Gene Expression Profiling Classifies Splenic Marginal Zone Lymphoma and Hairy Cell Leukemia-Variant as Related Diseases That Are Distinct From Typical Hairy Cell Leukemia.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3467-3467
Author(s):  
Sarah L Hockley ◽  
Alison Morilla ◽  
Andrew Wotherspoon ◽  
Brian A Walker ◽  
Nicholas J Dickens ◽  
...  

Abstract Abstract 3467 Poster Board III-355 Hairy cell leukemia (HCL) is an uncommon B-cell malignancy that shares some features with a variant form, HCL-variant, and splenic marginal zone lymphoma (SMZL). The distinction between these disorders can be difficult, but correct diagnosis is important for patient management and clinical outcome. The recent WHO classification has recognized SMZL as a distinct entity and HCL-variant was included in a provisional category of unclassifiable splenic lymphomas involving the splenic red pulp that also includes splenic diffuse red pulp small B-cell lymphoma (SDSL). The molecular features of these disorders are still largely uncharacterized and genomic studies have been limited due to their rarity. We have used Affymetrix gene expression microarrays to compare the transcription profiles of 31 HCL, 24 HCL-variant, 44 SMZL and 5 cases of SDSL with the aim of elucidating the relationships between these disorders and to identify novel potential therapeutic and disease-specific diagnostic targets. Total RNA was extracted from PBMC samples enriched for tumor cells (median 89%, range 70-98%) and the expression of approximately 18,000 genes was interrogated using the Affymetrix Human Exon 1.0 ST Array. Data were normalized and analyzed using Partek Genomics Suite® and differentially expressed transcripts between the disorders were identified by ANOVA. Unsupervised hierarchical clustering revealed disease-related patterns within the transcription profiles. Strikingly, the HCL-variant, SMZL and SDSL profiles clustered together and separately from those of typical HCL. Using a false discovery rate threshold of <0.001 and an expression fold-change >2 we identified 366 transcripts that distinguished HCL from HCL-variant, SMZL and SDSL. Using these same criteria, and even those less stringent, we could not identify a gene expression signature that could distinguish between HCL-variant, SMZL and SDSL. Biological interpretation of the data revealed many of the differentially expressed transcripts linked to immune response and signal transduction processes, including key oncogenes and tumor suppressor genes. Transcripts with higher expression in HCL-variant, SMZL and SDSL relative to HCL were associated with lymphocyte activation and proliferation, NFκB signaling and integrin signaling. Conversely, transcripts with higher expression in HCL relative to HCL-variant, SMZL and SDSL, comprised amongst others, pathways of antigen processing, MAP kinase signaling, JAK-STAT signaling, and FLT3 signaling. Comparison of the transcription signatures of HCL, HCL-variant and SMZL provides insight into their relationships and for the first time provides strong evidence that HCL-variant and SDSL may be variant forms of SMZL and that HCL remains as a distinct disease entity characterized by different signaling pathways. These data further strengthen our previous observation that showed that the immunoglobulin heavy chain gene (IGH) repertoire of HCL-variant is more similar to SMZL than to HCL and that, in contrast to HCL, both HCL-variant and SMZL contain subsets of cases with unmutated IGHV. Interestingly, the expression profiles of both HCL-variant and SMZL could not be discriminated based on their IGHV mutation status. We are currently performing further analyses of these data, including comparison with the expression profiles of normal B cells, with the aim of gaining further insight into the clonal history and the normal B-cell counterpart of these disorders. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4997-4997
Author(s):  
David Gonzalez ◽  
Ricardo Morilla ◽  
Alison Morilla ◽  
Monica Else ◽  
Nnenna Osuji ◽  
...  

Abstract Hairy cell leukemia (HCL) is a rare B-cell disorder, with a variant form, which differs from the former in clinical behaviour, morphology and immunophenotype. The resemblance of these malignancies to splenic marginal zone lymphoma (SMZL), has led to the suggestion that they may share a common clonal progenitor that homes within the marginal zone of the splenic germinal centres. The immunophenotype and recent global gene expression results offer some support for this view, with a similar profile seen in HCL, and a subset of memory B-cells that are localized to the marginal zone. However, studies of the mutational status of the Ig genes are controversial. The majority of HCL cases are mutated, whereas up to 30% of SMZL cases are unmutated. Further investigation to understand these differences and to identify the cell of origin in these disorders is needed. In addition, there are no data on gene expression or VH mutation in HCL-variant (HCL-v), an entity with a poorer outcome and for which there is as yet no effective therapy. We have analysed a series of 13 HCL and 23 HCL-v, for the configuration of the Ig heavy chain rearrangements. VDJH rearrangements were PCR-amplified and sequenced using an automated 3130xL sequencer (Applied Biosystems, Warrington, UK). The sequences obtained were compared to the closest germline segments using V-base (CRI, Cambridge, UK) in order to study the level of somatic hypermutation as well as gene segment usage in IgH rearrangements. The majority of the HCL (92%) showed more than 2% deviation from the closest germline VH gene segment, compared to only 17/23 (74%) in the HCL-v cases. In the mutated cases, the percentage of mutation was similar for HCL and HCL-v (mean 5.8% and 5.9%, respectively), and none of the cases appeared to show ongoing hypermutation. Within the HCL-v group, 4 out of the 6 unmutated cases used VH4-34 segment, and the remaining 2 used VH1-03. Both genes are known to be associated with autoimmune diseases, and they are excluded from the normal and malignant memory plasma cell repertoires. Also, JH5 segment was found in 47% of the HCL-v, while it was absent in the HCL repertoire. This finding is particularly interesting, as JH5 segment is normally under-represented in most normal and malignant B-cells, except for a characteristic group of IgG-expressing chronic lymphocytic leukemias. Our data suggest that HCL-v is, unlike HCL, heterogeneous regarding IgVH mutations, but has restricted IgH repertoire that, at least in some cases, might be derived from activated, self-reactive B-lymphocytes that have not experienced the germinal-centre reaction.


