scholarly journals Bone marrow may be a reservoir of long-lived memory T cells specific for minor histocompatibility antigen

2006 ◽  
Vol 135 (3) ◽  
pp. 413-414 ◽  
Author(s):  
Yoshiki Akatsuka ◽  
Hiroki Torikai ◽  
Yoshihiro Inamoto ◽  
Kunio Tsujimura ◽  
Yasuo Morishima ◽  
...  
Blood ◽  
2011 ◽  
Vol 118 (22) ◽  
pp. 5965-5976 ◽  
Author(s):  
Ning Li ◽  
Catherine Matte-Martone ◽  
Hong Zheng ◽  
Weiguo Cui ◽  
Srividhya Venkatesan ◽  
...  

AbstractDonor T cells contribute to the success of allogeneic hematopoietic stem cell transplantation (alloSCT). Alloreactive donor T cells attack leukemia cells, mediating the GVL effect. Donor T cells, including the memory T cells (TM) that are generated after infection, also promote immune reconstitution. Nonetheless, leukemia relapse and infection are major sources of treatment failure. Efforts to augment GVL and immune reconstitution have been limited by GVHD, the attack by donor T cells on host tissues. One approach to augmenting GVL has been to infuse ex vivo–generated T cells with defined specificities; however, this requires expertise that is not widely available. In the present study, we tested an alternative approach, adoptive immunotherapy with CD8+ TM from donors vaccinated against a single minor histocompatibility antigen (miHA) expressed by leukemia cells. Vaccination against the miHA H60 greatly augmented TM-mediated GVL against mouse chronic-phase (CP-CML) and blast crisis chronic myeloid leukemia (BC-CML). TM-mediated GVL was antigen specific and was optimal when H60 expression was hematopoietically restricted. Even when H60 was ubiquitous, donor H60 vaccination had a minimal impact on GVHD. TM from lymphocytic choriomeningitis virus (LCMV)–immune and H60-vaccinated donors augmented GVL and protected recipients from LCMV. These data establish a strategy for augmenting GVL and immune reconstitution without elaborate T-cell manipulation.


Blood ◽  
2010 ◽  
Vol 116 (22) ◽  
pp. 4501-4511 ◽  
Author(s):  
Willemijn Hobo ◽  
Frans Maas ◽  
Niken Adisty ◽  
Theo de Witte ◽  
Nicolaas Schaap ◽  
...  

Tumor relapse after human leukocyte antigen–matched allogeneic stem cell transplantation (SCT) remains a serious problem, despite the long-term presence of minor histocompatibility antigen (MiHA)–specific memory T cells. Dendritic cell (DC)–based vaccination boosting MiHA-specific T-cell immunity is an appealing strategy to prevent or counteract tumor recurrence, but improvement is necessary to increase the clinical benefit. Here, we investigated whether knockdown of programmed death ligand 1 (PD-L1) and PD-L2 on monocyte-derived DCs results in improved T-cell activation. Electroporation of single siRNA sequences into immature DCs resulted in efficient, specific, and long-lasting knockdown of PD-L1 and PD-L2 expression. PD-L knockdown DCs strongly augmented interferon-γ and interleukin-2 production by stimulated T cells in an allogeneic mixed lymphocyte reaction, whereas no effect was observed on T-cell proliferation. Moreover, we demonstrated that PD-L gene silencing, especially combined PD-L1 and PD-L2 knockdown, resulted in improved proliferation and cytokine production of keyhole limpet hemocyanin–specific CD4+ T cells. Most importantly, PD-L knockdown DCs showed superior potential to expand MiHA-specific CD8+ effector and memory T cells from leukemia patients early after donor lymphocyte infusion and later during relapse. These data demonstrate that PD-L siRNA electroporated DCs are highly effective in enhancing T-cell proliferation and cytokine production, and are therefore attractive cells for improving the efficacy of DC vaccines in cancer patients.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1332-1332
Author(s):  
Ning Li ◽  
Catherine Matte-Martone ◽  
Srividhya Venkatesan ◽  
Warren D. Shlomchik

