A MEIS1 Dependent Genetic Program in Leukemia Associated with Cell Cycle Entry and ‘Stemness’

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 746-746
Author(s):  
Ashish Kumar ◽  
Baolin Wu ◽  
John H. Kersey

Abstract The HOX co-factor MEIS1 is expressed in several leukemias, especially those involving MLL-gene rearrangements. Experimental data have demonstrated that MLL-fusion proteins induce the expression of MEIS1 in hematopoietic cells along with increased self-renewal and recent murine experiments indicate that MEIS1 is central to the growth-promoting effects of MLL fusion proteins. However, the cellular and molecular pathways that are regulated by MEIS1 are unknown. We studied the effect of MEIS1 knock-down in a cell line derived from a leukemic MLL-AF9 knock-in mouse. Transduction of this cell line (4166) with MEIS1-shRNA bearing lentivirus led to significant reduction in MEIS1 expression compared to cells transduced with control virus. The MEIS1 knock-down cells displayed decreased cell cycle entry, while terminal myeloid differentiation and apoptosis were enhanced. To characterize the molecular effects of MEIS1 knock-down, we performed gene expression profiling of leukemia cells with and without MEIS1 expression. We extracted RNA from 5 separate experiments where 4166 cells were transduced with vector control or MEIS1 shRNA for 48 hours and analyzed gene expression profiles using Affymetrix 430 2.0 whole genome arrays. We used a regularized two-sample paired t-test to select genes that were differentially expressed among the two groups. At a false discovery rate (FDR) of ≤ 5%, 1053 probe sets displayed decreased expression with MEIS1 knockdown, while 296 probe sets showed increased expression. Analysis of gene ontology (GO) terms by DAVID (Database for Annotation, Visualization and Integrated Discovery) revealed that the list of genes down-regulated with MEIS1 knock-down was significantly enriched in genes associated with the cell cycle and its regulation (Cdk2, Cdk6, Cdkn3, Ccna2, Cdc7, Cdc42, Rbl1, Wee1) and DNA replication (Brca1, Cdc6, Cdt1, Gmnn, Mcm4, Mcm5, Mcm8). Conversely, the genes displaying increased expression with MEIS1 knockdown were associated with inhibition of proliferation eg. Cdkn1a (p21), Btg2, Btg3 and pro-apoptotic effects such as Bax. A search of the Molecular Signatures Database for previously published profiles that overlap with our list of MEIS1-dependent genes revealed that the profile of MEIS1 knockdown in our murine leukemia cells significantly overlapped with that of neural stem cells. Specifically, of the 1838 genes expressed highly in neural stem cells compared to differentiated brain and bone marrow cells (Ramalho-Santos et al, Science 2002), 155 showed an overlap with the 594 genes in our MEIS1-dependent set (594 gene identifiers contained in 1053 probe sets; p = 3.27 e−28, hypergeometric distribution). This list of 155 genes included MEIS1 and several of the cell cycle and DNA replication-associated genes. These results reveal a core self-renewal genetic program shared by leukemia and neural stem cells that is regulated by MEIS1. Activation of MEIS1 in leukemia and possibly brain tumors could thus enhance self-renewal via the up-regulation of the above common genes. Overall, our results show that MEIS1 regulates cell cycle entry in murine MLL-AF9 leukemia, an effect that enhances self-renewal in other cells as well.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4199-4199 ◽  
Author(s):  
Carolina L. Bigarella ◽  
Pauline Rimmele ◽  
Rebeca Dieguez-Gonzalez ◽  
Raymond Liang ◽  
Brigitte Izac ◽  
...  

