The Novel Histone Deacetylase Inhibitor RAS2410 (Resminostat) Interferes with Important Signalling Pathways and Induces Apoptosis in Multiple Myeloma Cells.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4928-4928
Author(s):  
Philipp Baumann ◽  
Sonja Mandl-Weber ◽  
Felix Meinel ◽  
Ruediger Jankowsky ◽  
Fuat S. Oduncu ◽  
...  

Abstract Abstract 4928 Inhibition of histone deacetylase (HDAC) is a promising target for novel, anti-myeloma agents. In this study we investigated the biologic effects of the novel HDAC inhibitor RAS2410 (also known as “4SC-201”, “resminostat”) on Multiple Myeloma (MM) cells in vitro. RAS2410 is a potent, direct inhibitor of HDACs 1, 3 and 6 (IC50 = 43-72nM) representing the HDAC classes I and II. Accordingly, RAS2410 induces hyperacetylation of histone H4 in MM cells. Low micromolar concentrations of RAS2410 abrogate cell growth and strongly induce apoptosis (IC50 = 2.5-3μM in 3 out of 4 cell lines) in MM cell lines (NCI-H929, U-266, RPMI-8226, OPM-2) as well as in primary MM cells isolated from patients. At 1μM, RAS2410 induces G0/G1 cell cycle arrest in 3 out of 4 MM cell lines associated with decreased levels of cyclin D1, cdc25a, Cdk4, pRb and p53 as well as upregulation of p21. This cell cycle arrest is reflected by an inhibition of cell proliferation. RAS2410 decreases phosphorylation of 4EBP-1 and P70S6K indicating that RAS2410 induces apoptosis by interfering with Akt pathway signalling downstream of Akt. Treatment with RAS2410 results in increased protein levels of Bim and Bax and decreased levels of Bcl-xL. Caspases 3, 8 and 9 are activated by RAS2410. Furthermore, additive and synergistic effects in terms of apoptosis induction are observed for combinations of RAS2410 with melphalan, doxorubicin and the proteasome inhibitors bortezomib and S2209. In conclusion, we have identified potent anti-myeloma activity for the novel HDACi RAS2410. This study has yielded further insight into the biological sequelae of HDAC inhibition in MM and provides the rationale for in vivo studies and clinical trials using RAS2410 to improve patient outcome in MM. Disclosures Jankowsky: 4SC: Employment. Schmidmaier:4SC : Research Funding.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2987-2987 ◽  
Author(s):  
Dirk Hose ◽  
Anja Seckinger ◽  
Hartmut Goldschmidt ◽  
Tobias Meißner ◽  
Blanka Leber ◽  
...  