Abstract Abstract 1332 Poster Board I-354 In allogeneic hematopoietic stem cell transplantation (alloSCT), donor T cells mediate graft-vs-leukemia (GVL) but also cause graft-vs.-host disease (GVHD). Our previous studies indicate that memory T cells (TM) induce less GVHD than do naïve T cells (TN). Therefore the selective infusion of memory T cells could improve immune reconstitution with less GVHD. However, human memory T cells have a more restricted TCR repertoire than do TN and therefore may be less effective in mediating GVL. One approach for addressing this concern would be to vaccinate donors against a single miHA expressed by host leukemic cells. Then the selective transfer of memory T cells could improve both GVL and immune reconstitution with less GVHD. Questions remain about how best to apply this strategy. For example, differences in target antigen distribution could affect the re-expansion of transferred memory cells and determine whether vaccination augments GVHD. Also, different types of memory cells could behave differently. To begin to optimize this approach in mouse models we chose as our target antigen the H-2Kb-restricted minor histocompatibility antigen (miHA) H60. We cloned the H60 peptide sequence (LTFNYRNL) into a genetic construct encoding the heavy chain of a monoclonal antibody against DEC205. Donor C3H.SW (H-2b, H60-) mice were vaccinated with a single injection of anti-DEC205-H60 plus an agonist antibody against CD40 (FGK45). By two months post vaccination, H60-reactive memory cells were a stable population that comprised approximately 4-8% of splenic and peripheral blood CD8 cells. Approximately 50% of H60-tetramer+ cells had central memory phenotype, which could be ideal as central memory T cells mount strong anti-tumor responses. Similar results were obtained by using a prime/boost approach with H60-pulsed DCs. To test their function, CD44+ memory CD8 cells from H60-vaccinated mice were sort-purified and transferred into recipient B6 mice congenic for H60 (B6.H60; expression hematopoietically restricted ). By day 7 post transplant, H60-specific CD8+ TM from vaccinated mice comprised 70-90% of total splenic and blood CD8 cells, as compared to 1-5% in recipients of TM from unvaccinated mice. In contrast to anti-H60 responses by naïve CD8 cells, expansion of H60-tetramer+ cells from H60-vaccinated mice did not require CD4 help. To test whether target antigen distribution affects the re-expansion of H60-reactive cells from H60-vaccinated mice, expansion was compared in B6.H60 and B6.H60<right arrow>B6.actH60 (ubiquitous expression of H60 driven by an actin promoter) bone marrow chimeras. Approximately 60% of splenic and lymph node CD8 cells in both recipient groups were H60-tetramer+, though there was a trend towards increased overall numbers of tetramer+ cells in B6.H60 recipients. We are currently testing the GVL potency of TM from H60-vaccinated against mouse models of chronic phase (CP-CML) and blast crisis chronic myelogenous leukemia (BC-CML). In an ongoing experiment, very low numbers of CD8+ TM from H60-vaccinated mice mediate potent GVL against CP-CML relative to CD8+ TM from unvaccinated donors. Small numbers of CD8+ TM cells from vaccinated mice also mediated GVL against BC-CML, which is typically GVL resistant. Future studies will better define the potency of TM from H60-vaccinated mice and test these cells against CP-CML and BC-CML that do or do not express H60 but are otherwise identical. GVHD effect will also be tested. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A168-A168
Author(s):  
Eric Lutz ◽  
Lakshmi Rudraraju ◽  
Elizabeth DeOliveira ◽  
Amanda Seiz ◽  
Monil Shah ◽  
...  

BackgroundMarrow infiltrating lymphocytes (MILsTM) are the product of activating and expanding bone marrow T cells.1 The bone marrow is a specialized niche in the immune system enriched for antigen-experienced, memory T cells. In patients with multiple myeloma and other hematological malignancies that relapse post-transplant, MILs have been shown to contain tumor antigen-specific T cells and adoptive cell therapy (ACT) using MILs has demonstrated antitumor activity.2 3 The bone marrow has been shown to harbor tumor-antigen specific T cells in patients with melanoma,4 5 glioblastoma,6 breast,7 non-small-cell lung8 and pancreatic cancers.9 Here, we sought to determine if tumor-specific MILs could be expanded from the bone marrow of patients with a range of different solid tumors.MethodsBone marrow and blood samples were collected from patients with advanced and metastatic cancers. To date, samples have been collected from a minimum of four patients with non-small cell lung cancer (NSCLC), prostate cancer, head and neck cancer, glioblastoma, and breast cancer. Samples from patients with multiple myeloma were used as a reference control. Utilizing a 10-day proprietary process, MILs and peripheral blood lymphocytes (PBLs) were activated and expanded from patient bone marrow and blood samples, respectively. T cell lineage-specific markers (CD3, CD4 and CD8) were characterized by flow cytometry pre- and post-expansion.Tumor-specific T cells were quantitated in expanded MILs and PBLs using a previously described cytokine-secretion assay [2]. Briefly, autologous antigen-presenting cells (APCs) were pulsed with lysates from allogeneic cancer cell lines and co-cultured with activated MILs or PBLs. APCs pulsed with irrelevant mis-matched cancer cell line lysates or media alone were used as negative controls. Tumor-specific T cells were defined as the IFNgamma-producing population by flow cytometry.ResultsMILs were successfully expanded from all patient bone marrow samples tested, regardless of tumor type. Cytokine-producing tumor-specific CD4+ and CD8+ T cells were detected in each of the expanded MILs. In contrast, tumor-specific T cells were not detected in any of the matched activated and expanded PBLs.ConclusionsMILs have been successfully grown for all solid tumor types evaluated, including NSCLC, prostate, head and neck, glioblastoma and breast cancer. Clinical studies have been completed in patients with multiple myeloma and other hematological cancers. 2 3 A phase IIa trial to evaluate MILs in combination with a checkpoint inhibitor is underway in patients with anti-PD1/PDL1-refractory NSCLC (ClinicalTrials.gov Identifier: NCT04069936). The preclinical data presented herein demonstrate that expanding MILs is feasible. MILs-based therapies hold therapeutic promise across a wide range of tumor indications.Ethics ApprovalThis study was approved by each participating instituion’s IRB.ReferencesBorrello I and Noonan KA. Marrow-Infiltrating Lymphocytes - Role in Biology and Cancer Therapy. Front Immunol 2016 March 30; 7(112)Noonan KA, Huff CA, Davis J, et al. Adoptive transfer of activated marrow-infiltrating lymphocytes induces measurable antitumor immunity in the bone marrow in multiple myeloma. Sci. Transl. Med 2015;7:288ra78.Biavati L, Noonan K, Luznik L, Borrello I. Activated allogeneic donor-derived marrow-infiltrating lymphocytes display measurable in vitro antitumor activity. J Immunother 2019 Apr;42(3):73–80.Müller-Berghaus J, Ehlert K, Ugurel S, et al. Melanoma-reactive T cells in the bone marrow of melanoma patients: association with disease stage and disease duration. Cancer Res 2006;66(12):5997–6001.Letsch A, Keilholz U, Assfalg G, et al., Bone marrow contains melanoma-reactive CD8+ effector T Cells and, compared with peripheral blood, enriched numbers of melanoma-reactive CD8+ memory T cells. Cancer Res 2003 Sep 1;63(17):5582–5586.Chongsathidkiet P, Jackson C, Koyama S, et al., Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors. Nature Medicine 2018 Aug 13; 24:1459–1468.Feuerer M, Rocha M, Bai L, et al. Enrichment of memory T cells and other profound immunological changes in the bone marrow from untreated breast cancer patients. Int J Cancer 2001; 92(1):96–105.Safi S, Yamauchi Y, Stamova S, et al. Bone marrow expands the repertoire of functional T cells targeting tumor-associated antigens in patients with resectable non-small-cell lung cancer. Oncoimmunology 2019;8(12):e1671762.Schmitz-Winnenthal FH, Volk C, Z’Graggen K, et al. High frequencies of functional tumor-reactive T cells in bone marrow and blood of pancreatic cancer patients. Cancer Res 2005;65(21):10079–87.


