Memory CD8. + T Cells Specific for Minor Histocompatibility Antigen H60 Can Mediate the Graft-Versus-Leukemia Effect.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1332-1332
Author(s):  
Ning Li ◽  
Catherine Matte-Martone ◽  
Srividhya Venkatesan ◽  
Warren D. Shlomchik

Abstract Abstract 1332 Poster Board I-354 In allogeneic hematopoietic stem cell transplantation (alloSCT), donor T cells mediate graft-vs-leukemia (GVL) but also cause graft-vs.-host disease (GVHD). Our previous studies indicate that memory T cells (TM) induce less GVHD than do naïve T cells (TN). Therefore the selective infusion of memory T cells could improve immune reconstitution with less GVHD. However, human memory T cells have a more restricted TCR repertoire than do TN and therefore may be less effective in mediating GVL. One approach for addressing this concern would be to vaccinate donors against a single miHA expressed by host leukemic cells. Then the selective transfer of memory T cells could improve both GVL and immune reconstitution with less GVHD. Questions remain about how best to apply this strategy. For example, differences in target antigen distribution could affect the re-expansion of transferred memory cells and determine whether vaccination augments GVHD. Also, different types of memory cells could behave differently. To begin to optimize this approach in mouse models we chose as our target antigen the H-2Kb-restricted minor histocompatibility antigen (miHA) H60. We cloned the H60 peptide sequence (LTFNYRNL) into a genetic construct encoding the heavy chain of a monoclonal antibody against DEC205. Donor C3H.SW (H-2b, H60-) mice were vaccinated with a single injection of anti-DEC205-H60 plus an agonist antibody against CD40 (FGK45). By two months post vaccination, H60-reactive memory cells were a stable population that comprised approximately 4-8% of splenic and peripheral blood CD8 cells. Approximately 50% of H60-tetramer+ cells had central memory phenotype, which could be ideal as central memory T cells mount strong anti-tumor responses. Similar results were obtained by using a prime/boost approach with H60-pulsed DCs. To test their function, CD44+ memory CD8 cells from H60-vaccinated mice were sort-purified and transferred into recipient B6 mice congenic for H60 (B6.H60; expression hematopoietically restricted ). By day 7 post transplant, H60-specific CD8+ TM from vaccinated mice comprised 70-90% of total splenic and blood CD8 cells, as compared to 1-5% in recipients of TM from unvaccinated mice. In contrast to anti-H60 responses by naïve CD8 cells, expansion of H60-tetramer+ cells from H60-vaccinated mice did not require CD4 help. To test whether target antigen distribution affects the re-expansion of H60-reactive cells from H60-vaccinated mice, expansion was compared in B6.H60 and B6.H60<right arrow>B6.actH60 (ubiquitous expression of H60 driven by an actin promoter) bone marrow chimeras. Approximately 60% of splenic and lymph node CD8 cells in both recipient groups were H60-tetramer+, though there was a trend towards increased overall numbers of tetramer+ cells in B6.H60 recipients. We are currently testing the GVL potency of TM from H60-vaccinated against mouse models of chronic phase (CP-CML) and blast crisis chronic myelogenous leukemia (BC-CML). In an ongoing experiment, very low numbers of CD8+ TM from H60-vaccinated mice mediate potent GVL against CP-CML relative to CD8+ TM from unvaccinated donors. Small numbers of CD8+ TM cells from vaccinated mice also mediated GVL against BC-CML, which is typically GVL resistant. Future studies will better define the potency of TM from H60-vaccinated mice and test these cells against CP-CML and BC-CML that do or do not express H60 but are otherwise identical. GVHD effect will also be tested. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2011 ◽  
Vol 118 (22) ◽  
pp. 5965-5976 ◽  
Author(s):  
Ning Li ◽  
Catherine Matte-Martone ◽  
Hong Zheng ◽  
Weiguo Cui ◽  
Srividhya Venkatesan ◽  
...  

