Genetic Disruption of the Scaffolding Protein, Kinase Suppressor of Ras 1 (Ksr1), Differentially Regulates GM-CSF-Stimulated Hyperproliferation in Hematopoietic Progenitors Expressing Activating PTPN11 Mutants D61Y and E76K.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1895-1895
Author(s):  
Zhenyun Yang ◽  
Sarah Sitarski ◽  
Tirajeh Saadatzadeh ◽  
Fuqin Yin ◽  
Rebecca J. Chan

Abstract Abstract 1895 Poster Board I-918 Juvenile myelomoncytic leukemia (JMML) is a lethal childhood disease characterized by the in vitro phenotype of hematopoitic progenitor hypersensitivity to granulocyte-macrophage-colony-stimulating factor (GM-CSF). At the molecular level, Ras hyperactivation is implicated based on the majority of JMML patients bearing either loss-of-function NF1 mutations or gain-of-function RAS or PTPN11 mutations. We demonstrated previously that the Shp2 gain-of-function mutants Shp2E76K and Shp2D61Y induce constitutively elevated and sustained activation of Erk. Signal transduction among Raf1/MEK/Erk kinases is mediated through direct phosphorylation, but scaffolding proteins also play an important role in regulating the location, strength, and duration of Raf1/MEK/Erk signaling. One of the best-defined scaffolding proteins that positively facilitates the Raf1/MEK/Erk cascade is Kinase Suppressor of Ras (Ksr). In its inactivated state, Ksr is phosphorylated and constitutively associated with MEK. In response to growth factor stimulation or Ras activation, Ksr is dephosphorylated (serine 392), translocates to cell membrane, recruits Raf1 and Erk, and, thus, promotes Erk activation. We hypothesized that Ksr contributes to the hyperproliferation and GM-CSF hypersensitivity of mutant Shp2-expressing cells. Upon examination of phosphorylated Ksr levels, we observed lower GM-CSF-stimulated phospho- Ksr levels in the Shp2D61Y- and Shp2E76K-expressing macrophage progenitors compared to cells expressing empty vector or WT Shp2. Consistently, in co-immunoprecipitation assays, we found that upon GM-CSF stimulation, macrophage progenitors expressing Shp2D61Y or Shp2E76K demonstrated an increased physical association between phospho-Erk and Ksr, suggesting that Ksr promotes enhanced Erk activation in mutant Shp2-expressing cells and may contribute functionally to GM-CSF hypersensitivity of mutant Shp2-expressing cells. To examine this hypothesis, we subjected retrovirally transduced WT and Ksr1-/- bone marrow low density mononuclear cells (LDMNCs) to 3H-thymidine incorporation assays and found that GM-CSF-stimulated proliferation of Ksr1-/- cells expressing Shp2E76K was significantly reduced, but not entirely normalized to the level of WT Shp2-expressing cells. In contrast, the proliferation of Ksr1-/- cells expressing Shp2D61Y was unchanged compared to WT cells expressing Shp2D61Y. To examine the effect of genetic disruption of Ksr1 on GM-CSF-stimulated activation of Erk and Akt, western blot analysis was performed using retrovirally transduced WT and Ksr1-/- bone marrow LDMNCs, as described above. Activation of phospho-Erk was similarly reduced in both Shp2E76K- and Shp2D61Y-expressing cells upon genetic disruption of Ksr1 both at baseline and in response to GM-CSF. However, in contrast, Akt activation was increased, rather than decreased, in both Ksr1-/- Shp2E76K- and Shp2D61Y-expressing cells, suggesting that a compensatory mechanism in the absence of Ksr leads to enhanced signaling through the phospho-inositol-3-kinase (PI3K) pathway in mutant Shp2-expressing cells. Taken together, these findings suggest that the E76K mutant is dependent on Ksr-mediated Erk activation for GM-CSF-stimulated hyperactivation and that the compensatory upregulation of Akt activation in the absence of Ksr may contribute to the incomplete correction of GM-CSF hypersensitivity. Regarding the D61Y mutant, although Erk activation is reduced in the absence of Ksr, the lack of GM-CSF hypersensitivity correction suggests that the Shp2D61Y-expressing cells are more sensitive to the compensatory upregulation of Akt activation. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 5103-5103
Author(s):  
Dae-Chul Jeong ◽  
Hui Seung Hwang ◽  
Nack Gyun Chung ◽  
Bin Cho ◽  
Hyun Jung Shin ◽  
...  

