Notch2 Signaling Inhibits Differentiation and Promotes Self Renewal of Hematopoietic Stem and Progenitor Cells During Marrow Regeneration.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2544-2544
Author(s):  
Barbara Varnum-Finney ◽  
Irwin D. Bernstein

Abstract Abstract 2544 Poster Board II-521 Notch regulates numerous lineage choices during vertebrate development, and although ex vivo studies suggest that Notch regulates hematopoietic stem cell (HSC) and multipotential progenitor (MPP) differentiation, a functional role for Notch in HSC/MPP self renewal in vivo remains controversial. We previously reported a Notch2 signaling role during bone marrow (BM) recovery following injection with chemotherapeutic agent 5-fluorouracil (5FU), where Notch2 signaling impedes myeloid differentiation, allowing for generation of sufficient numbers of progenitor cells. Herein, we examine a Notch2 signaling role in HSC as well as progenitor cell self renewal by enumerating generation of HSC and short term repopulating cells in lethally irradiated recipients (Ly5.1+) transplanted with a limiting number (5 × 105) of BM cells from either control mice or from mice bearing Cre-LoxP-inducible Notch2 deletions (Ly5.2+). In recipient mice transplanted with control BM, recovery was evident from Day11 to Day13 post transplant when significantly more than the initial post-irradiation number of 9.0 × 106 BM cells was seen in the recovering marrow. In recovering mice, recipients receiving control cells generated more BM cells than did recipients receiving Notch2-deficient cells. Furthermore, mice receiving control cells generated significantly more donor Sca-1+c-kit+ (SK+) cells than recipients receiving Notch2-deficient BM cells [44.4×103 (s.e.m.+/− 14×103) vs 8.2×103 (s.e.m.+/−1.5×103), respectively, p=0.001]. To quantitate the generation of short term repopulating cells, secondary radioprotection assays were performed. Irradiated secondary recipient mice received 1×106 BM cells from the primary recipients previously transplanted with either control cells or Notch2-deficient cells. Secondary recipients receiving cells from primary control transplants survived significantly longer than those receiving cells from primary Notch2-deficient transplants or than irradiated mice receiving no cells (n=4, p=0.01), indicating Notch2 is required to generate sufficient numbers of cells to provide radioprotection. To quantitate long term HSC generated in the recovering marrow, competitive repopulating units (CRU) were enumerated by performing secondary transplants in which 4-doses of BM cells ranging from 4 × 104 to 5 × 106 cells from primary transplants were injected into secondary recipients along with 1 × 105 Ly5.1+ competing cells. Enumeration of CRU at 2 weeks post transplant confirmed the number of short term repopulating cells was significantly decreased in mice transplanted with Notch2-deficient cells compared to mice transplanted with control cells [(1.3 CRU vs 8.8 CRU / 1×106 BM cells, respectively), p=0.0004)]. Enumeration of CRU at 9 weeks post transplant indicated HSC numbers were also significantly decreased in mice transplanted with Notch2-deficient cells compared to mice transplanted with control cells [(0.1 CRU vs 0.7 CRU / 1×106 BM cells, respectively), p=0.02]. Taken together, our results demonstrate a role for Notch2 in enhancing generation of long term HSC as well as short term repopulating cells and suggests that Notch2 signaling regulates a hierarchy of events to assure the initial repopulation by HSC and MPP, while delaying myeloid differentiation during hematopoietic regeneration. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 5 (17) ◽  
pp. 3362-3372
Author(s):  
Yinghui Li ◽  
Wenshan Zhang ◽  
Yu Zhang ◽  
Yahui Ding ◽  
Ming Yang ◽  
...  