AbstractDonor T cells contribute to the success of allogeneic hematopoietic stem cell transplantation (alloSCT). Alloreactive donor T cells attack leukemia cells, mediating the GVL effect. Donor T cells, including the memory T cells (TM) that are generated after infection, also promote immune reconstitution. Nonetheless, leukemia relapse and infection are major sources of treatment failure. Efforts to augment GVL and immune reconstitution have been limited by GVHD, the attack by donor T cells on host tissues. One approach to augmenting GVL has been to infuse ex vivo–generated T cells with defined specificities; however, this requires expertise that is not widely available. In the present study, we tested an alternative approach, adoptive immunotherapy with CD8+ TM from donors vaccinated against a single minor histocompatibility antigen (miHA) expressed by leukemia cells. Vaccination against the miHA H60 greatly augmented TM-mediated GVL against mouse chronic-phase (CP-CML) and blast crisis chronic myeloid leukemia (BC-CML). TM-mediated GVL was antigen specific and was optimal when H60 expression was hematopoietically restricted. Even when H60 was ubiquitous, donor H60 vaccination had a minimal impact on GVHD. TM from lymphocytic choriomeningitis virus (LCMV)–immune and H60-vaccinated donors augmented GVL and protected recipients from LCMV. These data establish a strategy for augmenting GVL and immune reconstitution without elaborate T-cell manipulation.


Blood ◽  
2010 ◽  
Vol 116 (22) ◽  
pp. 4501-4511 ◽  
Author(s):  
Willemijn Hobo ◽  
Frans Maas ◽  
Niken Adisty ◽  
Theo de Witte ◽  
Nicolaas Schaap ◽  
...  

Tumor relapse after human leukocyte antigen–matched allogeneic stem cell transplantation (SCT) remains a serious problem, despite the long-term presence of minor histocompatibility antigen (MiHA)–specific memory T cells. Dendritic cell (DC)–based vaccination boosting MiHA-specific T-cell immunity is an appealing strategy to prevent or counteract tumor recurrence, but improvement is necessary to increase the clinical benefit. Here, we investigated whether knockdown of programmed death ligand 1 (PD-L1) and PD-L2 on monocyte-derived DCs results in improved T-cell activation. Electroporation of single siRNA sequences into immature DCs resulted in efficient, specific, and long-lasting knockdown of PD-L1 and PD-L2 expression. PD-L knockdown DCs strongly augmented interferon-γ and interleukin-2 production by stimulated T cells in an allogeneic mixed lymphocyte reaction, whereas no effect was observed on T-cell proliferation. Moreover, we demonstrated that PD-L gene silencing, especially combined PD-L1 and PD-L2 knockdown, resulted in improved proliferation and cytokine production of keyhole limpet hemocyanin–specific CD4+ T cells. Most importantly, PD-L knockdown DCs showed superior potential to expand MiHA-specific CD8+ effector and memory T cells from leukemia patients early after donor lymphocyte infusion and later during relapse. These data demonstrate that PD-L siRNA electroporated DCs are highly effective in enhancing T-cell proliferation and cytokine production, and are therefore attractive cells for improving the efficacy of DC vaccines in cancer patients.


2006 ◽  
Vol 135 (3) ◽  
pp. 413-414 ◽  
Author(s):  
Yoshiki Akatsuka ◽  
Hiroki Torikai ◽  
Yoshihiro Inamoto ◽  
Kunio Tsujimura ◽  
Yasuo Morishima ◽  
...  

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4544-4544 ◽  
Author(s):  
Faruk Sacirbegovic ◽  
Jieqing Zhu ◽  
Jinling Liu ◽  
Sarah Rosenberger ◽  
Mark J Shlomchik ◽  
...  