Abstract Abstract 5103 Background Iron overload by repeated transfusions induced organ toxicity including liver, heart. We investigated hematologic manifestations and cytokines or hematopoietic growth factors in murine secondary hemochromatosis. Materials and methods We established murine secondary hemochromatosis model using 6 week-old male C57/BL6 (H-2b) with iron dextran. Mice (n=10∼12) were intraperitoneally injected with 10 mg of iron dextran for 2 or 4 weeks. We divided five groups: control (PBS injection), iron 100mg, iron 200mg, iron 200mg with deferasirox (DFX) 300mg, and only DFX 300mg. We examined hematocrit, platelet counts and plasma iron concentration (PIC) in peripheral blood, and liver iron contents (LIC) by atomic absorption spectrophotometer. We evaluated colony forming capacity from bone marrow according to experimental group. For cytokines and hematopoietic growth factors, we performed real-time PCR for IL-1b, iNOS, IFN-g, TNF-a, TGF-b, SCF, TPO, GM-CSF, and IL-11 in bone marrow. We compared each values of relative ratio with b-actin. Results There was no difference of hematocrit among experimental groups. The platelet counts were significantly decreased in iron 200mg among groups (P<0.05), and showed increased trends after administration of DFX. The levels of LIC and PIC were dependent on cumulative dose of iron loaded, and decreased by DFX (P<0.01). This findings showed positive correlation between PIC and LIC (P<0.01, R2=0.726). The CFU-GEMM and CFU-GM decreased in iron 200mg, iron 200mg+DFX300mg, and DFX300mg compared with control and iron 100mg (P<0.01). Most colonies in DFX300mg were not observed except CFU-GM. In cytokines, there was shown no difference for IL-1b, iNOS, IFN-g, TNF-a, TGF-b according to experiments (P>0.05). However, SCF was shown diminished expressions for treated mice compared with control (P=0.02). The levels of TPO were increased in hemochromatosis, and decreased after administration of DFX (P=0.05). The GM-CSF was observed significantly lower in iron 200mg, iron 200mg plus DFX, DFX than control and iron 100mg (P<0.01). Conclusions Our results suggested that iron overload might affect hematopiesis and these findings were due to effects of hematopoietic growth factors including SCF, TPO, GM-CSF, not inhibitory cytokines. Also, we need further study for DFX in hematopoiesis. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1608-1608
Author(s):  
Lily Huang ◽  
Huiyu Yao ◽  
Yue Ma

Abstract Myeloproliferative neoplasms (MPNs) are a phenotypically diverse group of pre-leukemic diseases characterized by overproduction of one or more of the myeloid cell lineages. Gain-of -function mutations in the Janus tyrosine kinase 2 (JAK2) are major determinants in MPNs, These include the V617F mutation and mutations in exon 12. Interestingly, MPN phenotype in patients with exon 12 mutations is distinct from that of patients with the V617F mutation. Mechanisms underlying the phenotypic differences are not well understood. We performed an unbiased screen for residues essential for JAK2 auto-inhibition, and identified a panel of novel gain-of-function mutations. Interestingly, three of them with similar kinase activities in vitro elicited distinctive hematopoietic abnormalities in mice. Specifically, JAK2(K539I) results primarily in erythrocytosis, JAK2(N622I) predominantly granulocytosis, and JAK2(V617F) in both. These phenotypes are consistent with clinical data showing that patients with the V617F mutation exhibit erythrocytosis and granulocytosis, whereas those with mutations in exon 12 (where K539 resides) exhibit erythrocytosis only. To determine the mechanisms underlying the phenotypic differences by different JAK2 mutants, we characterized hematopoietic progenitors and precursor subsets in these mice for their proliferation, apoptosis and differentiation. Quantification of the hematopoietic stem and progenitor population showed an increased percentage of granulocyte-monocyte progenitors (GMP) and skewing of differentiation