Abstract The use of umbilical cord blood transplant has been substantially limited by the finite number of hematopoietic stem and progenitor cells in a single umbilical cord blood unit. Small molecules that not only quantitatively but also qualitatively stimulate enhancement of hematopoietic stem cell (HSC) self-renewal ex vivo should facilitate the clinical use of HSC transplantation and gene therapy. Recent evidence has suggested that the cyclin-dependent kinase inhibitor, p18INK4C (p18), is a critical regulator of mice HSC self-renewal. The role of p18 in human HSCs and the effect of p18 inhibitor on human HSC expansion ex vivo need further studies. Here we report that knockdown of p18 allowed for an increase in long-term colony-forming cells in vitro. We then identified an optimized small molecule inhibitor of p18, 005A, to induce ex vivo expansion of HSCs that was capable of reconstituting human hematopoiesis for at least 4 months in immunocompromised mice, and hence, similarly reconstituted secondary recipients for at least 4 more months, indicating that cells exposed to 005A were still competent in secondary recipients. Mechanistic studies showed that 005A might delay cell division and activate both the Notch signaling pathway and expression of transcription factor HoxB4, leading to enhancement of the self-renewal of long-term engrafting HSCs and the pool of progenitor cells. Taken together, these observations support a role for p18 in human HSC maintenance and that the p18 inhibitor 005A can enhance the self-renewal of long-term HSCs.



Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3654-3654
Author(s):  
Jean Hendy ◽  
Stewart A Fabb ◽  
Meaghan Wall ◽  
Paul J Simmons ◽  
Lorraine J Gudas ◽  
...  

Abstract Abstract 3654 Poster Board III-590 Homeobox (Hox) genes have been shown to play critical roles in the regulation of hematopoiesis. Unlike most other Hox genes, Hoxa1 has two alternatively spliced transcripts: full-length Hoxa1 (Hoxa1-993) and truncated Hoxa1 (Hoxa1-399), which is similar to Hoxa1-993 but lacks the homeobox domain. Roles for either of these Hox transcripts in hematopoiesis have not yet been described, and the function of Hoxa1-399 in organogenesis remains largely unknown. We found that Hoxa1-993 is expressed most strongly in hematopoietic stem cells (HSCs), less in progenitor cells and is absent in mature cells. Hoxa1-399, which is spliced within the exon of Hoxa1-993 and hence can be generated by Hoxa1-993-expressing cells, is more prominently expressed in progenitor cells than HSCs. Wildtype (WT) Hoxa1-overexpressing bone marrow (BM) cells (WT-Hoxa1-993/399 cells, abbreviated here as WT-Hoxa1) proliferated for up to 15 weeks in ex vivo culture, increasing in cell number by an average of 240-fold weekly. These cultured cells predominantly expressed Hoxa1-993, but also expressed low levels of Hoxa1-399 due to splicing occurring within the exon, and were polyclonal with various integration sites. In contrast, control- and Hoxa1-399-overexpressing BM cells proliferated for a maximum of 3 weeks, with average weekly increases of 50-fold and 7-fold respectively. Colony-forming cells (CFCs) generated by WT-Hoxa1 GFP+ BM cells had approximately 8-fold increased numbers of cells compared to control and Hoxa1-399 GFP+ BM cells (cells/CFC: WT-Hoxa1: 1.3 × 106 ± 1 × 105; control: 1.6 × 105 ± 3.9 × 104; Hoxa1-399: 3.3 × 105 ± 3.1 × 104 n=5, P<0.05 WT-Hoxa1 vs control and Hoxa1-399). There was no difference in the number of day 12 colony-forming unit-spleen (CFU-S) formed from 2500 control or WT-Hoxa1 GFP+ BM cells (11.2±0.5 and 12.6±1.3 respectively). In contrast, 2500 Hoxa1-399 GFP+ BM cells produced significantly fewer CFU-S (8.9±0.6) compared to both control and WT-Hoxa1 GFP+ BM cells (n=4, P<0.02). To assess HSC potential, lethally irradiated CD45.2+ recipients (n=6/group) were injected with 5×106 congenic CD45.1+ BM immediately post-transduction without selection (all groups had similar transduction efficiencies). All recipients had >80% donor cells (CD45.1+, GFP+/−) in their peripheral blood (PB) post-transplant. As early as 5 weeks post-transplant the average %GFP+ cells in recipients were similar for control- (28.7±4.3%) and WT-Hoxa1-overexpressing BM cells (26.4±2.0%) and multi-lineage repopulating potential in both populations persisted for 6 months post-transplant. Strikingly, BM cells overexpressing Hoxa1-399 had markedly reduced repopulating ability as early as 5 weeks post-transplant (4.1±0.6% GFP+, P<0.05 Hoxa1-399 vs. control or WT-Hoxa1), which declined further during 6 months of transplant. To further explore the role of Hoxa1-993 and Hoxa1-399 in hematopoiesis, we created a mutant Hoxa1 that expressed Hoxa1-993 but was no longer capable of generating Hoxa1-399 (muHoxa1-993). MuHoxa1-993-overexpressing BM cells had extensive proliferative potential in culture and produced approximately 2-fold more cells per CFC than WT-Hoxa1 (cells/CFC: muHoxa1-993: 2.1 × 106 ± 2 × 105; P<0.05 vs WT-Hoxa1, Hoxa1-399 and control). MuHoxa1-993-overexpressing HSCs had long-term multi-lineage repopulating potential but generated significantly increased numbers of CD4+ T lymphocytes accompanied by reduced numbers of B220+ B lymphocytes (P<0.005). Most strikingly, mice transplanted with muHoxa1-993-overexpressing BM cells exhibited thrombocytopenia as early as 5 weeks post-transplant (platelet counts (x 106) per ml of PB: control: 640 ± 79; WT-Hoxa1: 735 ± 97; muHoxa1-993: 231 ± 36; P<0.005 muHoxa1-993 vs control and WT-Hoxa1). This thrombocytopenia persisted long-term and inversely correlated with the %GFP+ muHoxa1-993-overexpressing cells detectable in the peripheral blood of the transplanted mice. Preliminary data suggest the thrombocytopenia occurs because of an impairment in megakaryocyte maturation. These data therefore suggest that both Hoxa1-993 and Hoxa1-399 have regulatory roles in hematopoiesis. Furthermore, a balance in the expression of the two Hoxa1 transcripts is essential for normal proliferation and differentiation of HSCs and progenitor cells. Disclosures: No relevant conflicts of interest to declare.



Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1273-1273 ◽  
Author(s):  
Christina Termini ◽  
Michelle Li ◽  
Joyce Kim ◽  
Liman Zhao ◽  
John P Chute

Abstract Syndecans are transmembrane glycoproteins, which can regulate cell proliferation, growth, and adhesion through interactions with neighboring proteins within the plasma membrane or at the cytoplasmic interface. Although syndecans have been described to regulate aberrant signaling in hematological malignances, the role of syndecans in regulating normal hematopoietic stem cell (HSC) proliferation, differentiation, and self-renewal is largely unknown. We demonstrate that syndecan-1 and syndecan-3 are expressed on the surface of < 10% of murine hematopoietic stem and progenitor cells, whereas, syndecan-4 is expressed on 50% of lineage negative (Lin-) progenitor cells and 98% of c-Kit+Sca-1+Lin- (KSL) hematopoietic stem/progenitor cells, KSL CD34-CD48-CD150+/- short-term HSCs, and 100% of CD34-CD48-CD150+ long-term HSCs. Interestingly, we find that syndecan-2 is expressed by 11% of KSL CD34-CD48-CD150+/- short-term HSCs and 36% of CD34-CD48-CD150+ long-term HSCs. More specifically, our data demonstrate a 15-fold increase in syndecan-2 surface expression on KSL CD34-CD48-CD150+ HSCs compared to Lin- progenitor cells (p<.0001, ****). Collectively, these data suggest that syndecan-2 may be a marker for long-term HSCs. In keeping with this hypothesis, we found that syndecan-2+ CD34- KSL cells produce two-fold more granulocyte, erythrocyte, monocyte, megakaryocyte (GEMM) colonies compared to syndecan-2- CD34- KSL cells (p=.0017, **). Cell cycle analyses revealed a significant increase in BrdU incorporation in syndecan-2+ KSL cells compared to syndecan-2- KSL cells (90% versus 40%, p<.0001, ****). Competitive repopulation assays comparing syndecan-2+ or syndecan-2- CD34- KSL bone marrow cells demonstrated that mice transplanted with syndecan-2+ CD34- KSL cells displayed threefold increased donor multilineage hematopoietic cell repopulation compared to mice transplanted with syndecan-2- CD34- KSL cells. These data suggest that syndecan-2 expression marks a highly proliferative population of HSCs with increased multilineage repopulating capacity and that syndecan-2+ HSCs can be readily isolated to enhance the efficacy of hematopoietic cell transplantation. Disclosures No relevant conflicts of interest to declare.



