TEL/PDGFβR Induces Hematologic Malignancies in Mice That Respond to a Specific Tyrosine Kinase Inhibitor

Blood ◽  
1999 ◽  
Vol 93 (5) ◽  
pp. 1707-1714 ◽  
Author(s):  
Michael H. Tomasson ◽  
Ifor R. Williams ◽  
Robert Hasserjian ◽  
Chirayu Udomsakdi ◽  
Shannon M. McGrath ◽  
...  

Abstract The TEL/PDGFβR fusion protein is expressed as the consequence of a recurring t(5;12) translocation associated with chronic myelomonocytic leukemia (CMML). Unlike other activated protein tyrosine kinases associated with hematopoietic malignancies, TEL/PDGFβR is invariably associated with a myeloid leukemia phenotype in humans. To test the transforming properties of TEL/PDGFβR in vivo, and to analyze the basis for myeloid lineage specificity in humans, we constructed transgenic mice with TEL/PDGFβR expression driven by a lymphoid-specific immunoglobulin enhancer-promoter cassette. These mice developed lymphoblastic lymphomas of both T and B lineage, demonstrating that TEL/PDGFβR is a transforming protein in vivo, and that the transforming ability of this fusion is not inherently restricted to the myeloid lineage. Treatment of TEL/PDGFβR transgenic animals with a protein tyrosine kinase inhibitor with in vitro activity against PDGFβR (CGP57148) resulted in suppression of disease and a prolongation of survival. A therapeutic benefit was apparent both in animals treated before the development of overt clonal disease and in animals transplanted with clonal tumor cells. These results suggest that small-molecule tyrosine kinase inhibitors may be effective treatment for activated tyrosine kinase–mediated malignancies both early in the course of disease and after the development of additional transforming mutations.

Blood ◽  
1999 ◽  
Vol 93 (5) ◽  
pp. 1707-1714 ◽  
Author(s):  
Michael H. Tomasson ◽  
Ifor R. Williams ◽  
Robert Hasserjian ◽  
Chirayu Udomsakdi ◽  
Shannon M. McGrath ◽  
...  

The TEL/PDGFβR fusion protein is expressed as the consequence of a recurring t(5;12) translocation associated with chronic myelomonocytic leukemia (CMML). Unlike other activated protein tyrosine kinases associated with hematopoietic malignancies, TEL/PDGFβR is invariably associated with a myeloid leukemia phenotype in humans. To test the transforming properties of TEL/PDGFβR in vivo, and to analyze the basis for myeloid lineage specificity in humans, we constructed transgenic mice with TEL/PDGFβR expression driven by a lymphoid-specific immunoglobulin enhancer-promoter cassette. These mice developed lymphoblastic lymphomas of both T and B lineage, demonstrating that TEL/PDGFβR is a transforming protein in vivo, and that the transforming ability of this fusion is not inherently restricted to the myeloid lineage. Treatment of TEL/PDGFβR transgenic animals with a protein tyrosine kinase inhibitor with in vitro activity against PDGFβR (CGP57148) resulted in suppression of disease and a prolongation of survival. A therapeutic benefit was apparent both in animals treated before the development of overt clonal disease and in animals transplanted with clonal tumor cells. These results suggest that small-molecule tyrosine kinase inhibitors may be effective treatment for activated tyrosine kinase–mediated malignancies both early in the course of disease and after the development of additional transforming mutations.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1569-1569
Author(s):  
Tereza Radosova Muchova ◽  
Eva Reznickova ◽  
Zuzana Somikova ◽  
Tomas Gucky ◽  
Miroslav Strnad ◽  
...  