Abstract Leukemic stem cells (LSCs) share many of the same properties of normal hematopoietic stem cells (HSCs) including their highly quiescent state, capacity to self-renew, low levels of reactive oxygen species (ROS) and enhanced DNA repair program. These properties make the efficient and specific eradication of these cells challenging. Foxo3 and p53 are two transcription factors essential for the modulation of HSC quiescence and self-renewal. While Foxo3 is inhibited by signaling from several oncoproteins but crucial for the maintenance of the LSCs in both chronic and acute myeloid leukemia (CML and AML respectively), mutations of p53 although rare, are associated with poor prognosis in advanced stages of these diseases. In vivo ROS-mediated activation of p53 is known to lead to loss of quiescence, alterations of cell cycle and exhaustion of the Foxo3-/- HSC pool. Seeking to understand the contribution of p53 to Foxo3-/- HSC cycling defects, we crossed p53+/- and Foxo3+/- mice. To our surprise we found the bone marrow (BM) frequency of both p53+/-Foxo3-/- and p53-/-Foxo3-/- LSK (Lin-Sca1+cKit+) and long-term-HSC (LT-HSC, LSK Flk2-CD34-) populations greatly increased as compared to their Foxo3-/- counterparts (n=5 mice per genotype; p<0.05). Using Ki67 and DAPI staining we found that loss of one or both alleles of p53 gradually rescued the cell cycle defect of Foxo3-/- HSC and increased the frequency of LSK cells in Go by 2-fold. Loss of p53 also rescued the impaired capacity of Foxo3-/- LSK cells to competitively repopulate multilineage blood over 16 weeks, as shown by the higher frequency of p53+/-Foxo3-/- and p53-/-Foxo3-/- donor-derived cells in the peripheral blood of recipient animals (∼47% recipients of double-mutant cells versus 20% in Foxo3-/- recipients, n=5 per group). Furthermore, loss of p53 significantly improved the compromised self-renewal of Foxo3 mutant HSC in serial BM transplantations. In our quest to identify mechanisms whereby p53 depletion improves Foxo3-/- HSC function, we noticed that the DNA damage accumulated in Foxo3-/- HSC at the steady-state was remarkably ameliorated by removal of one or both alleles of p53 from Foxo3-/- HSCs, as measured by flow cytometry levels of phospho-H2AX (gamma-H2AX) and DNA breaks by comet assay (n=3, p<0.05). Unexpectedly, ROS levels were also significantly reduced by 30% in p53+/-Foxo3-/- in comparison to Foxo3-/- LSK cells, while ROS levels in p53+/- LSK cells were similar to that in WT cells. Consistent with these results, the expression of several anti-oxidant enzymes including Sod1, Sod2, Catalase, Gpx1, Sesn1 and Sesn2 (n≥2), was highly upregulated while a number of genes implicated in mitochondrial generation of ROS were significantly deregulated as a result of loss of one or both alleles of p53. These combined findings suggest that a switch from anti-oxidant to pro-oxidant activity of p53 contributes to Foxo3-/- HSC defects. Despite their apparent normal stem cell function, p53+/-Foxo3-/- HSC were highly altered in their gene expression profile. Interestingly, Gene Set Enrichment Analysis (GSEA) of the microarray analysis (Illumina bead chip mouse-Ref8) of WT, p53+/-, Foxo3-/-, and p53+/-Foxo3-/- LSK cells showed that a cluster of genes associated with fatty acid metabolism was highly enriched in p53+/-Foxo3-/- HSCs (ES=0.746; p<0.01). In addition, from 3976 genes exclusively deregulated in p53+/-Foxo3-/- LSK cells, 201 (out of 1051) overlapped with genes downregulated, while 9 (out of 14) overlapped with genes exclusively upregulated in a LSC-gene signature. To evaluate whether this pre-leukemic profile was associated with increased susceptibility to malignancy, we compared the potential and timeline of BCR-ABL-transformed p53+/-Foxo3-/- HSC as compared to controls in establishing CML in mice. We found a shorter time to the onset of the disease and decreased survival of the recipients of p53+/-Foxo3-/- transformed HSCs (n=4 per group, p<0.05) as compared to WT and Foxo3-/- controls. We propose that the p53+/-Foxo3-/- double-mutant HSCs are enriched for preleukemic stem cells based on their quiescence and self-renewal capacity, low ROS, robust DNA repair, susceptibility to transformation and aberrant gene expression profile. These findings raise the possibility that the coordinated Foxo3 and p53 regulation of ROS wires together the stem cell program. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 983-983
Author(s):  
Maneka Perinpanayagam ◽  
Anna Kovalchuk ◽  
Yibing Ruan ◽  
Sungmyung Kang ◽  
Aarthi Jayanthan ◽  
...  