towards the granulocytic lineage in JAK2(V617F) and JAK2(N622I) mice compared to JAK2(K539I) or wild-type JAK2 mice. Because no difference was observed in the proliferation or apoptosis of bone marrow progenitors from JAK2 mutant mice, differentiation of the common myeloid progenitors (CMP) was likely skewed towards GMP by JAK2(V617F) and JAK2(N622I). Consistent with this hypothesis, similar results were observed in colony forming assays from sorted CMP populations. In the spleen, a decrease in GMP apoptosis and an increase in apoptosis of the megakaryocyte-erythrocyte progenitors (MEP) also contributed to the skewing towards the granulocytic lineage in JAK2(N622I) mice. Similar to MPN patients, mice expressing JAK2 mutants exhibited splenomegaly. We found that JAK2 mutants caused redistribution of hematopoietic stem and progenitors from the bone marrow to spleen. As a result, more differentiated precursors were expanded in the spleens of JAK2 mutants mice compared to mice expressing wild-type JAK2. Consistent with their phenotypes, the percentage of Annexin V+7AAD-erythroblasts in JAK2(K539I) and JAK2(V617F) mice was significantly less than in JAK2(N622I) or wild-type JAK2 mice. On the other hand, both proliferation and apoptosis contribute to the differential degrees of granulocytosis among mice expressing different JAK2 mutants. In line with the different effects elicited by different JAK2 mutants in progenitor and precursor cells, signal transduction pathways were differentially activated downstream of different JAK2 mutants. In summary, our results showed that JAK2 mutants differentially skew differentiation in early stem and progenitor compartments, and also regulate apoptosis and proliferation of distinct precursor subsets to cause erythrocytosis or granulocytosis in mice. These results provide the mechanistic basis for the phenotypic diversity observed in MPNs with different JAK2 mutants. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3677-3677
Author(s):  
Anne Schumacher ◽  
Till Braunschweig ◽  
Bernd Denecke ◽  
Tim H. Brümmendorf ◽  
Patrick Ziegler

Abstract The concerted action of hematopoiesis supporting cytokines such as G-CSF, GM-CSF or IL-6 regulates hematopoiesis during steady state and emergency situations. Respective knockout mice show defects both in production and function of myelopoietic effector cells. However, alternative pathways are likely to exist as mice with single or combined deficiencies for G-CSF, GM-CSF, and IL-6 or G-CSF and GM-CSF are still able to mount reactive neutrophilia responses during inflammatory conditions. In order to identify pathways for inflammation induced enhancement of hematopoiesis as well as to find new cytokines, which enhance myeloid cell regeneration, we analyzed the bone marrow (BM) of lipopolysaccharide (LPS) and vehicle injected wild type (WT) mice (single IP- injection) by gene expression microarray. Focusing on the identification of genes encoding for secreted or membrane proteins, we found 83 candidates to be up- and 14 to be downregulated after LPS treatment. Among known candiates, we found angiopoietin-like 4 (Angptl-4) as a predominantly upregulated gene in the BM of LPS-treated WT-mice. Upregulation was confirmed by RT-PCR as well as by Elisa in the BM of LPS treated mice and bone marrow stromal cells (BMSC) were identified as candidate producer cells. Functionally, we found recombinant Angptl-4 to stimulate the proliferation of myeloid colony-forming units (CFU) in vitro. In mice, repeated injections of Angptl-4 increased BM progenitor cell frequency and this was paralleled by a relative increase in phenotypically defined granulocyte-macrophage progenitors (GMPs). Furthermore, in vivo treatment with Angptl-4 resulted in elevated platelet counts both in untreated animals and after myelosuppressive therapy. After lethal irradiation and transplantation of syngeneic BM cells repetitive injections of recombinant Angptl-4 for 5 consecutive days resulted in an accelerated reconstitution of