Abstract Class III receptor tyrosine kinases (RTK), which include c-fms, c-kit, FMS-like tyrosine kinase receptor-3(FLT3) and platelet-derived growth factor receptor (PDGFR) α/β are expressed on acute myelogenous leukemia (AML) cells from the majority of patients and stimulate survival and proliferation of leukemic blasts. FLT3 activation cooperates, for instance, with oncogenic mixed lineage leukemia (MLL) fusion proteins in MLL-induced transformation. The most common FLT3 activation mutation, internal tandem duplication (ITD), is the most frequently observed molecular defect in AML, and it is associated with early relapses and poor prognosis. FLT3-ITD leads to constitutive, ligand-independent activation of the kinase; this results in FLT3 autophosphorylation and induction of several downstream signaling cascades including Ras/MAPK kinase (MEK)/extracellular signal-regulated kinase (ERK) and STAT5 pathways. FLT3 as well as other class III RTK have been widely accepted as suitable drug targets. Several potent inhibitors have been developed, and some of them, such as quizartinib or crenolanib, have demonstrated promising clinical outcomes. However, resistance to these inhibitors remains a significant clinical problem; therefore, development of novel inhibitors is needed. Also Src family tyrosine kinases (SFK) have been proven as therapeutic targets in multiple cancers including leukemia. Here, we developed and tested a novel series of compounds which revealed dual inhibitory activities against class III RTK and SFK, and tested them in vitro against FLT3- and PDGFRα-mutated leukemic cells and in vivo against FLT3-ITD-positive AML. First, we tested kinase selectivity of the novel compounds. Kinase-inhibitory properties were screened at single concentration of 10 nM in biochemical phosphorylation assays against 300 kinases. The compounds revealed strong and specific inhibitory activity especially against class III RTK and SFK. Then, we have used multiple cell lines harboring various oncogenic kinases to test in vitro growth inhibition potential of the compounds. The most potent newly synthesized inhibitor, designated 3922, showed EC50 values at low nanomolar concentrations against FLT3-ITD-positive cell line MV4-11 and FIP1L1-PDGFRα-positive EOL-1 cells. We also used primary cells derived from mouse bone marrow bearing inducible fusion oncogene MLL-ENL-ER (MEER) adapted to growth in cell culture (Takacova et al, 2012, Cancer Cell 21:517). Prior to drug testing, the MEER cells were grown in cell culture media to induce cytokine addiction either to stem cell factor (SCF) or to ligand of FLT3 (FLT3L). The efficacy of 3922 was 5 times more potent against FLT3L-addicted MEER cells than against SCF-addicted cells suggesting that FLT3 is the main target of 3922. We then compared the effect of 3922 on inhibition of FLT3 phosphorylation (pFLT3-Tyr589/591) with quizartinib (Zarrinkar et al, 2009, Blood 114:2984). Both compounds showed to be very efficient inhibitors of FLT3 phosphorylation at nanomolar concentrations, however, 3922 inhibitory effect had longer durability after drug withdrawal when compared with quizartinib. Finally, we determined the activity of 3922 in vivo. A single-dose of 10 mg/kg of 3922 or quizartinib was administered to the mice with subcutaneously implanted MV4-11 xenograft. Quantitation of pFLT3 revealed that the RTK was inhibited by 95% even after 2 hours administration of 3922 and this inhibition sustained 24 hours, in contrast to elevated pFLT3 24 hours after quizartinib administration (Zarrinkar et al, 2009; Gunawardane et al, 2013, Mol Cancer Ther 12:438). After 2 hours, the pERK1/2 levels were reduced by both inhibitors, however, returned to phosphorylation levels comparable to vehicle treated control in 24 hours after administration. The inhibitory effect was more pronounced on phosphorylation of STAT5. Inhibitor 3922 reduced the pSTAT5 level by more than 95% after 24 hours, slightly more effectively than quizartinib. Induction of apoptosis was assessed by PARP cleavage. Cleaved PARP was significantly elevated by 3922 even after 2 hours of treatment, with a pattern similar to the PARP cleavage induced by quizartinib (Gunawardane et al, 2013). In conclusion, we have developed a novel highly potent tyrosine kinase inhibitor effective against AML in vitro and in vivo. Acknowledgment: Supported by NV15-28951A from Ministry of Health, Czech Republic. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1522-1522
Author(s):  
Shinya Kimura ◽  
Haruna Naito ◽  
Asumi Yokota ◽  
Yuri Kamitsuji ◽  
Eri Kawata ◽  
...  