Abstract Abstract 2987 Background. We have recently shown HIF1A to be expressed in 95.4% of CD138-purified myeloma cell samples from previously untreated patients (n= 329), with significantly higher [lower] expression in case of presence of t(4,14) [hyperdiploidy] vs. patients without the respective aberration. This makes HIF1A an interesting target in myeloma treatment. Additionally, we have shown about 40% of myeloma cell samples to have a proliferation-index above the median plus three standard-deviations of normal bone-marrow plasma cells, and we and others have proven proliferation to be associated with adverse prognosis in myeloma. Here, we report on 2 members of a novel class of sulfonanilides, their preclinical activity and pharmacology, and their dual mechanism of action, targeting HIF1A-signaling and inducing apoptosis via cell cycle arrest and tubulin depolymerization. Patients and Methods. The effect of the novel sulfonanilides ELR510444 and ELR510552 on the proliferation of 20 human myeloma cell lines and the survival of 5 primary myeloma cell-samples cultured within their microenvironment were tested. The results of efficacy studies in in two murine models (RPMI8226-xenograft-model and 5T33-model) are also presented. The mechanism of action was investigated using a variety of in-vitro assays (see below). Results. Preclinical activity in Myeloma. i) The sulfonanilides ELR510444 and ELR510552 completely inhibit proliferation of 20/20 tested myeloma cell lines at low nM concentrations and ii) induce apoptosis in 5/5 primary myeloma cell-samples at 6.4 – 32 nM concentration, without major effect on the bone marrow microenvironment. iii) They significantly inhibit tumor growth (xenograft; RPMI8226 mouse model, 6 mg p.o. bid for ELR510444, 15 mg p.o. bid for ELR510552) and bone marrow infiltration (5T33-model; ELR510444, 6 mg/kg p.o. bid × 4d, rest 3d (cycle)). Mechanism of action. Apoptosis induction and G2/M-block. i) Both compounds lead to caspase-3/7 activation and subsequent apoptosis with cellular EC50 values of 50–100 nM. ii) The compounds induce an initial cellular arrest in G2/M and a significant tubulin depolymerizing effect, followed by an increase in a sub-G1 (apoptotic) population after 24h. HIF1A-inhibition. i) Both compounds show a potent inhibition of HIF1A signaling in a cell based reporter assay (HRE-bla HCT-116) at EC50s of 1–25nM, whereas ii) at concentrations of 1 μ M, neither of the compounds shows an effect in assay systems monitoring the JAK/STAT, NFκB, PI3K/AKT/FOXO or Wnt/β-catenin-signaling pathways. iii) Kinase inhibition profiling showed no significant inhibition at 1μ M in two assays assessing 100 (Invitrogen) and 442 (Ambit) kinases, respectively. Pre-clinical pharmacology. Single dose exposure of 25 mg p.o. yields a maximum concentration of 1.1 μ M with a half life time of 3.6 hours (ELR510444) and 2.7 μ M and 6.6 h (ELR510552) in mice, respectively. The compounds are well-tolerated at levels that are significantly above the in vitro EC50 in all myeloma cell lines and primary samples tested. Conclusion. ELR510444 and ELR510552 are very active on all tested myeloma cell lines and primary myeloma cells without major impact on the bone marrow microenvironment, and show activity in two different mouse models. The compounds inhibit HIF1A-signaling and induce apoptosis via cell cycle arrest and tubulin depolymerization. Preclinical pharmacology data show favorable in vivo profiles with exposure levels in mice significantly higher than concentrations required for in vitro activity. Therefore, this novel class of compounds represents a promising weapon in the therapeutic arsenal against multiple myeloma entering a phase I/II trial within the next year. Disclosures: Leber: ELARA Pharmaceuticals GmbH: Employment. Janssen:ELARA Pharmaceuticals GmbH: Employment. Lewis:ELARA Pharmaceuticals GmbH: Employment. Schultes:ELARA Pharmaceuticals GmbH: Employment.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Xiaohong Zhou ◽  
Christina Monnie ◽  
Maria DeLucia ◽  
Jinwoo Ahn

Abstract Background Vpr is a virion-associated protein that is encoded by lentiviruses and serves to counteract intrinsic immunity factors that restrict infection. HIV-1 Vpr mediates proteasome-dependent degradation of several DNA repair/modification proteins. Mechanistically, Vpr directly recruits cellular targets onto DCAF1, a substrate receptor of Cullin 4 RING E3 ubiquitin ligase (CRL4) for poly-ubiquitination. Further, Vpr can mediate poly-ubiquitination of DCAF1-interacting proteins by the CRL4. Because Vpr-mediated degradation of its known targets can not explain the primary cell-cycle arrest phenotype that Vpr expression induces, we surveyed the literature for DNA-repair-associated proteins that interact with the CRL4-DCAF1. One such protein is SIRT7, a deacetylase of histone 3 that belongs to the Sirtuin family and regulates a wide range of cellular processes. We wondered whether Vpr can mediate degradation of SIRT7 via the CRL4-DCAF1. Methods HEK293T cells were transfected with cocktails of plasmids expressing DCAF1, DDB1, SIRT7 and Vpr. Ectopic and endogeneous levels of SIRT7 were monitered by immunoblotting and protein–protein interactions were assessed by immunoprecipitation. For in vitro reconstitution assays, recombinant CRL4-DCAF1-Vpr complexes and SIRT7 were prepared and poly-ubiqutination of SIRT7 was monitored with immunoblotting. Results We demonstrate SIRT7 polyubiquitination and degradation upon Vpr expression. Specifically, SIRT7 is shown to interact with the CRL4-DCAF1 complex, and expression of Vpr in HEK293T cells results in SIRT7 degradation, which is partially rescued by CRL inhibitor MNL4924 and proteasome inhibitor MG132. Further, in vitro reconstitution assays show that Vpr induces poly-ubiquitination of SIRT7 by the CRL4-DCAF1. Importantly, we find that Vpr from several different HIV-1 strains, but not HIV-2 strains, mediates SIRT7 poly-ubiquitination in the reconstitution assay and degradation in cells. Finally, we show that SIRT7 degradation by Vpr is independent of the known, distinctive phenotype of Vpr-induced cell cycle arrest at the G2 phase, Conclusions Targeting histone deacetylase SIRT7 for degradation is a conserved feature of HIV-1 Vpr. Altogether, our findings reveal that HIV-1 Vpr mediates down-regulation of SIRT7 by a mechanism that does not involve novel target recruitment to the CRL4-DCAF1 but instead involves regulation of the E3 ligase activity.