platelets starting at day 8 after transplantation. The 50% pre-treatment platelet count was reached on day 14 in Angptl-4-treated animals as compared to day 21 for transplanted controls receiving no Angptl-4 (n=8; p=0.03, student´s T test). In contrast, transplantation of BM cells from Angptl-4 pre-treated donor mice had no effect on the recovery of platelets in this setting. The frequency of CD41lowCD61+ immature megakaryocytes was significantly increased in the BM of Angptl-4 injected as compared to control mice (27% vs 19% of total megakaryocytes; p= 0.008, student´s T test). Furthermore, bone marrow cytology revealed local accumulation of megakaryocytes carrying dysplastic features in Angptl-4 injected mice. In summary, our data suggest that Angptl-4 plays a complementary role on hematopoiesis during emergency situations like sepsis. The use of Angptl-4 in the setting of autologous stem cell transplantation could represent a potential approach to accelerate the reconstitution of megakaryopoiesis. Disclosures: No relevant conflicts of interest to declare.


2005 ◽  
Vol 25 (12) ◽  
pp. 5119-5133 ◽  
Author(s):  
Ashok Pullikuth ◽  
Evangeline McKinnon ◽  
Hans-Joerg Schaeffer ◽  
Andrew D. Catling

ABSTRACT How the extracellular signal-regulated kinase (ERK) cascade regulates diverse cellular functions, including cell proliferation, survival, and motility, in a context-dependent manner remains poorly understood. Compelling evidence indicates that scaffolding molecules function in yeast to channel specific signals through common components to appropriate targets. Although a number of putative ERK scaffolding proteins have been identified in mammalian systems, none has been linked to a specific biological response. Here we show that the putative scaffold protein MEK partner 1 (MP1) and its partner p14 regulate PAK1-dependent ERK activation during adhesion and cell spreading but are not required for ERK activation by platelet-derived growth factor. MP1 associates with active but not inactive PAK1 and controls PAK1 phosphorylation of MEK1. Our data further show that MP1, p14, and MEK1 serve to inhibit Rho/Rho kinase functions necessary for the turnover of adhesion structures and cell spreading and reveal a signal-channeling function for a MEK1/ERK scaffold in orchestrating cytoskeletal rearrangements important for cell motility.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4288-4288
Author(s):  
Jenny Zilberberg ◽  
Johann Stein ◽  
Thea M Friedman ◽  
Robert Korngold

Abstract Abstract 4288 A modified murine model of multiple myeloma (MM), derived from the well established 5T33MM cell line (originated from spontaneously developed MM in aged C57BL/KalwRij (B6Rij; H2b haplotype)), was utilized to mimic minimal residual disease after bone marrow transplantation (BMT). The 5T33MM model has many of the characteristics associated with human MM, including homing and growth in the bone marrow compartment, hypercalcaemia and elevated tumor-associated IgG2bk in the circulation, with diffuse osteolytic lesions. In contrast to human MM however, the 5T33MM cells are also often found in the mouse spleen, since in this species the spleen is a bone marrow-like hematopoietic organ. Due to limitations on the availability of B6Rij mice and the vast array of mutant mice on the closely related C57BL/6 (B6) background, that could be useful in probing mechanisms of action for MM development or immune resistance to the tumor, it is highly desirable to adapt the MM model for B6 mice. However, 5T33MM cells do not cause disease in immunocompetent B6 mice, presumably because of allogeneic differences that cause rejection of the tumor cells. To overcome this problem, we found that 5T33MM cells will develop MM disease in lethally irradiated B6 recipients in a syngeneic BMT setting. Using this model, we tested for the first time the feasibility of using GM-CSF secreting vaccines in combination with tumor MHC-matched BMT from B6 mice for the treatment of MM. To this end, B6 Mice received a