Abstract Tissue-resident memory T cells (TRM) are a newly described subset of transcriptionally-distinct memory CD4 and CD8 cells that persist in barrier and non-barrier tissues. They are non-circulating, able to facilitate the recruitment of circulating effector cells and elicit rapid recall responses. The majority of TRM cells can be identified by the expression of CD69 and αE integrin, CD103. However, CD69+CD103- TRM cells have also been described. In graft-vs-host disease (GVHD), alloreactive effector T cells enter GVHD target tissues and mediate tissue damage through direct and indirect mechanisms.The recruitment of effector T cells into tissues is in general not dependent on the tissue expressing the target antigen; and even if a target antigen is available in a tissue, there could be niches free of presented alloantigen. We therefore hypothesized that even in GVHD where alloantigen is ubiquitous, TRM may develop. We first explored TRM formation in a CD4 T cell receptor (TCR) transgenic (Tg) GVHD system wherein donor BALB/c RAG2-/- TS1 TCR Tg T cells target the S1 peptide derived from HA, which is expressed ubiquitously in BALB/c RAG2-/- HA104 mice. In this model, GVHD is induced by <1000 TS1 cells and is manifest by weight loss, death, and TS1-infiltrative pathology of the skin, liver, small bowel and colon. We harvested tissues from GVHD mice at days 21 and 28 post-transplant and quantitated TS1 cells with a TRM phenotype. At day 21, a fraction of TS1 cells expressed CD69+CD103+ (as % of total TS1 cells) in the epidermis (2.8% ± 1.2), dermis (11.3% ±7.9), colon (11.5% ±4.5) and small intestine (SI) intraepithelial (IEL) (33.4% ±5.8) and lamina propria (LP) (6.8% ±0.8). At day 28, CD69+CD103+ TS1 cells (% of total TS1) were present in the epidermis (13.6% ± 1.9), dermis (15.9% ± 7.7), colon (30.8% ± 6.7) and the SI IEL (69.1% ± 9.2) and SI LP (18.7 ±3.2). While there were no CD69+CD103+ TS1 in the spleen, bone marrow (BM) or liver (days 21 and 28), a small number (1.5% ±0.7, day 21; 1.7% ± 0.3, day 28) were found in the mesenteric lymph node (mLN). CD103- TRM have been described in the liver and secondary lymphoid organs. Consistent with this, CD69+CD103- TS1 cells (% of total TS1) were found in the liver (24.6% ±6.3, day21; 31.5% ±3.1, day 28), BM (23.1% ±3.1, day 21; 35.4% ±3.2, day 28), spleen (1.8% ±0.6, day 21; 9.1% ±0.7, day 28) and mLN (9.9% ±4.5, day 21; 23.5% ± 3.7, day 28). We are currently confirming the TRM identity of TS1 cells based on their transcriptional and migratory profiles and these data will be presented. Alloreactive TRM were also identified in the B6 (H-2b) into 129 (H-2b) MHC-matched, multiple minor histocompatibility antigen (miHA)-mismatched model in which GVHD is induced by a mix of CD4 and CD8 cells. A fraction of CD8 cells target the Kb-restricted miHA LTFNYRNL derived from H60, which can be tracked with tetramers (TetH60). At day 22 post-transplant, CD69+CD103+ CD4 cells (% of total CD4 T cells) were found in the epidermis (22.9% ±1.2), dermis (19.7% ±2.8), colon (9.4% ±3.1), SI IEL (26.5% ±2.6), SI LP (16.1% ± 3.7) and mLN (6.9% ±3.0). CD8+TetH60+ T cells (% of total CD8T cells) were detected in the epidermis (7.5% ± 3.5), dermis (10.6% ± 6.7), colon (6.9% ± 2.7), SI IEL (8.9% ±6.2), SI LP (10.2% ±3.8), mLN (3.0 ± 0.7) and spleen (9.0% ±2.9). A fraction of CD8+TetH60+ cells in the dermis (7.3% ±1.9), colon (18.1% ±12.2), SI IEL (50.1% ±4.3), SI LP (52.6% ±13.6), and mLN (6.3% ± 0.8) were CD69+CD103+, suggesting that alloreactive H60-directed CD8 T cells acquired a TRM phenotype. Using two different murine models, we found GVHD-inducing T cells with TRM phenotypes. Future experiments will confirm the TRM identity of these cells and will determine their importance in the maintenance of GVHD, perhaps by serving as a reservoir of cells that maintain GVHD locally. Disclosures No relevant conflicts of interest to declare.