2004 ◽  
Vol 52 (5) ◽  
pp. 335-344 ◽  
Author(s):  
Naomi Gronich ◽  
Liat Drucker ◽  
Hava Shapiro ◽  
Judith Radnay ◽  
Shai Yarkoni ◽  
...  

BackgroundAccumulating reports indicate that statins widely prescribed for hypercholesteromia have antineoplastic activity. We hypothesized that because statins inhibit farnesylation of Ras that is often mutated in multiple myeloma (MM), as well as the production of interleukin (IL)-6, a key cytokine in MM, they may have antiproliferative and/or proapoptotic effects in this malignancy.MethodsU266, RPMI 8226, and ARH77 were treated with simvastatin (0-30 μM) for 5 days. The following aspects were evaluated: viability (IC50), cell cycle, cell death, cytoplasmic calcium ion levels, supernatant IL-6 levels, and tyrosine kinase activity.ResultsExposure of all cell lines to simvastatin resulted in reduced viability with IC50s of 4.5 μM for ARH77, 8 μM for RPMI 8226, and 13 μM for U266. The decreased viability is attributed to cell-cycle arrest (U266, G1; RPMI 8226, G2M) and cell death. ARH77 underwent apoptosis, whereas U266 and RPMI 8226 displayed a more necrotic form of death. Cytoplasmic calcium levels decreased significantly in all treated cell lines. IL-6 secretion from U266 cells was abrogated on treatment with simvastatin, whereas total tyrosine phosphorylation was unaffected.ConclusionsSimvastatin displays significant antimyeloma activity in vitro. Further research is warranted for elucidation of the modulated molecular pathways and clinical relevance.


2012 ◽  
Vol 13 (10) ◽  
pp. 5131-5136 ◽  
Author(s):  
Aied M. Alabsi ◽  
Rola Ali ◽  
Abdul Manaf Ali ◽  
Sami Abdo Radman Al-Dubai ◽  
Hazlan Harun ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (94) ◽  
pp. 91386-91393 ◽  
Author(s):  
Jianfa Zong ◽  
Dongxu Wang ◽  
Weiting Jiao ◽  
Liang Zhang ◽  
Guanhu Bao ◽  
...  

Oleiferasaponin C6 was isolated from Camellia oleifera Abel. and inhibits proliferation through inducing cell-cycle arrest and apoptosis on cancer cell lines in vitro.


2020 ◽  
Vol 13 ◽  
pp. 175628481989543
Author(s):  
Amanda Braga Bona ◽  
Danielle Queiroz Calcagno ◽  
Helem Ferreira Ribeiro ◽  
José Augusto Pereira Carneiro Muniz ◽  
Giovanny Rebouças Pinto ◽  
...  

Background: Gastric cancer is one of the most incident types of cancer worldwide and presents high mortality rates and poor prognosis. MYC oncogene overexpression is a key event in gastric carcinogenesis and it is known that its protein positively regulates CDC25B expression which, in turn, plays an essential role in the cell division cycle progression. Menadione is a synthetic form of vitamin K that acts as a specific inhibitor of the CDC25 family of phosphatases. Methods: To better understand the menadione mechanism of action in gastric cancer, we evaluated its molecular and cellular effects in cell lines and in Sapajus apella, nonhuman primates from the new world which had gastric carcinogenesis induced by N-Methyl-N-nitrosourea. We tested CDC25B expression by western blot and RT-qPCR. In-vitro assays include proliferation, migration, invasion and flow cytometry to analyze cell cycle arrest. In in-vivo experiments, in addition to the expression analyses, we followed the preneoplastic lesions and the tumor progression by ultrasonography, endoscopy, biopsies, histopathology and immunohistochemistry. Results: Our tests demonstrated menadione reducing CDC25B expression in vivo and in vitro. It was able to reduce migration, invasion and proliferation rates, and induce cell cycle arrest in gastric cancer cell lines. Moreover, our in-vivo experiments demonstrated menadione inhibiting tumor development and progression. Conclusions: We suggest this compound may be an important ally of chemotherapeutics in the treatment of gastric cancer. In addition, CDC25B has proven to be an effective target for investigation and development of new therapeutic strategies for this malignancy.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5016
Author(s):  
Aveen N. Adham ◽  
Mohamed Elamir F. Hegazy ◽  
Alaadin M. Naqishbandi ◽  
Thomas Efferth