2020 ◽  
pp. 29-33
Author(s):  
Alyona Polishchuk ◽  
Michael Zavelevich ◽  
Daniil Gluzman

The cytological and immunocytochemical features of the lymphocytes with villous morphology in peripheral blood and bone marrow in some B-lymphoproliferative disorders were studied. The diagnosis of hairy cell leukemia, a hairy cell leukemia variant, splenic marginal zone lymphoma and splenic diffuse red pulp small B-cell lymphoma was ascertained in accordance with the new revision of the WHO classification (2016). The neoplastic cells of hairy cell leukemia were determined by the presence of high tartrate resistant acid phosphatase (TRAP) activity. Cell surface expression of CD19, CD20 and CD21 antigens was detected. Also, the expression of CD25, CD103 and CD200, and in some cases cyclin D1, was found out. CD5, CD10 and CD23 were not detected. The immunophenotype of cells in splenic marginal zone lymphoma with villous processes also corresponded to the mature B cells. The expression of CD19, CD20 and CD21 was observed in all cases, CD11c – in 50% of patients, CD25 or CD5 – in 10% of patients. In 80% of patients, the pathologic cells did not show TRAP activity. In the bone marrow and peripheral blood cells of patients with diffuse red pulp lymphoma, TRAP activity was not detected. An immunophenotype in the hairy cell leukemia variant was different from those of classic HCL (CD19+CD20+CD22+CD103+CD11c+CD5–CD10–CD23–). Characterized immunophenotypical markers, which have differential diagnostic values in several forms of lymphoid tumors of B cell origin, will be important for the choice of treatment methods and prognosis


Leukemia ◽  
2004 ◽  
Vol 18 (10) ◽  
pp. 1729-1732 ◽  
Author(s):  
V Vanhentenrijk ◽  
A Tierens ◽  
I Wlodarska ◽  
G Verhoef ◽  
C D Wolf-Peeters

Blood ◽  
1989 ◽  
Vol 74 (1) ◽  
pp. 320-325 ◽  
Author(s):  
L Visser ◽  
A Shaw ◽  
J Slupsky ◽  
H Vos ◽  
S Poppema

Monoclonal antibodies reactive with hairy cell leukemia were developed to aid in the diagnosis of this subtype of B cell chronic lymphocytic leukemia and to gain better insight into the origin of hairy cells. Three antibodies were found to be of value in the diagnosis of hairy cell leukemia. Antibody B-ly 2 can be considered a pan-B cell reagent and generally reacts similar to CD22 antibodies. Antibody B-ly 6 is reactive with the same antigen as CD11c (p150/95), an antigen that is present on hairy cell leukemia, macrophages, and a minor subpopulation of lymphocytes. Antibody B-ly 7 is a unique antibody reactive with 144 Kd antigen present only on hairy cell leukemia and a very small population of normal B lymphocytes. This subpopulation may be the counterpart of hairy cells.


2017 ◽  
Vol 35 (9) ◽  
pp. 1002-1010 ◽  
Author(s):  
Enrico Tiacci ◽  
Valentina Pettirossi ◽  
Gianluca Schiavoni ◽  
Brunangelo Falini