2018 ◽  
Vol 37 (5) ◽  
pp. 373-382 ◽  
Author(s):  
Marcin Włodarczyk ◽  
Elżbieta Ograczyk ◽  
Magdalena Kowalewicz-Kulbat ◽  
Magdalena Druszczyńska ◽  
Wiesława Rudnicka ◽  
...  

Immunological memory is a key feature of adaptive immunity. It provides the organism with long-lived and robust protection against infection. The important question is whether cyclophosphamide (CP), as immunosuppressive agent used in cancer therapy and in some autoimmune diseases, may act on the memory T-cell population. We investigated the effect of CP on the percentage of central memory T cells (TCM) and effector memory T cells (TEM) in the mouse model of CP-induced immunosuppression (8-10-week-old male C57BL/6 mice CP treated for 7 days at the daily dose of 50 μg/g body weight [bw], manifested the best immunosuppression status, as compared to lower doses of CP: 10 or 20 μg/g bw). The CP induced a significant decrease in the percentage of CD8+ (TCM), compared to nonimmunosuppressed mice. This effect was not observed in the case of CD4+ TCM population. The percentage of gated TEM with CD4 and CD8 phenotype was significantly decreased in CP-treated mice, as compared to the control ones. Taken together, the above data indicate that CP-induced immunosuppression in mice leads to a reduction in the abundance of central memory cells possessing preferentially CD8+ phenotype as well as to a reduction in the percentage of effector memory cells (splenocytes both CD4+ and CD8+), compared to the cells from nonimmunosuppressed mice. These findings in mice described in this article may contribute to the understanding of the complexity of the immunological responses in humans and extend research on the impact of the CP model of immunosuppression in mice and memory T-cell populations.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4615-4615 ◽  
Author(s):  
Nicoletta Cieri ◽  
Jacopo Peccatori ◽  
Giacomo Oliveira ◽  
Raffaella Greco ◽  
Sarah Marktel ◽  
...  