Thymus vulgaris and Arctium lappa have been used as a folk remedy in the Iraqi Kurdistan region to deal with different health problems. The aim of the current study is to investigate the cytotoxicity of T. vulgaris and A. lappa in leukemia and multiple myeloma (MM) cell lines and determine the mode of cell death triggered by the most potent cytotoxic fractions of both plants in MM. Resazurin assay was used to evaluate cytotoxic and ferroptosis activity, apoptosis, and modulation in the cell cycle phase were investigated via Annexin V-FITC/PI dual stain and cell-cycle arrest assays. Furthermore, we used western blotting assay for the determination of autophagy cell death. n-Hexane, chloroform, ethyl acetate, and butanol fractions of T. vulgaris and A. lappa exhibited cytotoxicity in CCRF-CEM and CEM/ADR 5000 cell lines at concentration range 0.001–100 μg/mL with potential activity revealed by chloroform and ethyl acetate fractions. NCI-H929 displayed pronounced sensitivity towards T. vulgaris (TCF) and A. lappa (ACF) chloroform fractions with IC50 values of 6.49 ± 1.48 and 21.9 ± 0.69 μg/mL, respectively. TCF induced apoptosis in NCI-H929 cells with a higher ratio (71%), compared to ACF (50%) at 4 × IC50. ACF demonstrated more potent autophagy activity than TCF. TCF and ACF induced cell cycle arrest and ferroptosis. Apigenin and nobiletin were identified in TCF, while nobiletin, ursolic acid, and lupeol were the main compounds identified in ACF. T. vulgaris and A. lappa could be considered as potential herbal drug candidates, which arrest cancer cell proliferation by induction of apoptosis, autophagic, and ferroptosis.


2020 ◽  
Author(s):  
Xiaohong Zhou ◽  
Christina Monnie ◽  
maria Delucia ◽  
jinwoo ahn

Abstract Background: Vpr is a virion-associated protein that is encoded by lentiviruses and serves to counteract intrinsic immunity factors that restrict infection. HIV-1 Vpr mediates proteasome-dependent degradation of several DNA repair/modification proteins. Mechanistically, Vpr directly recruits cellular targets onto DCAF1, a substrate receptor of Cullin 4 RING E3 ubiquitin ligase (CRL4) for poly-ubiquitination. Further, Vpr can mediate poly-ubiquitination of DCAF1-interacting proteins by the CRL4. Because Vpr-mediated degradation of its known targets can not explain the primary cell-cycle arrest phenotype that Vpr expression induces, we surveyed the literature for DNA-repair-associated proteins that interact with the CRL4-DCAF1. One such protein is SIRT7, a deacetylase of histone 3 that belongs to the Sirtuin family and regulates a wide range of cellular processes. We wondered whether Vpr can mediate degradation of SIRT7 via the CRL4-DCAF1. Methods: HEK293T cells were transfected with cocktails of plasmids expressing DCAF1, DDB1, SIRT7 and Vpr. Ectopic and endogeneous levels of SIRT7 were monitered by immunoblotting and protein-protein interactions were assessed by immunoprecipitation. For in vitro reconstitution assays, recombinant CRL4-DCAF1-Vpr complexes and SIRT7 were prepared and poly-ubiqutination of SIRT7 was monitored with immunoblotting. Results: We demonstrate SIRT7 polyubiquitination and degradation upon Vpr expression. Specifically, SIRT7 is shown to interact with the CRL4-DCAF1 complex, and expression of Vpr in HEK293T cells results in SIRT7 degradation, which is partially rescued by CRL inhibitor MNL4924 and proteasome inhibitor MG132. Further, in vitro reconstitution assays show that Vpr induces poly-ubiquitination of SIRT7 by the CRL4-DCAF1. Importantly, we find that Vpr from several different HIV-1 strains, but not HIV-2 strains, mediates SIRT7 poly-ubiquitination in the reconstitution assay and degradation in cells. Finally, we show that SIRT7 degradation by Vpr is independent of the known, distinctive phenotype of Vpr-induced cell cycle arrest at the G2 phase, Conclusions: Targeting histone deacetylase SIRT7 for degradation is a conserved feature of HIV-1 Vpr. Altogether , our findings reveal that HIV-1 Vpr mediates down-regulation of SIRT7 by a mechanism that does not involve novel target recruitment to the CRL4-DCAF1 but instead involves regulation of the E3 ligase activity.


Sign in / Sign up

Export Citation Format

Share Document