Hairy cell leukemia (HCL) is a chronic mature B-cell neoplasm with unique clinicopathologic features and an initial exquisite sensitivity to chemotherapy with purine analogs; however, the disease relapses, often repeatedly. The enigmatic pathogenesis of HCL was recently clarified by the discovery of its underlying genetic cause, the BRAF-V600E kinase-activating mutation, which is somatically and clonally present in almost all patients through the entire disease spectrum and clinical course. By aberrantly activating the RAF-MEK-ERK signaling pathway, BRAF-V600E shapes key biologic features of HCL, including its specific expression signature, hairy morphology, and antiapoptotic behavior. Accompanying mutations of the KLF2 transcription factor or the CDKN1B/p27 cell cycle inhibitor are recurrent in 16% of patients with HCL and likely cooperate with BRAF-V600E in HCL pathogenesis. Conversely, BRAF-V600E is absent in other B-cell neoplasms, including mimickers of HCL that require different treatments (eg, HCL-variant and splenic marginal zone lymphoma). Thus, testing for BRAF-V600E allows for a genetics-based differential diagnosis between HCL and HCL-like tumors, even noninvasively in routine blood samples. BRAF-V600E also represents a new therapeutic target. Patients’ leukemic cells exposed ex vivo to BRAF inhibitors are spoiled of their HCL identity and then undergo apoptosis. In clinical trials of patients with HCL who have experienced multiple relapses after purine analogs or who are refractory to purine analogs, a short course of the oral BRAF inhibitor vemurafenib produced an almost 100% response rate, including complete remission rates of 35% to 42%, without myelotoxicity. To further improve on these results, it will be important to clarify the mechanisms of incomplete leukemic cell eradication by vemurafenib and to explore chemotherapy-free combinations of a BRAF inhibitor with other targeted agents (eg, a MEK inhibitor and/or an anti-CD20 monoclonal antibody).


2016 ◽  
Vol 11 (1) ◽  
pp. 34-36 ◽  
Author(s):  
I. A. Yakutik ◽  
L. S. Al’-Radi ◽  
H. L. Julhakyan ◽  
B. V. Biderman ◽  
A. B. Sudarikov

2013 ◽  
Vol 154 (4) ◽  
pp. 123-127
Author(s):  
Eszter Sári ◽  
Zsolt Nagy ◽  
Judit Demeter

Hairy cell leukemia is a mature B-cell non-Hogkin lymphoma characterized by unique clinical, morphological and immunhistochemical features. Patients with hairy cell leukemia usually present with splenomegaly, progressive pancytopenia and a relative indolent clinical course. The diagnosis does not always indicate immediate treatment, as treatment depends on the clinical stage of the leukemia. Asymptomatic disease without progression requires a watchful waiting policy, while other categories usually need treatment. The treatment of choice is purin nucleosid analogues (pentostatin, cladribine) which can achieve complete remission even for decades. Interferon and monoclonal CD20 antibodies can also significantly prolong tevent free survival. Unfortunately, only the latter two therapies are easily available in Hungary. Splenectomy, which was suggested as first line treatment before the era of purin nucleosid analogues, is only recommended as ultimum refugium. Although hairy cell leukemia is a well-defined lymphoproliferative disease, sometimes it is difficult to differentiate it from other similar entities such as hairy cell leukema variant, splenic marginal zone lymphoma, small lymphocytic lymphoma etc. Making the correct diagnosis is of utmost importance because of the great difference in treatment modalities. Recently, a somatic mutation was found in all analysed hairy cell leukemia samples, but not in other splenic B-cell lymphomas. This article reviews the significance of this observation and presents the different types of methods for the detection of this mutation. Orv. Hetil., 2013, 154, 123–127.


Cureus ◽  
2021 ◽  
Author(s):  
Yeshanew Teklie ◽  
Stephen Bell ◽  
Precious Idogun ◽  
Madhavi Venigalla

2004 ◽  
Vol 199 (1) ◽  
pp. 59-68 ◽  
Author(s):  
Katia Basso ◽  
Arcangelo Liso ◽  
Enrico Tiacci ◽  
Roberta Benedetti ◽  
Alessandro Pulsoni ◽  
...  

Hairy cell leukemia (HCL) is a chronic B cell malignancy characterized by the diffuse infiltration of bone marrow and spleen by cells displaying a typical “hairy” morphology. However, the nature of the HCL phenotype and its relationship to normal B cells and to other lymphoma subtypes remains unclear. Using gene expression profiling, we show here that HCL displays a homogeneous pattern of gene expression, which is clearly distinct from that of other B cell non-Hodgkin lymphomas. Comparison with the gene expression profiles of purified normal B cell subpopulations, including germinal center (GC), pre-GC (naive), and post-GC (memory) B cells, shows that HCL cells are more related to memory cells, suggesting a derivation from this B cell population. Notably, when compared with memory cells, HCL cells displayed a remarkable conservation in proliferation, apoptosis, and DNA metabolism programs, whereas they appeared significantly altered in the expression of genes controlling cell adhesion and response to chemokines. Finally, these analyses have identified several genes that are specifically expressed in HCL and whose expression was confirmed at the protein level by immunocytochemical analysis of primary HCL cases. These results have biological implications relevant to the pathogenesis of this malignancy as well as clinical implications for its diagnosis and therapy.


Sign in / Sign up

Export Citation Format

Share Document