2017 ◽  
Vol 8 ◽  
Author(s):  
Luca Pangrazzi ◽  
Erin Naismith ◽  
Andreas Meryk ◽  
Michael Keller ◽  
Brigitte Jenewein ◽  
...  

2020 ◽  
Author(s):  
Luca Pangrazzi ◽  
Erin Naismith ◽  
Carina Miggitsch ◽  
Jose’ Antonio Carmona Arana ◽  
Michael Keller ◽  
...  

Abstract Background. Obesity has been associated with chronic inflammation and oxidative stress. Both conditions play a determinant role in the pathogenesis of age-related diseases, such as immunosenescence. Adipose tissue can modulate the function of the immune system with the secretion of molecules influencing the phenotype of immune cells. The importance of the bone marrow (BM) in the maintenance of antigen-experienced adaptive immune cells has been documented in mice. Recently, some groups have investigated the survival of effector/memory T cells in the human BM. Despite this, whether high body mass index (BMI) may affect immune cells in the BM and the production of molecules supporting the maintenance of these cells it is unknown.Methods. Using flow cytometry, the frequency and the phenotype of immune cell populations were measured in paired BM and PB samples obtained from persons with different BMI. Furthermore, the expression of BM cytokines was assessed. The influence of cytomegalovirus (CMV) on T cell subsets was additionally considered, dividing the donors into the CMV- and CMV+ groups.Results. Our study suggests that increased BMI may affect both the maintenance and the phenotype of adaptive immune cells in the BM. While the BM levels of IL-15 and IL-6, supporting the survival of highly differentiated T cells, and oxygen radicals increased in overweight persons, the production of IFNγ and TNF by CD8+ T cells was reduced. In addition, the frequency of B cells and CD4+ T cells positively correlated with BMI in the BM of CMV- persons. Finally, the frequency of several T cell subsets, and the expression of senescence/exhaustion markers within these subpopulations, were affected by BMI. In particular, the levels of bona fide memory T cells may be reduced in overweight persons.Conclusion. Our work suggests that, in addition to aging and CMV, obesity may represent an additional risk factor for immunosenescence in adaptive immune cells. Metabolic interventions may help in improving the fitness of the immune system in the elderly.


Blood ◽  
2018 ◽  
Vol 131 (1) ◽  
pp. 5-7
Author(s):  
Frederick L. Locke ◽  
Claudio Anasetti

In this issue of Blood, Dossa et al report the engineering of T-cell receptor (TCR) transgenic T cells against the human minor histocompatibility antigen HA-1 for the prevention or treatment of leukemia relapse after allogeneic stem cell transplantation.1


Sign in / Sign up

Export Citation Format

Share Document