Blood ◽  
2008 ◽  
Vol 111 (5) ◽  
pp. 2621-2630 ◽  
Author(s):  
Aleksandra Rizo ◽  
Bert Dontje ◽  
Edo Vellenga ◽  
Gerald de Haan ◽  
Jan Jacob Schuringa

The polycomb group (PcG) gene BMI1 has been identified as one of the key epigenetic regulators of cell fates during different stages of development in multiple murine tissues. In a clinically relevant model, we demonstrate that enforced expression of BMI1 in cord blood CD34+ cells results in long-term maintenance and self-renewal of human hematopoietic stem and progenitor cells. Long-term culture-initiating cell frequencies were increased upon stable expression of BMI1 and these cells engrafted more efficiently in NOD-SCID mice. Week 5 cobblestone area-forming cells (CAFCs) were replated to give rise to secondary CAFCs. Serial transplantation studies in NOD-SCID mice revealed that secondary engraftment was only achieved with cells overexpressing BMI1. Importantly, BMI1-transduced cells proliferated in stroma-free cytokine-dependent cultures for more than 20 weeks, while a stable population of approximately 1% to 5% of CD34+ cells was preserved that retained colony-forming capacity. Whereas control cells lost most of their NOD-SCID engraftment potential after 10 days of ex vivo culturing in absence of stroma, NOD-SCID multilineage engraftment was retained by overexpression of BMI1. Thus, our data indicate that self-renewal of human hematopoietic stem cells is enhanced by BMI1, and we classify BMI1 as an intrinsic regulator of human stem/progenitor cell self-renewal.



Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 650-650
Author(s):  
Iman Fares ◽  
Jalila Chagaroui ◽  
Yves Gareau ◽  
Stéphane Gingras ◽  
Nadine Mayotte ◽  
...  

Abstract The widespread use of cord blood (CB) unit in transplantation is limited with low number of long-term hematopoietic stem cells (LT-HSCs) and progenitors. Several approaches have been developed to expand HSC ex vivo such as automated and continuous medium delivery (fed-batch), notch delta ligand and SR1 (antagonist of aryl hydrocarbon receptor (AhR)). Concurrent with these studies, we hypothesized that small molecule with potent LT-HSC stimulating activity might be identified and potentiated in fed-batch culture system. Accordingly, we tested a library of more than 5000 small molecules for their in vitro expansion of CD34+CD45RA- cells. Most of the identified hits, except one (UM729) synthesized in our institute, suppress AhR pathway. Structure activity relationship was performed on UM729 to generate a more potent analog named UM171. This optimized molecule was 10-20 times more potent with an effective concentration of 15-20 nM when tested for its ability to expand CD34+CD45RA- cells. When compared to SR1, UM171 delivered in a fed-batch system for 12 and 16 days showed a better expansion of HSC phenotypes and lower apoptotic cell number compared to SR1 or DMSO controls. Also, UM171-expaned cultures showed higher number in multipotent progenitors (CFU-GEMM) and long term initiating cells (LTC-IC) compared to DMSO controls. Further studies showed the UM171 did not affect division rate, and its effect in expanding HSC phenotype was reversible. When combined with SR1, UM171 showed a better suppression of differentiation and led to a higher CFU-GEMM expansion compared to the single treatment of the compounds or DMOS controls. These observations suggest that UM171+SR1 cooperate to enhance ex vivo expansion of progenitor cells and suppress differentiation. To determine the in vivo activity of the expanded CD34+ CB cells, we transplanted fresh (un-manipulated) and 12-day cultured cells in NSG mice and monitored the human hematopoietic reconstitution after 20 and 30 weeks post-transplantation. Frequencies of day0 equivalent LT-HSCs were 13-fold higher in UM171 expanded cultures compared to fresh or fed-batch cultures supplemented with DMSO or SR1. Secondary experiments indicated that UM171 ex vivo treatment did not appear to affect the capability of LT-HSC to expand in primary recipients and hence similarly reconstituted secondary animals for at least 18 more weeks. This suggests that UM171 expands LT-HSC ex vivo without losing their engraftment potential. To further investigate UM171 mechanism of action, RNA- Seq expression profiling was performed. Unlike SR1 or DMSO controls, UM171 treatment was accompanied by a marked suppression of transcripts associated with erythroid and megakaryocytic differentiation and up-regulation of membrane protein transcripts such as EPCR and TEMEM 183a. In summery, UM171 is the first molecule identified so far that enables a robust ex vivo expansion of human CD34+ CB cells that sustain their in vivo activity independent of AhR suppression. Conversely, AhR suppression was limited to expand cells with less durable self-renewal potential. This study could enhance the use of small yet well HLA-matched CB units to become a prioritized source for stem cells transplantation. Disclosures No relevant conflicts of interest to declare.