single subcutaneous infusion of 2×106 irradiated 5T33MM cells engineered to secrete GM-CSF (GM-5T33MM), or were left untreated. Seven days later, mice were lethally irradiated with 850 cGy and transplanted with 2×106 anti-T cell-depleted B6 BM cells. On day 1 post-BMT, recipients were challenged with 2×106 5T33MM cells (i.v). Mice that presented with the disease, developed hind limb paralysis and signs of morbidity, along with extensive plasmacytoma growth in the bone marrow and the spleen (as determined by H&E staining and flow cytometric analysis of BM and spleen samples). This pathology was similar to aged B6Rij mice that develop MM, as reported in the literature. Statistical comparisons using a non-parametric log-rank test showed enhanced survival rate in the GM-5T33MM treated group 70 days post-BMT (60% survival), compared to 0% survival, MST = 25 d (p = 0.020) in non-vaccinated recipients. These results indicate that a single pre-transplant administration of GM-5T33MM cells can significantly improve survival of transplanted/5T33MM challenged mice, even in the absence of donor lymphocytes. Furthermore, it suggests that immune cells exposed to GM-5T33MM vaccination, that survive host irradiation, constitute a significant component of this anti-tumor effect. The current experimental model should provide the basis to study the efficacy of GM-CSF secreting tumor vaccination in combination with BMT for the treatment of MM, as well as the cellular mechanisms associated with it. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2868-2868
Author(s):  
Lily Huang ◽  
Huiyu Yao ◽  
Yue Ma

Abstract Abstract 2868 The Janus tyrosine kinase 2 (JAK2) plays an important role in hematopoiesis of multiple lineages. A gain-of-function JAK2 mutation, V617F, is the major determinant in myeloproliferative neoplasms (MPNs), a phenotypically diverse group of hematological diseases in which cells of the myelo-erythroid lineage are overproduced. JAK2 kinase inhibitors showed hematological toxicity in treating MPNs, calling for novel therapeutics that can target only the affected lineage while sparing others. This task is hindered by lack of understanding in how JAK2 signaling differentially regulates the generation of different blood cells. We performed an unbiased screen for residues essential for JAK2 auto-inhibition, and identified a panel of novel gain-of-function JAK2 mutations in addition to V617F (1). Surprisingly, three activating JAK2 mutants with similar kinase activities in vitro elicited distinctive hematopoietic abnormalities in mice. Specifically, JAK2(K539I) results primarily in erythrocytosis, JAK2(N622I) predominantly granulocytosis, and JAK2(V617F) in both. These phenotypes are consistent with clinical data showing that patients with the V617F mutation exhibit erythrocytosis and granulocytosis, whereas those with mutations in exon 12 (where K539 resides) exhibit erythrocytosis only (2). Quantification of the hematopoietic stem and progenitor populations in mice expressing wild-type JAK2 or JAK2 mutants showed significant granulocytic skewing by JAK2(V617F) and JAK2(N622I) both in the bone marrow and spleen. In contrast, erythroid skewing by JAK2(K539I) was observed. Consistent with these results, qualitative and quantitative differences were observed in signaling events downstream of JAK2 in stem and progenitor cells from mice expressing different JAK2 mutants. JAK2 mutants also caused redistribution of hematopoietic stem and progenitors from the bone marrow to spleen. In later more differentiated compartments, JAK2(K539I) and JAK2(V617F) expanded erythroid precursor cells, including proerythroblasts and later precursors, to cause erythrocytosis, while JAK2(V617F) and JAK2(N622I) expanded myeloid precursors to cause granulocytosis. The expansion of these later compartments was at least in part due to a decrease in apoptosis. Together, our results showed that JAK2 mutants differentially skew early stem and progenitor compartments toward the erythroid or granulocytic lineage, and expand distinct precursor subsets to cause erythrocytosis or granulocytosis in mice. These results provide mechanistic basis for the phenotypic diversity observed in mice expressing different JAK2 mutants. Our results show that differential JAK2 signaling regulates hierarchically early and late progenitor compartments to drive erythropoiesis vs. granulopoiesis. These results shed light on MPN biology and may facilitate the design of novel and more effective therapeutic agents that specifically target affected lineage without compromising other lineages. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1543-1543
Author(s):  
Xiaona You ◽  
Guangyao Kong ◽  
Erik A. Ranheim ◽  
Yun Zhou ◽  
Jing Zhang

Abstract As members of small GTPase super family, the functional output of Ras proteins depends on their GTP binding status, which is regulated by the interactions with guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). Activating mutations in NRAS and KRAS isoforms are identified in various types of hematopoietic malignancies. Interestingly, the same oncogenic mutation (G12D) at the endogenous Kras locus displays much more potent leukemogenic activity than that at the endogenous Nras locus in vivo. Moreover, combined inhibition of MEK and ERK provides long-term disease-free survival in NrasG12D/G12D mice but had much less effect in KrasG12D/+ mice. During our investigation to understand the potent leukemogenic activity of oncogenic Kras, we found that in total bone marrow cells, oncogenic Kras, but not oncogenic Nras, induces hyperactivation of wild-type (WT) Hras and Nras. We hypothesize that the hyperactivated WT Ras significantly contributes to oncogenic Kras-mediated leukemogenesis and inhibition of this process might improve the sensitivity of oncogenic Kras cells towards combined therapy. Because Sos1, a RAS GEF, has been implicated in oncogenic Ras-mediated activation of WT Ras in human cancer cell lines, we investigated whether Sos1 plays an essential role in this process in vivo. We find that Sos1 is overexpressed in KrasG12D/+ bone marrow cells. Genetic deletion of Sos1 indeed significantly decreases the GTP-bound active form of WT Nras and Hras without affecting the activation status of oncogenic Kras. Consequently, Sos1 deficiency-mediated downregulation of ERK activation rescues oncogenic Kras mediated depletion of hematopoietic stem cells (HSCs). HSCs, multipotent progenitors (MPPs) and LSKs (Lin-Sca-1+c-Kit+) in KrasG12D/+;Sos1-/- mice are much more quiescent than those in KrasG12D/+ mice. Moreover, Sos1 deficiency significantly inhibits granulocyte-macrophage colony stimulating factor (GM-CSF) evoked ERK signaling in KrasG12D/+ myeloid progenitor and precursor cells. Consistent with these biochemical data, we show that myeloproliferative neoplasm (MPN) phenotypes are significantly alleviated in KrasG12D/+;Sos1-/- mice and these animals survived significantly longer than KrasG12D/+ mice. However, we find that in differentiated myeloid cells (e.g. neutrophils), loss of Sos1 does not affect GM-CSF-evoked ERK activation. This result is consistent with our previous finding that Ras-mediated ERK activation in differentiated myeloid cells is predominantly through Kras but not Hras or Nras. Together, our results demonstrate that Sos1 mediates oncogenic Kras-induced hyperactivation of WT Ras. Inhibition of Sos1 thus blocks this process and attenuates the leukemogenic activity of oncogenic Kras. In contrast, Sos1 deficiency does not affect the unique signaling mediated by oncogenic Kras itself. Therefore, we hypothesize that targeting Sos1 alone will not effectively treat KrasG12D-associated leukemias but it might increase the sensitivity of KrasG12D cells to other therapies, such as combined inhibition of MEK and JAK. We are currently testing this hypothesis in vivo. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3968-3968
Author(s):  
Charles B Goodwin ◽  
Zhenyun Yang ◽  
Sasidhar Vemula ◽  
Fuqin Yin ◽  
Reuben Kapur ◽  
...  