Abstract Chemical modifications of imatinib mesylate made with the guidance of molecular modeling yielded several promising compounds. Among them, we selected a compound denoted NS-187 (elsewhere described as CNS-9) on the basis of its affinity to Abl, and also to Lyn, which may be involved in imatinib-resistance (Figure). The most striking structural characteristic of NS-187 is its trifluoromethyl (CF3) group at position 3 of the benzamide ring. The presence of the CF3 group strengthened the hydrophobic interactionss of the molecule with the hydrophobic pocket of Abl. Another possible merit of the CF3 group is that it may fix the conformation of the drug by hindering its rotation at the 4-position of the benzamide ring; as a result, a CF3-bearing molecule may be more potent than more flexible compounds such as imatinib. In fact, NS-187 was 25–55 times more potent than imatinib in vitro and and at least 10 times more potent than in vivo. NS-187 also inhibited the phosphorylation and growth of all Bcr-Abl mutants tested except T315I at physiological concentrations. Another special feature of NS-187, in addition to its increased affinity to Abl is its unique spectrum of inhibitory activity against protein kinases. At a concentration of 0.1 μM, NS-187 inhibited only four of 79 tyrosine kinases, that is, Abl, Arg, Fyn, and Lyn. Notably, at 0.1 μM NS-187 did not inhibit PDGFR, Blk, Src or Yes. The IC50 values of NS-187 for Abl, Src and Lyn were 5.8 nM, 1700 nM and 19 nM, respectively, and those of imatinib were 106 nM, >10,000 nM and 352 nM, respectively. These findings indicate that NS-187 acts as a Bcr-Abl/Lyn inhibitor. In this respect, NS-187 may stand out among other novel Abl tyrosine kinase inhibitors, because BMS-354825 inhibits all members of the Src family, while AMN-107 inhibits none of the Src-family kinases. Our proposed docking models of the NS-187/Abl complex support the notion that NS-187 is more specific for Lyn than for Src. The amino acid at position 252 is either Gln or Cys in Src-family proteins. NS-187 inhibited the Gln252-bearing proteins Abl, Fyn and Lyn but had lower activity against the Cys252-bearing Src and Yes. This is probably because Gln, unlike Cys, readily forms hydrogen bonds. The distinguishing characteristic of NS-187, its high affinity for and specific inhibition of Abl and Lyn, may be useful in the treatment of Bcr-Abl-positive leukemia patients. Figure Figure


2011 ◽  
Vol 5 ◽  
pp. CMO.S6416 ◽  
Author(s):  
Marie P. Shieh ◽  
Masato Mitsuhashi ◽  
Michael Lilly

The treatment of chronic myelogenous leukemia (CML) was revolutionized by the development of imatinib mesylate, a small molecule inhibitor of several protein tyrosine kinases, including the ABL1 protein tyrosine kinase. The current second generation of FDA-approved ABL tyrosine kinase inhibitors, dasatinib and nilotinib, are more potent inhibitors of BCR-ABL1 kinase in vitro. Originally approved for the treatment of patients who were refractory to or intolerant of imatinib, dasatinib and nilotinib are now also FDA approved in the first-line setting. The choice of tyrosine kinase inhibitor (ie, standard or high dose imatinib, dasatinib, nilotinib) to use for initial therapy in chronic-phase CML (CML-CP) will not always be obvious. Therapy selection will depend on both clinical and molecular factors, which we will discuss in this review.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hu Lei ◽  
Han-Zhang Xu ◽  
Hui-Zhuang Shan ◽  
Meng Liu ◽  
Ying Lu ◽  
...  

AbstractIdentifying novel drug targets to overcome resistance to tyrosine kinase inhibitors (TKIs) and eradicating leukemia stem/progenitor cells are required for the treatment of chronic myelogenous leukemia (CML). Here, we show that ubiquitin-specific peptidase 47 (USP47) is a potential target to overcome TKI resistance. Functional analysis shows that USP47 knockdown represses proliferation of CML cells sensitive or resistant to imatinib in vitro and in vivo. The knockout of Usp47 significantly inhibits BCR-ABL and BCR-ABLT315I-induced CML in mice with the reduction of Lin−Sca1+c-Kit+ CML stem/progenitor cells. Mechanistic studies show that stabilizing Y-box binding protein 1 contributes to USP47-mediated DNA damage repair in CML cells. Inhibiting USP47 by P22077 exerts cytotoxicity to CML cells with or without TKI resistance in vitro and in vivo. Moreover, P22077 eliminates leukemia stem/progenitor cells in CML mice. Together, targeting USP47 is a promising strategy to overcome TKI resistance and eradicate leukemia stem/progenitor cells in CML.


2018 ◽  
Vol 24 (2) ◽  
pp. 267-275 ◽  
Author(s):  
Elena Marinelli Busilacchi ◽  
Andrea Costantini ◽  
Nadia Viola ◽  
Benedetta Costantini ◽  
Jacopo Olivieri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document