Blood ◽  
2011 ◽  
Vol 117 (23) ◽  
pp. 6083-6090 ◽  
Author(s):  
Ann Dahlberg ◽  
Colleen Delaney ◽  
Irwin D. Bernstein

AbstractDespite progress in our understanding of the growth factors that support the progressive maturation of the various cell lineages of the hematopoietic system, less is known about factors that govern the self-renewal of hematopoietic stem and progenitor cells (HSPCs), and our ability to expand human HSPC numbers ex vivo remains limited. Interest in stem cell expansion has been heightened by the increasing importance of HSCs in the treatment of both malignant and nonmalignant diseases, as well as their use in gene therapy. To date, most attempts to ex vivo expand HSPCs have used hematopoietic growth factors but have not achieved clinically relevant effects. More recent approaches, including our studies in which activation of the Notch signaling pathway has enabled a clinically relevant ex vivo expansion of HSPCs, have led to renewed interest in this arena. Here we briefly review early attempts at ex vivo expansion by cytokine stimulation followed by an examination of our studies investigating the role of Notch signaling in HSPC self-renewal. We will also review other recently developed approaches for ex vivo expansion, primarily focused on the more extensively studied cord blood–derived stem cell. Finally, we discuss some of the challenges still facing this field.



Blood ◽  
1998 ◽  
Vol 92 (12) ◽  
pp. 4612-4621 ◽  
Author(s):  
M.A. Dao ◽  
K. Hashino ◽  
I. Kato ◽  
J.A. Nolta

Abstract Recent reports have indicated that there is poor engraftment from hematopoietic stem cells (HSC) that have traversed cell cycle ex vivo. However, inducing cells to cycle in culture is critical to the fields of ex vivo stem cell expansion and retroviral-mediated gene therapy. Through the use of a xenograft model, the current data shows that human hematopoietic stem and progenitor cells can traverse M phase ex vivo, integrate retroviral vectors, engraft, and sustain long-term hematopoiesis only if they have had the opportunity to engage their integrin receptors to fibronectin during the culture period. If cultured in suspension under the same conditions, transduction is undetectable and the long-term multilineage regenerative capacity of the primitive cells is severely diminished.



Blood ◽  
2000 ◽  
Vol 96 (5) ◽  
pp. 1748-1755 ◽  
Author(s):  
David Bryder ◽  
Sten E. W. Jacobsen

Abstract Although long-term repopulating hematopoietic stem cells (HSC) can self-renew and expand extensively in vivo, most efforts at expanding HSC in vitro have proved unsuccessful and have frequently resulted in compromised rather than improved HSC grafts. This has triggered the search for the optimal combination of cytokines for HSC expansion. Through such studies, c-kit ligand (KL), flt3 ligand (FL), thrombopoietin, and IL-11 have emerged as likely positive regulators of HSC self-renewal. In contrast, numerous studies have implicated a unique and potent negative regulatory role of IL-3, suggesting perhaps distinct regulation of HSC fate by different cytokines. However, the interpretations of these findings are complicated by the fact that different cytokines might target distinct subpopulations within the HSC compartment and by the lack of evidence for HSC undergoing self-renewal. Here, in the presence of KL+FL+megakaryocyte growth and development factor (MGDF), which recruits virtually all Lin−Sca-1+kit+ bone marrow cells into proliferation and promotes their self-renewal under serum-free conditions, IL-3 and IL-11 revealed an indistinguishable ability to further enhance proliferation. Surprisingly, and similar to IL-11, IL-3 supported KL+FL+MGDF-induced expansion of multilineage, long-term reconstituting activity in primary and secondary recipients. Furthermore, high-resolution cell division tracking demonstrated that all HSC underwent a minimum of 5 cell divisions, suggesting that long-term repopulating HSC are not compromised by IL-3 stimulation after multiple cell divisions. In striking contrast, the ex vivo expansion of murine HSC in fetal calf serum-containing medium resulted in extensive loss of reconstituting activity, an effect further facilitated by the presence of IL-3.