Abstract Abstract 3968 Poster Board III-904 Juvenile Myelomonocytic Leukemia (JMML) is a lethal myeloproliferative disorder (MPD) of children, characterized by hyperproliferation of myelomonocytic cells and hypersensitivity to Granulocyte-Monocyte Colony-Stimulating Factor (GM-CSF). Most patients show hyperactivation of Ras via one or more mutations, including in the PTPN11 gene, which encodes the protein tyrosine phosphatase, Shp2. It has been demonstrated that gain-of-function mutant Shp2 (Shp2 E76K and Shp2 D61Y) causes hyperactivation of the Mitogen-Activated Protein Kinase (MAPK) pathway. Additionally, we have previously shown that macrophage progenitor cells transduced with Shp2 D61Y or Shp2 E76K showed elevated levels of phospho-Akt, both at baseline and following 1 hour of GM-CSF stimulation, indicating a role for the Phospho-Inositol-3-Kinase (PI3K)/Akt pathway in the phenotype of elevated proliferation and survival in mutant Shp2-expressing cells (Yang, et al, 2008). However, it remains to be elucidated how PI3K contributes to the phenotype of increased proliferation and survival in cells bearing gain-of-function mutations in Shp2. Class IA PI3K is a lipid kinase heterodimer consisting of one of three catalytic subunits (p110α, p110β, or p110δ) and one of two regulatory subunits (p85α or p85β). It has been demonstrated that knocking out the main regulatory subunit, p85α, abrogated the hyperproliferative phenotype in mast cell progenitors bearing an oncogenic mutation in Kit in a model of another MPD, Systemic Mastocytosis (Munugalavadla, et al, 2007). In order to examine whether eliminating expression of p85α would cause a similar correction in cells expressing gain-of-function mutant Shp2, we performed timed matings of mice heterozygous for the knock-out of Pik3r1, which encodes the p85α subunit as well as its isoforms, p55α and p50α, since homozygous Pik3r1-/- is lethal in utero. WT and Pik3r1-/- fetal liver cells were isolated from 14.5 day embryos and transduced with either WT Shp2 or mutant Shp2 E76K. Transduced cells were subjected to serum deprivation followed by a 24-hour treatment with increasing doses of GM-CSF, and proliferation was then measured with H3-thymidine incorporation assays. We found that the absence of all the Pik3r1 isoforms resulted in a significant but incomplete correction of GM-CSF hypersensitivity in Shp2 E76K-expressing cells. To further investigate this observation, WT Pik3r1 and Pik3r1-/- macrophage progenitors, transduced with WT Shp2 or mutant Shp2 E76K as described above, were serum- and growth factor-deprived and then stimulated for 1 hour with GM-CSF. Western blot analysis showed that there was an expected increase in phospho-Akt in WT Pik3r1 cells following GM-CSF stimulation and that this increase was larger in Shp2 E76K-expressing cells than in WT Shp2-expressing cells, as previously observed. Upon genetic disruption of Pik3r1, Akt activation was reduced in both WT Shp2- and Shp2 E76K-expressing cells; however, the phospho-Akt in the Shp2 E76K-expressing cells was not reduced to WT levels. The phospho-Akt levels mirrored the proliferation pattern displayed by these cells in the H3-thymidine incorporation assays, where a modest reduction in proliferation in Pik3r1-/-, Shp2 E76K cells corresponded to the modest reduction in phospho-Akt levels in the same cells. Additionally, we found that Pik3r1-/-, Shp2 E76K cells also showed a blunted increase in phospho-Erk levels following GM-CSF stimulation compared to the WT Pik3r1, Shp2 E76K cells, indicating that knocking out Pik3r1 affects the MAPK pathway as well, which likely also contributes to the reduction in proliferation seen in Pik3r1-/-, Shp2 E76K cells following GM-CSF stimulation. Based on these data, we conclude that: (1) gain-of-function Shp2 activity results in dysregulated PI3K signaling, contributing to the leukemic phenotype of increased proliferation and survival; (2) PI3K signaling is reduced but not completely normalized in the absence of the main regulatory subunit, p85α and its isoforms, in gain-of-function mutant Shp2-expressing cells; and (3) there is cross-talk between the PI3K and MAPK pathways in the presence of Shp2 activating mutations, which is revealed by knocking out Pik3r1. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2551-2551
Author(s):  
Peter P. Ruvolo ◽  
Rui-yu Wang ◽  
Vivian R Ruvolo ◽  
Rodrigo Jacamo ◽  
Teresa McQueen ◽  
...  

