High Resolution Genomic Profiling Using Single Nucleotide Polymorphism Microarrays Identifies Multiple Novel Genomic Minimally Deleted Regions in Multiple Myeloma

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 625-625
Author(s):  
Brian A WalKer ◽  
Paola E Leone ◽  
Nicholas J Dickens ◽  
Matthew W Jenner ◽  
Laura Chiecchio ◽  
...  
Blood ◽  
2010 ◽  
Vol 115 (21) ◽  
pp. 4157-4161 ◽  
Author(s):  
Stefan Heinrichs ◽  
Cheng Li ◽  
A. Thomas Look

Comprehensive analysis of the cancer genome has become a standard approach to identifying new disease loci, and ultimately will guide therapeutic decisions. A key technology in this effort, single nucleotide polymorphism arrays, has been applied in hematologic malignancies to detect deletions, amplifications, and loss of heterozygosity (LOH) at high resolution. An inherent challenge of such studies lies in correctly distinguishing somatically acquired, cancer-specific lesions from patient-specific inherited copy number variations or segments of homozygosity. Failure to include appropriate normal DNA reference samples for each patient in retrospective or prospective studies makes it difficult to identify small somatic deletions not evident by standard cytogenetic analysis. In addition, the lack of proper controls can also lead to vastly overestimated frequencies of LOH without accompanying loss of DNA copies, so-called copy-neutral LOH. Here we use examples from patients with myeloid malignancies to demonstrate the superiority of matched tumor and normal DNA samples (paired studies) over multiple unpaired samples with respect to reducing false discovery rates in high-resolution single nucleotide polymorphism array analysis. Comparisons between matched tumor and normal samples will continue to be critical as the field moves from high resolution array analysis to deep sequencing to detect abnormalities in the cancer genome.


Sign in / Sign up

Export Citation Format

Share Document