pathogenic Effects of Dimeric β2glycoprotein I and of Anti- β2glycoprotein I Antibodies in Vivo

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 408-408
Author(s):  
Zurina Romay-Penabad ◽  
Rolf T Urbanus ◽  
Elizabeth Pappalardo ◽  
Yong Hwang ◽  
Ronald H.W.M. Derksen ◽  
...  

Abstract Antiphospholipid antibodies (aPL) recognize β2Glycoprotein (β2GPI)-bound to receptor (s) in target cells and trigger a pro-coagulant/pro-inflammatory phenotype [i e.:expression of tissue factor (TF), vascular cell adhesion molecule-1 (VCAM-1)] that lead to thrombosis. The interaction of β2GPI with target cells may involve more than one protein. Investigators have shown that dimeric β2GPI binds to apolipoprotein E receptor 2′ (apoER2′) in platelets, in the absence of anti-β2GPI antibodies, increases their activation and induces enhanced thrombosis and TF activity in mice. However, the role of apoER2′ in vivo in Antiphospholipid Syndrome (APS) is not completely understood. Here, we examined the in vivo effects of dimeric β2GPI and of anti-β2GPI antibodies (IgG-APS) in apoER2′ deficient (−/−) mice and in normal mice pre-treated with recombinant soluble domain 1 of apoER2′ (BD1). In vivo, dynamics of thrombus formation (thrombus sizes), TF activities in carotid artery homogenates and in peritoneal macrophages and ex vivo expression of VCAM-1 in aortas and of TF activity in peritoneal macrophages were examined in the various types of mice after two i.p. injections with 40 μg of recombinant dimeric β2GPI – or with the corresponding monomer control – or with 500 μg IgG-APS (isolated from a patient with APS by protein G Sepharose) or with control IgG (IgG-NHS). Mice injected with IgG-APS had significant titers of anticardiolipin (aCL) and anti-β2GPI antibodies in their sera. In vivo, IgG-APS increased significantly the size of the induced thrombi as well as the TF activities in carotid arteries and in peritoneal macrophages in C57BL/6J (wild type) mice when compared to same type of mice treated with IgG-NHS. Similarly, ex vivo expression of VCAM-1 in mouse aortas and of TF in peritoneal macrophages, detected by two photon excitation laser scanning microscopy were increased in normal mice treated with IgG-APS when compared to control mice. The pre-treatment with 40 μg of BD1 i.p., significantly reduced those effects. Importantly, dimeric β2GPI (in the absence of anti-β2GPI antibodies) or IgGAPS did not increase significantly thrombus size, TF activities in homogenates of carotid arteries or in peritoneal macrophages, or ex vivo expression of VCAM-1 and TF in mice lacking apoER2′. Conclusions: Altogether these data show that dimers of β2GPI mimic pathogenic effects of anti-β2GPI antibodies in mice. Most importantly, apoER2′ is a mediator of those effects in vivo. These findings may provide insights not only for a better understanding of the pathophysiology of APS but may be important in the development of new targeted therapies, by means of interfering with the binding of β2GPI-aPL complexes with their receptor(s) in target cells in vivo.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 421-421
Author(s):  
Zurina Romay-Penabad ◽  
Guadalupe Montiel-Manzano ◽  
Elizabeth Pappalardo ◽  
Katherine A. Hajjar ◽  
Tuya Shilagard ◽  
...  