Haploidentical hematopoietic stem cell transplantation (HSCT) with T–replete grafts and post-transplant cyclophosphamide (PT-Cy) has gained much interest in the transplantation community for the low rates of GvHD, non-relapse mortality and opportunistic infections. This platform, devoid of anti-thymocyte globulins, allows a thorough analysis of circulating cells in the early phase post-HSCT. Indeed, several biological events that play a critical role for transplant outcome occur within the first month after HSCT; while engraftment and hematological reconstitution are carefully monitored, the shape of T cell dynamics within this timeframe remains largely unknown. We characterized immune reconstitution (IR) during the first month post HSCT in 18 high-risk leukemia patients receiving myeloablative conditioning, T-replete haploidentical peripheral blood stem cell graft (PBSCs), and GvHD prophylaxis consisting of PT-Cy (day 3, 4), followed by mycophenolate mofetil and sirolimus from day 5. Infused PBSCs and blood samples harvested at day 1, 3, 5, 8, 15 and 30 post HSCT were analyzed by multiparametric flow cytometry. T cells were infused in the absence of immunosuppressive agents, and by day 3, prior to PT-Cy, a large fraction of memory lymphocytes, possibly enriched for allo-specificities, proliferated (assessed by Ki-67 staining). Conversely, naïve T cells (TN) were scantly Ki-67+ (P< 0.001). A high CD4:CD8 ratio was observed at this time-point (10). PT-Cy efficiently abated T cell proliferation and appeared to affect CD4 more than CD8 T cells. Nevertheless, T cell numbers progressively increased (mean CD3 counts, day 5: 19 cells/µL; day 8: 27 cells/µL; day 15: 97 cells/µL), suggesting that residual proliferation in extravascular sites was likely to fuel the surge in circulating T cells. Consistently, we observed an expansion of antigen-experienced T cells including central memory (TCM), effector memory (TEM), effectors (TEFF) and the recently described stem memory T cells (TSCM). TSCM are a subset of memory cells hierarchically superior to TCM and TEM, for self-renewal, long-term persistence and functional capacity. Similarly to TN, TSCM coexpress CD45RA and CD62L but differently from TN, TSCM express CD95, a marker of memory cells. As early as day 8 post HSCT, the T cell compartment was predominantly composed by TSCM cells (P < 0.01 compared to all other subsets). Such enrichment in TSCM was not due to a selective resistance to PT-Cy, as suggested by the lack of activity of the ALDH enzyme, which converts Cy to a non-toxic metabolite, in TSCM infused with the graft. Rather, we hypothesized that TSCM expansion came directly from the differentiation of TN infused within the graft, which escaped the purging effect of PT-Cy thanks to a delayed activation kinetics compared to alloreactive memory T cells. We demonstrated the in vivo differentiation of WT1 and PRAME specific TN cells, present in the graft, into memory lymphocytes, comprising TSCM cells, in 4/7 patients suitable for dextramer tracking. Such tumor specific T cells were detected in the peripheral blood and bone marrow of treated patients, suggesting that PT-Cy did not hamper GvL players. Of note in the remaining patients for whom tumor-specific TN were not detectable in the graft, no tumor response could be documented in vivo. From day 15 post HSCT, TSCM were outnumbered by other memory subsets, suggesting their differentiation into more committed TCM TEM and TEFF. The quality of IR correlated with clinical events. The percentage of circulating Ki-67+ CD8 TEMcells at day 8 post HSCT accurately predicted the occurrence of periengraftment syndrome, observed in 4 patients with a median time to onset of 15 days. Acute GvHD (Grade I/II in 6 patients, grade III/IV in 4) was accompanied by a rise in circulating Ki-67+ CD8 cells, and response to therapy resulted in a drop in Ki-67 expression. No immunological parameter correlated with chronic GvHD, observed in 2 patients. In all patients with a CMV-seropositive donor, CMV-specific T cells were tracked in the graft, at early time-points and up to 180 days post HSCT, indicating that virus-specific T cells escaped PT-Cy. These results suggest that PT-Cy acts mainly on alloreactive memory T cells infused within the graft, while sparing infused virus-specific, non cross-reactive, memory cells and TN, which can differentiate predominantly in TSCM, but also in TCM TEM and TEFF, thus promoting a rapid and broad IR. Disclosures: Bonini: MolMed SpA: Consultancy.


2020 ◽  
Vol 8 (Suppl 2) ◽  
pp. A19.2-A20
Author(s):  
C Ripamonti ◽  
C Steinkuhler ◽  
G Fossati