Abstract Glycogen Synthase Kinase 3β (GSK3β) is a key regulator of cell metabolism, proliferation, survival, and differentiation. The kinase has abundant substrates including many proteins in the canonical WNT pathway. Considering that GSK3β phosphorylation of many pro-survival proteins result in their degradation (e.g MYC, MCL-1), it is not surprising that GSK3β activation by stress challenge leads to cell cycle arrest and/or apoptosis. GSK3β is negatively regulated by serine 9 phosphorylation mediated by Protein Kinase B (AKT). Since AKT activation supports survival of AML cells and inactivation of GSK3β could suppress stress signaling events, we hypothesize that serine 9 phosphorylation of GSK3β (p-GSK3β ) will be detrimental for AML patients. In the current study, we analyzed GSK3β expression by Reverse Phase Protein Analysis (RPPA) in a cohort of 511 AML patients. GSK3β expression was correlated with patient survival data and disease characteristics such as French-American-British (FAB) classification, cytogenetics, and mutational status. High levels of p-GSK3β were found to correlate with adverse outcome for survival and complete remission duration (CR) in patients with intermediate cytogenetics but not in those with unfavorable cytogenetics. CR was only 45 weeks in the third of patients with highest p-GSK3β levels compared to 98 weeks for patients with low levels (p = 0.008; N = 121). Even intermediate cytogenetic patients with FLT3 mutation fared better when p-GSK3β levels were lower (50 versus 24 weeks; p = 0.009; N = 35). Expression of GSK3β and its phosphorylated form was compared with expression of 229 other proteins using RPPA in the AML patient cohort. Consistent with p-GSK3β as an indicator of AKT activation, RPPA revealed that p-GSK3β is positively correlated with phosphorylation of AKT (S473), BAD (S136), and P70S6K. In addition, p-GSK3β negatively correlated with FOXO3A (which is degraded after phosphorylation by AKT). Bone marrow mesenchymal stem cells (BM MSCs) are a critical component of the leukemic microenvironment but how these cells modulate the survival of leukemia cells is not clear. RPPA analysis was performed on BM MSC from healthy donor (N = 71) and BM MSCs from AML patients (N = 106). Interestingly, both total and phosphorylated GSK3 were found to be elevated in the AML samples suggesting that AKT is also activated in the leukemic MSCs. In vitro models of the BM microenvironment suggest that the AKT pathway is activated in both the leukemic and supporting stromal cells so this finding is consistent with these models (Konopleva and Andreeff, Curr Drug Targets. 2007; 8: 685). Unlike in AML blast cells, FOXO3A was not correlated with GSK3β phosphorylation in the MSCs. Examination of miRs in normal versus AML BM MSCs using microarray analysis and validated by qRT-PCR indicate that miR-21 is elevated in the MSC of the normal individuals. As miR-21 is suppressed by FOXO3A, this finding supports the notion that AKT is active in the AML BM MSCs but FOXO3A may not be functional. This possibility is plausible as induction of FOXO3A results in apoptosis in MSC (Djouad Cloning Stem Cells. 2009; 11:407). Conclusion These findings suggest that AKT mediated phosphorylation of GSK3β may be detrimental to AML patients and p-GSK3β may serve as an important prognostic factor for at least a subset of AML patients. The results also suggest that activation of AKT can occur in both the malignant cells and MSC cells in the leukemic microenvironment. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document