Abstract Background: Thrombosis is an important cause of morbidity and mortality in Antiphospholipid Syndrome (APS) and in SLE patients with antiphospholipid antibodies (aPL). APL recognize β2 glycoprotein I (β2GPI)-bound to receptor (s) in endothelial cells (EC) and other target cells (i.e. platelets, monocytes) and trigger an intracellular signalling and a pro-coagulant and pro-inflammatory phenotype [i e.expression of tissue factor (TF), vascular cell adhesion molecule-1 (VCAM-1)] that lead to thrombosis. There is in vitro evidence that annexin A2 (A2), a receptor for tissue plasminogen activator (tPA) and plasminogen – and possibly other proteins such as toll-like receptors or the receptor for apolipoprotein E2′ - may be binding β2GPI on the membrane of target cells. Here, we examined the involvement of A2 in aPL-mediated pathogenic effects in vivo. We studied the effects of aPL Abs on thrombus formation, VCAM-1 expression in aortas of mice, and TF function in carotid artery homogenates in annexin A2 deficient (−/−) mice. Methods: A2 (−/−) mice and the corresponding wild-type (WT) mice, in groups of 10, were injected i.p. twice (0 and 48 hours later) with IgG from a patient with APS (IgG-APS) or with control IgG (IgG-NHS). Seventy-two hours after the first injection, several procedures were done in each mice: dynamics of thrombus formation (thrombus size), TF function in homogenates of carotid arteries, and c) VCAM-1 expression in the aortas using quantum dot nano crystals and two-photon excitation laser scanning microscopy. In addition, we examined the effect of an anti-A2 antibody on aPL-induced expression of intercellular cell-adhesion molecule (ICAM-1), E-selectin and TF acvitity on cultured endothelial cells (EC). Results: The titers of aCL and anti-β2GPI Abs in the sera of the mice at the time of surgery were medium-high positive in A2 (−/−) mice and in wild type mice injected with IgG-APS. Thrombus sizes were significantly larger in WT mice injected with IgG-APS when compared to similar type of mice treated with IgG-NHS (p=0.003). The size of thrombus in A2 (−/−) mice injected with IgG-APS was significantly smaller than mean thrombus size in WT mice injected with IgG-APS (p:0.0005). However, thrombus size in A2 (−/−) mice was larger in mice injected with IgG-APS when compared to same type of mice treated with control IgG-NHS (p=0.003), indicating a partial but significant abrogation of the thrombogenic effect. TF activity was significantly larger in WT mice treated with IgG-APS when compared to mice injected with IgG-NHS. Importantly, TF activity in carotid arteries homogenates of annexin A2 (−/−) mice injected with IgG-APS was significantly decreased (by 52%) when compared to wild type mice treated with IgG-APS. The expression of VCAM-1 in aorta of annexin A2 (−/−) ex vivo was also significantly reduced compared to LPS-treated mice (positive control) (p= 0.01). Interestingly, anti-A2 antibody significantly decreased aPL-induced expression of ICAM-1, E-sel and TF on cultured EC. Conclusions: Altogether these data indicate for the first time that A2 is involved in vivo pathogenic effects of aPL Abs. These findings may have important implications to devise new targeted and more specific therapeutic approaches to block the pathogenic effects of aPL Abs in patients with APS and SLE.


2011 ◽  
Vol 106 (11) ◽  
pp. 939-946 ◽  
Author(s):  
Mirjam oude Egbrink ◽  
Viviane Heijnen ◽  
Remco Megens ◽  
Wim Engels ◽  
Hans Vink ◽  
...  

SummaryThe endothelial glycocalyx (EG), the luminal cover of endothelial cells, is considered to be atheroprotective. During atherogenesis, platelets adhere to the vessel wall, possibly triggered by simultaneous EG modulation. It was the objective of this study to investigate both EG thickness and platelet-vessel wall interactions during atherogenesis in the same experimental model. Intravital fluorescence microscopy was used to study platelet-vessel wall interactions in vivo in common carotid arteries and bifurcations of C57bl6/J (B6) and apolipoprotein E knock-out (ApoE-/-) mice (age 7 – 31 weeks). At the same locations, EG thickness was determined ex vivo using two-photon laser scanning microscopy. In ApoE-/- bifurcations the overall median level of adhesion was 48 platelets/mm2 (interquartile range: 16 – 80), which was significantly higher than in B6 bifurcations (0 (0 – 16), p = 0.001). This difference appeared to result from a significant age-dependent increase in ApoE-/- mice, while no such change was observed in B6 mice. At the same time, the EG in ApoE-/- bifurcations was significantly thinner than in B6 bifurcations (2.2 vs. 2.5 μm, respectively; p < 0.05). This resulted from the fact that in B6 bifurcations EG thickness increased with age (from 2.4 μm in young mice to 3.0 μm in aged ones), while in bifurcations of ApoE-/- mice this growth appeared to be absent (2.2 μm at all ages). During atherogenesis, platelet adhesion to the wall of the carotid artery bifurcation increases significantly. At the same location, EG growth with age is hampered. Therefore, glycocalyx-reinforcing strategies could possibly ameliorate atherosclerosis.