BackgroundCentral memory T cells show superior persistence and antitumor immunity compared to effector memory and effector T cells. T effector cells respond quickly to tumors, but they are terminally differentiated and undergo apoptosis upon killing activity. T memory differentiate rapidly into T effector cells and maintain a pool of cells that can continuously differentiate thus sustaining a more lasting response. In adoptive cell therapy (ACT), T cells infused into patients may have a limited time of activity if they are terminally differentiated, and may rapidly undergo exhaustion and apoptosis. The development of new strategies based on novel agents able to generate memory T cells ex-vivo is important for a successful clinical application of ACT.We have studied the effect of a potent and selective HDAC6 inhibitor, ITF3756, on CD8 T cells differentiation during an in vitro induced exhaustion process.Materials and MethodsTo induce exhaustion purified human CD8+ cells were stimulated twice with anti-CD3/CD28 beads (1:2) during 5 days, with or without ITF3756 1μM or 2μM added at all times of stimulation. At day 3 and 5 the expression of exhaustion, memory and effector T cells markers were analyzed by flow cytometry. Cells were also collected at day 5 for genes expression analysis. Expression of exhaustion, T phenotype, metabolic pathway and inflammatory cytokines were investigated by qPCR. Paired two-tailed t-tests was used to determine statistical significance between control versus treatment group at day 3 and 5 in 10 different donors. P-values ≤ 0.05 were considered significant.ResultsITF3756 1μM increased significantly the T central memory phenotype (CD45RO+CD62L+CCR7+) and decreased significantly the T effector phenotype (CD45RO+CD62L-CCR7-). The expression of CD62L in T central memory cells was significantly increased in agreement with the high expression of this marker in naïve and memory T cells. ITF3756 treatment decreased significantly the expression of exhaustion markers PD-1 and LAG-3. No effect was observed on TIM-3 expression. In agreement with the data obtained with protein analysis, treatment with ITF3756 reduced the mRNA level of Pd-1 and Lag-3. Gene expression of Tim-3 was also downmodulated, but this effect did not result in reduction of protein expression at the time of detection. ITF3756 reduced the expression of t-bet (Tbx21) driving T effector differentiation and increased genes related to T memory phenotype (Eomes, Lef-1 and albeit slightly, Tcf-7). T cell activation requires a metabolic reprogramming that supports highly proliferative phenotype and T effector differentiation. ITF3756 treatment decreased both Hif-1α and Glut-1 gene expression that are associated with TCR activation during the exhaustion process. T central memory cells produce less cytokines compared to T effector and effector memory cells. ITF3756 treatment decreased the genes expression of Il-2, Ifn-γ and Tnf-α. All these effects resulted dose dependent.ConclusionsThe selective inhibitor of HDAC6 ITF3756 delays the terminal differentiation of CD8 T cells and increases the percentage of memory T cells with a reduced expression of exhaustion markers in vitro. These results are the basis to further explore the possible use of ITF3756 as a safe ex vivo treatment of CD8 T cells for adoptive cell transfer.Disclosure InformationC. Ripamonti: A. Employment (full or part-time); Significant; Italfarmaco SpA. C. Steinkuhler: A. Employment (full or part-time); Significant; Italfarmaco SpA. G. Fossati: A. Employment (full or part-time); Significant; Italfarmaco SpA.


Blood ◽  
2007 ◽  
Vol 110 (3) ◽  
pp. 1055-1063 ◽  
Author(s):  
Takakazu Kawase ◽  
Yoshiki Akatsuka ◽  
Hiroki Torikai ◽  
Satoko Morishima ◽  
Akira Oka ◽  
...  

Abstract Here we report the identification of a novel human leukocyte antigen (HLA)-B44–restricted minor histocompatibility antigen (mHA) with expression limited to hematopoietic cells. cDNA expression cloning studies demonstrated that the cytotoxic T lymphocyte (CTL) epitope of interest was encoded by a novel allelic splice variant of HMSD, hereafter designated as HMSD-v. The immunogenicity of the epitope was generated by differential protein expression due to alternative splicing, which was completely controlled by 1 intronic single-nucleotide polymorphism located in the consensus 5′ splice site adjacent to an exon. Both HMSD-v and HMSD transcripts were selectively expressed at higher levels in mature dendritic cells and primary leukemia cells, especially those of myeloid lineage. Engraftment of mHA+ myeloid leukemia stem cells in nonobese diabetic/severe combined immunodeficient (NOD/SCID)/γcnull mice was completely inhibited by in vitro preincubation with the mHA-specific CTL clone, suggesting that this mHA is expressed on leukemic stem cells. The patient from whom the CTL clone was isolated demonstrated a significant increase of the mHA-specific T cells in posttransplantation peripheral blood, whereas mHA-specific T cells were undetectable in pretransplantation peripheral blood and in peripheral blood from his donor. These findings suggest that the HMSD–v–encoded mHA (designated ACC-6) could serve as a target antigen for immunotherapy against hematologic malignancies.


Sign in / Sign up

Export Citation Format

Share Document