Abstract Introduction: Epigenetic alterations leading to the silencing of key tumor suppressor genes by promoter hypermethylation have been implicated in the pathogenesis of a number of malignancies, including MDS and AML. Currently, the prototypical DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine (decitabine) has been studied in a number of diverse protocols as an anti-leukemic agent. However, the pattern of non-responsiveness to decitabine appears to be complex and multifactorial with some patients showing primary resistance whereas others develop resistance following initial responsiveness. To further understand the molecular mechanisms that define growth regulatory networks in pediatric AML, we have established and performed initial characterization using primary blasts that showed increased cell survival and proliferation in the presence of decitabine. Methods: Bone marrow leukemic blasts from a relapsed pediatric AML patient, who received only conventional chemotherapy, were obtained following local REB approval and informed parental consent. Upon in vitro culture to identify effective therapeutic agents, enhanced cell survival was noted in wells containing decitabine (1uM) compared to untreated cells. This cell population was further expanded in higher concentrations of decitabine that tolerated concentrations higher than 10 uM. These cells were then clonally expanded, and the resulting cell line designated POETIC1, was screened in growth inhibition assays against a panel of 142 pharmaceutical pipe-line agents that target known growth regulatory pathways and signaling molecules. The original primary leukemic cells and normal lymphocytes were used as control. Gene expression analyses were carried out using humanHT-12 v4 Expression BeadChip whole-genome expression arrays, normalized and analyzed using the Illumina BeadStudio Software. The distribution and plasticity, and quantity of DNA methylation were studied using the Illumina Infinium Human Methylation BeadChip Assay. Results: POETIC1 cells showed a differential drug sensitivity in approximately 20% of the agents tested. This includes enhanced susceptibility to agents that interfere with cell cycle regulation such as aurora kinase inhibitors, PLK, HDAC inhibitors and agents that targeted mTOR and proteasome activities. Transcriptome profiling revealed that 399 genes were down-regulated and 977 were up-regulated in the leukemia cells, compared to normal controls. POETIC 1 cells had significantly up-regulated DNA repair, cell cycle, oxidative phosphorylation and many other pro-survival pathways. Pathway analysis revealed that up-regulated genes belonged to cell cycle control and pro-survival signalling pathways including genes encoding for cyclins A and B, Cdc 7, Cdc 20 among others. They also had down-regulated genes relating to apoptosis, endocytosis and cell differentiation pathways. Global DNA methylome analysis revealed profound genome-wide deregulation of DNA methylation in POETIC 1 cells with a large number of genes were differentially methylated, including those involved in the control of cell cycle, oxidative phosphorylation, apoptosis and DNA repair pathways. Discussion: Our findings indicate aberrant cell cycle and metabolic pathways in leukemia cells with primary resistance to decitabine. The POETIC1 cell line, provides a critical experimental tool to investigate the role of epigenetic alterations in leukemogenesis as well as the molecular and physiological mechanisms that define primary resistance to methyltransferase inhibitors and facilitate the identification of novel therapeutic agents for refractory disease in future clinical studies. Disclosures No relevant conflicts of interest to declare.


2016 ◽  
Vol 01 (03) ◽  
pp. 201-208 ◽  
Author(s):  
Malini Krishnamoorthy ◽  
Brian Gerwe ◽  
Jamie Heimburg-Molinaro ◽  
Rachel Nash ◽  
Jagan Arumugham ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document