2017 ◽  
Vol 85 (9) ◽  
Author(s):  
Anne McIntosh ◽  
Lynsey M. Meikle ◽  
Michael J. Ormsby ◽  
Beth A. McCormick ◽  
John M. Christie ◽  
...  

ABSTRACT Salmonella invasion protein A (SipA) is a dual-function effector protein that plays roles in both actin polymerization and caspase-3 activation in intestinal epithelial cells. To date its function in other cell types has remained largely unknown despite its expression in multiple cell types and its extracellular secretion during infection. Here we show that in macrophages SipA induces increased caspase-3 activation early in infection. This activation required a threshold level of SipA linked to multiplicity of infection and may be a limiting factor controlling bacterial numbers in infected macrophages. In polymorphonuclear leukocytes, SipA or other Salmonella pathogenicity island 1 effectors had no effect on induction of caspase-3 activation either alone or in the presence of whole bacteria. Tagging of SipA with the small fluorescent phiLOV tag, which can pass through the type three secretion system, allowed visualization and quantification of caspase-3 activation by SipA-phiLOV in macrophages. Additionally, SipA-phiLOV activation of caspase-3 could be tracked in the intestine through multiphoton laser scanning microscopy in an ex vivo intestinal model. This allowed visualization of areas where the intestinal epithelium had been compromised and demonstrated the potential use of this fluorescent tag for in vivo tracking of individual effectors.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5023-5023
Author(s):  
Nadine Müller-Calleja ◽  
Davit Manukyan ◽  
Wolfram Ruf ◽  
Karl Lackner

Abstract Objective. The antiphospholipid syndrome (APS) is characterized by thromboembolic events and/or recurrent abortions in the presence of pathogenic antiphospholipid antibodies (aPL). Hydroxychloroquine (HCQ) is recommended for thromboprophylaxis in patients with systemic lupus erythematosus and aPL. We aimed at identifying mechanisms responsible for the beneficial effects of HCQ in the APS. Methods. Monocytic cells were stimulated with human aPL in vitro and expression of tissue factor (TF) and tumor necrosis factor (TNFα) was quantified by qRT-PCR. For intracellular ROS detection, cells were stained with OxyBurst and analyzed by flow cytometry. Live cell imaging was performed by confocal laser scanning microscopy to show translocation of NADPH oxidase 2 (NOX2) and TLR8 on stimulation. Finally, the effect of HCQ was tested in an in vivo model of venous thrombosis. Results. HCQ prevents the induction of TF and TNFα by aPL in MonoMac1 cells, by blocking the activation of endosomal NOX2. This latter effect is not mediated by direct interference with the previously described uptake of aPL into the endosome but by inhibiting the recruitment of the catalytic subunit of NOX2 (gp91phox) into the endosome. Furthermore, HCQ protects mice from aPL induced and NOX2 mediated thrombus formation in vivo. Conclusion. We propose that interference with the assembly of endosomal NOX2 is a major effect of HCQ responsible for its antithrombotic effect in the APS. Since most if not all APS patients harbor aPL that activate endosomal NOX2 this probably explains the well established efficacy of HCQ in APS patients. Disclosures No relevant conflicts of interest to declare.