Blood ◽  
2003 ◽  
Vol 102 (13) ◽  
pp. 4369-4376 ◽  
Author(s):  
James C. Mulloy ◽  
Jorg Cammenga ◽  
Francisco J. Berguido ◽  
Kaida Wu ◽  
Ping Zhou ◽  
...  

AbstractHematopoiesis is a complex process involving hematopoietic stem cell (HSC) self-renewal and lineage commitment decisions that must continue throughout life. Establishing a reproducible technique that allows for the long-term ex vivo expansion of human HSCs and maintains self-renewal and multipotential differentiation will allow us to better understand these processes, and we report the ability of the leukemia-associated AML1-ETO fusion protein to establish such a system. AML1-ETO-transduced human CD34+ hematopoietic cells routinely proliferate in liquid culture for more than 7 months, remain cytokine dependent for survival and proliferation, and demonstrate self-renewal of immature cells that retain both lymphoid and myeloid potential in vitro. These cells continue to express the CD34 cell surface marker and have ongoing telomerase activity with maintenance of telomere ends, however they do not cause leukemia in nonobese diabetic-severe combined immunodeficiency (NOD/SCID) mice. Identification of the signaling pathways that are modulated by AML1-ETO and lead to the self-renewal of immature human progenitor cells may assist in identifying compounds that can efficiently expand human stem and progenitor cells ex vivo. (Blood. 2003; 102:4369-4376)



Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1329-1329
Author(s):  
Aleksandra Rizo ◽  
Edo Vellenga ◽  
Gerald de Haan ◽  
Jan Jacob Schuringa

Abstract Hematopoietic stem cells (HSCs) are able to self-renew and differentiate into cells of all hematopoietic lineages. Because of this unique property, they are used for HSC transplantations and could serve as a potential source of cells for future gene therapy. However, the difficulty to expand or even maintain HSCs ex vivo has been a major limitation for their clinical applications. Here, we report that overexpression of the Polycomb group gene Bmi-1 in human cord blood-derived HSCs can potentially overcome this limitation as stem/progenitor cells could be maintained in liquid culture conditions for over 16 weeks. In mouse studies, it has been reported that increased expression of Bmi-1 promotes HSC self-renewal, while loss-of-function analysis revealed that Bmi-1 is implicated in maintenance of the hematopoietic stem cells (HSC). In a clinically more relevant model, using human cord blood CD34+ cells, we have established a long-term ex-vivo expansion method by stable overexpression of the Bmi-1 gene. Bmi-1-transduced cells proliferated in liquid cultures supplemented with 20% serum, SCF, TPO, Flt3 ligand, IL3 and IL6 for more than 4 months, with a cumulative cell expansion of more then 2×105-fold. The cells remained cytokine-dependent, while about 4% continued to express CD34 for over 20 weeks of culture. The cultured cells retained their progenitor activity throughout the long-term expansion protocol. The colony-forming units (CFUs) were present at a frequency of ~ 30 colonies per 10 000 cells 16 weeks after culture and consisted of CFU-GM, BFU-E and high numbers of CFU-GEMM type progenitors. After plating the transduced cells in co-cultures with the stromal cell line MS5, Bmi-1 cells showed a proliferative advantage as compared to control cells, with a cumulative cell expansion of 44,9 fold. The non-adherent cells from the co-cultures gave rise to higher numbers of colonies of all types (~70 colonies/10.000 cells) after 4 weeks of co-culture. The LTC-IC frequencies were 5-fold higher in the Bmi-1-transduced cells compared to control cells (1/361 v.s. 1/2077, respectively). Further studies will be focused on in-vivo transplantation of the long-term cultured cells in NOD/SCID mice to test their repopulating capacity. In conclusion, our data implicate Bmi-1 as an important modulator of human HSC self-renewal and suggest that it can be a potential target for therapeutic manipulation of human HSCs.



Sign in / Sign up

Export Citation Format

Share Document