2007 ◽  
Vol 6 (4) ◽  
pp. 7290.2007.00021 ◽  
Author(s):  
Remco T.A. Megens ◽  
Mirjam G.A. oude Egbrink ◽  
Jack P.M. Cleutjens ◽  
Marijke J.E. Kuijpers ◽  
Paul H.M. Schiffers ◽  
...  

We evaluated CNA35 as a collagen marker in healthy and atherosclerotic arteries of mice after both ex vivo and in vivo administration and as a molecular imaging agent for the detection of atherosclerosis. CNA35 conjugated with fluorescent Oregon Green 488 (CNA35/OG488) was administered ex vivo to mounted viable muscular (uterine), elastic (carotid), and atherosclerotic (carotid) arteries and fresh arterial rings. Two-photon microscopy was used for imaging. CNA35/OG488 labeling in healthy elastic arteries was compared with collagen type I, III, and IV antibody labeling in histologic sections. For in vivo labeling experiments, CNA35/OG488 was injected intravenously in C57BL6/J and apolipoprotein E−/− mice. Ex vivo CNA35/OG488 strongly labeled collagen in the tunica adventitia, media, and intima of muscular arteries. In healthy elastic arteries, tunica adventitia was strongly labeled, but labeling in tunica media and intima was prevented by endothelium and elastic laminae. Histology confirmed the affinity of CNA35 for type I, III, and IV collagen in arteries. Strong CNA35/OG488 labeling was found in atherosclerotic plaques. In vivo applied CNA35/OG488 minimally labeled the tunica intima of healthy carotid arteries. Atherosclerotic plaques in apolipoprotein E−/− mice exhibited large uptake. CNA35/OG488 imaging in organs revealed endothelium as a limiting barrier for in vivo uptake. CNA35/OG488 is a good molecular imaging agent for atherosclerosis.


2021 ◽  
Vol 11 (5) ◽  
pp. 1979
Author(s):  
Stefania Guida ◽  
Federica Arginelli ◽  
Francesca Farnetani ◽  
Silvana Ciardo ◽  
Laura Bertoni ◽  
...  

Confocal laser scanning microscopy (CLSM) has been introduced in clinical settings as a tool enabling a quasi-histologic view of a given tissue, without performing a biopsy. It has been applied to many fields of medicine mainly to the skin and to the analysis of skin cancers for both in vivo and ex vivo CLSM. In vivo CLSM involves reflectance mode, which is based on refractive index of cell structures serving as endogenous chromophores, reaching a depth of exploration of 200 μm. It has been proven to increase the diagnostic accuracy of skin cancers, both melanoma and non-melanoma. While histopathologic examination is the gold standard for diagnosis, in vivo CLSM alone and in addition to dermoscopy, contributes to the reduction of the number of excised lesions to exclude a melanoma, and to improve margin recognition in lentigo maligna, enabling tissue sparing for excisions. Ex vivo CLSM can be performed in reflectance and fluorescent mode. Fluorescence confocal microscopy is applied for “real-time” pathological examination of freshly excised specimens for diagnostic purposes and for the evaluation of margin clearance after excision in Mohs surgery. Further prospective interventional studies using CLSM might contribute to increase the knowledge about its application, reproducing real-life settings.


2021 ◽  
Vol 22 (18) ◽  
pp. 10091
Author(s):  
Agnieszka Lewińska ◽  
Marta Domżał-Kędzia ◽  
Ewa Maciejczyk ◽  
Marcin Łukaszewicz ◽  
Urszula Bazylińska

In the present work, we establish novel “environmentally-friendly” oil-in-water nanoemulsions to enhance the transdermal delivery of bakuchiol, the so-called “bioretinol” obtained from powdered Psoralea corylifolia seeds via a sustainable process, i.e., using a supercritical fluid extraction approach with pure carbon dioxide (SC-CO2). According to Green Chemistry principles, five novel formulations were stabilized by “green” hybrid ionic surfactants such as coco-betaine—surfactin molecules obtained from coconut and fermented rapeseed meal. Preliminary optimization studies involving three dispersion stability tests, i.e., centrifugation, heating, and cooling cycles, indicated the most promising candidates for further physicochemical analysis. Finally, nanoemulsion colloidal characterization provided by scattering (dynamic and electrophoretic light scattering as well as backscattering), microscopic (transmission electron and confocal laser scanning microscopy), and spectroscopic (UV–Vis spectroscopy) methods revealed the most stable nanocarrier for transdermal biological investigation. In vitro, topical experiments provided on human skin cell line HaCaT keratinocytes and normal dermal NHDF fibroblasts indicated high cell viability upon treatment of the tested formulation with a final 0.02–0.2 mg/mL bakuchiol concentration. This excellent biocompatibility was confirmed by ex vivo and in vivo tests on animal and human skin tissue. The improved permeability and antiaging potential of the bakuchiol-encapsulated rich extract were observed, indicating that the obtained ecological nanoemulsions are competitive with commercial retinol formulations.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yu-jing Wang ◽  
Min Ke

Purpose. In vivo confocal laser scanning microscopy (CLSM) is an emerging diagnostic tool allowing fast and easy microscopic tissue examination. For the diagnostics of pathological eyelid margin lesions, the knowledge of the normal eyelid margin is essential. Methods. We examined 18 eyelid margins of healthy humans using the in vivo CLSM device and 10 samples of healthy eyelid margins from donor sites with ex vivo CLSM and compared the findings to the corresponding histological sections of donor sites. Cross-section images of different depths and depths of different skin appendages were measured. Results. The depth observed by in vivo CLSM is less than 150 μm into the eyelid. Images of the epidermis and superficial dermis skin, appendages including hair follicle, and sebaceous catheters can be captured associated with histopathology and ex vivo confocal microscopy. In correlation with histopathology, we identified different layers of the eyelid margin, different layers of the epidermis, and skin appendages by ex vivo confocal microscopy. Conclusions. The study offers an overview of the in vivo confocal microscopy human eyelid margin characteristics in comparison to the standard histological examination and confirms that in vivo CLSM could not observe the meibomian gland acini structure.


2018 ◽  
Vol 19 (9) ◽  
pp. 2722 ◽  
Author(s):  
Angela Fabiano ◽  
Elisa Brilli ◽  
Letizia Mattii ◽  
Lara Testai ◽  
Stefania Moscato ◽  
...  

The present study aimed to demonstrate that Sideral® RM (SRM, Sucrosomial® Raw Material Iron) is transported across the excised intestine via a biological mechanism, and to investigate the effect that this transport route may produce on oral iron absorption, which is expected to reduce the gastrointestinal (GI) side effects caused by the bioavailability of non-absorbed iron. Excised rat intestine was exposed to fluorescein isothiocyanate (FITC)-labeled SRM in Ussing chambers followed by confocal laser scanning microscopy to look for the presence of fluorescein-tagged vesicles of the FITC-labeled SRM. To identify FITC-labeled SRM internalizing cells, an immunofluorescence analysis for macrophages and M cells was performed using specific antibodies. Microscopy analysis revealed the presence of fluorescein positive particulate structures in tissues treated with FITC-labeled SRM. These structures do not disintegrate during transit, and concentrate in macrophage cells. Iron bioavailability was assessed by determining the time-course of Fe3+ plasma levels. As references, iron contents in liver, spleen, and bone marrow were determined in healthy rats treated by gavage with SRM or ferric pyrophosphate salt (FP). SRM significantly increased both area under the curve (AUC) and clearance maxima (Cmax) compared to FP, thus increasing iron bioavailability (AUCrel = 1.8). This led to increased iron availability in the bone marrow at 5 h after single dose gavage.


Sign in / Sign up

Export Citation Format

Share Document