Combining the Ras Inhibitor Salirasib and Proteasome Inhibitors: A Potential Treatment for Multiple Myeloma

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1810-1810
Author(s):  
Shira Yaari-Stark ◽  
Yael Nevo-Caspi ◽  
Jasmine Jacob-Hircsh ◽  
Gideon Rechavi ◽  
Arnon Nagler ◽  
...  

Abstract Abstract 1810 Multiple Myeloma (MM) is characterized by clonal proliferation of malignant plasma cells that eventually develop resistance to chemotherapy. Novel agents such as Thalidomide, Bortezomib (Velcade) and Lenalidomide improve response rates and prolong progression free and overall survival. Drug resistance, differentiation block and increased survival of the MM tumor cells result from genomic alterations, including high cyclin D and fibroblast growth factor receptor 3 (FGFR3) over-expression as well as mutations in NRas. Interactions between myeloma cells and stromal cells in the tumor microenvironment play a major role in MM resistance. Particularly, activation of NF-κB-mediated upregulation of IL-6 secretion by stromal cells is in connection with signal transduction of the Ras oncogene pathway. Activating mutations of Ras have been reported in 30–50% of MM patients. KRas and NRas are the most frequent mutated, suggesting that active Ras is an appropriate target in MM. Development of oncogenic Ras isoforms can be inhibited by Ras inhibitor, farnesylthiosalicylic acid (FTS, salirasib) which also inhibits fibroblast growth factor (FGF)-stimulated Ras activation. We, therefore, compared the effects of FTS on proliferation of NCIH929 (harboring oncogenic NRas) and of two other MM cell lines, MM1.S and U266, which do not harbor oncogenic NRas. Inhibition of cell proliferation was evident by the reduction in BrdU incorporation into the DNA of cells treated for 24 h with FTS (50, 75, or 100 μM) and by counting cells stained with alamarBlue. NCIH929 responded better than the others cell lines to FTS-induced growth inhibition (P<0.05). The IC50 values were 64μM, 82μM and 82–100μM for NCIH929, MM.1S and U266 MM tumor cell lines, respectively (n=3). Treatment with FTS also significantly reduced total Ras and NRas-GTP in NCIH929 but not in the two other cell types, which was accompanied by a significant decrease in the amount of c-Myc (62±2%), p-ERK (38±5%) and p-Akt (52±1.6%) (n=3). All of these proteins are essential for the proliferation, growth, and survival of myelomas. Gene-expression patterns of control and of FTS-treated NCIH929 cells demonstrated down-regulation of FGFR3 (by 2.44 fold) and FGFR3 protein expression declined significantly (36±5%) in these cells after FTS treatment. FTS also inhibited FGF-stimulated GTP loading of wild-type NRas, and hence ERK activation, in MM-NCIH929. These findings suggested that FGFR3 acts together with NRas to activate the MAPK pathway, and also pointing to the possibility that treatment with FTS affected both early Ras-dependent signaling and long-term Ras-dependent control of gene expression and protein translation. Proteasome inhibitors have emerged as powerful tools for inhibiting NFκB activity in myelomas. We therefore examined the combined effect of the proteasome inhibitor MG132 (0.5-2.5 μM) or bortezomib (2.5μM) and the Ras inhibitor FTS (50 or 75 μM) on the growth of NCIH929 cells. Combination of FTS with the proteasome inhibitor MG132 or bortezomib yielded synergistic inhibitory effect (up to 86±6.4%) of NCIH929 MM cell growth (P<0.001; P<0.05, respectively) (n=3). Lastly, we tested the potential inhibitory capabilities of new FTS derivatives including FTS-esters and amides. The FTS-amides exhibited substantially higher activity (50% higher) than FTS itself, while the FTS-esters were completely inactive. In conclusion, the dependence of MM on FGF3R and Ras pathways make them sensitive to Ras inhibitors such as FTS. The synergistic effects of bortezomib and FTS in NCIH929 cells and presumably in MM might be explained by the two distinct pathways that they affect. Based on these results, we suggest that salirasib (FTS) may be considered, both alone and moreover in combination with proteasome inhibitors, as a potential treatment for MM. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2003 ◽  
Vol 101 (7) ◽  
pp. 2775-2783 ◽  
Author(s):  
Guido Bisping ◽  
Regine Leo ◽  
Doris Wenning ◽  
Berno Dankbar ◽  
Teresa Padró ◽  
...  

Myeloma cells express basic fibroblast growth factor (bFGF), an angiogenic cytokine triggering marrow neovascularization in multiple myeloma (MM). In solid tumors and some lymphohematopoietic malignancies, angiogenic cytokines have also been shown to stimulate tumor growth via paracrine pathways. Since interleukin-6 (IL-6) is a potent growth and survival factor for myeloma cells, we have studied the effects of bFGF on IL-6 secretion by bone marrow stromal cells (BMSCs) and its potential reverse regulation in myeloma cells. Both myeloma-derived cell lines and myeloma cells isolated from the marrow of MM patients were shown to express and secrete bFGF. Cell-sorting studies identified myeloma cells as the predominant source of bFGF in MM marrow. BMSCs from MM patients and control subjects expressed high-affinity FGF receptors R1 through R4. Stimulation of BMSCs with bFGF induced a time- and dose-dependent increase in IL-6 secretion (median, 2-fold; P < .001), which was completely abrogated by anti-bFGF antibodies. Conversely, stimulation with IL-6 enhanced bFGF expression and secretion by myeloma cell lines (2-fold;P = .02) as well as MM patient cells (up to 3.6-fold; median, 1.5-fold; P = .002). This effect was inhibited by anti–IL-6 antibody. When myeloma cells were cocultured with BMSCs in a noncontact transwell system, both IL-6 and bFGF concentrations in coculture supernatants increased 2- to 3-fold over the sum of basal concentrations in the monoculture controls. The IL-6 increase was again partially, but significantly, inhibited by anti-bFGF. The data demonstrate a paracrine interaction between myeloma and marrow stromal cells triggered by mutual stimulation of bFGF and IL-6.


Blood ◽  
2004 ◽  
Vol 103 (5) ◽  
pp. 1829-1837 ◽  
Author(s):  
Karène Mahtouk ◽  
Michel Jourdan ◽  
John De Vos ◽  
Catherine Hertogh ◽  
Geneviève Fiol ◽  
...  

Abstract We previously found that some myeloma cell lines express the heparin-binding epidermal growth factor–like growth factor (HB-EGF) gene. As the proteoglycan syndecan-1 is an HB-EGF coreceptor as well as a hallmark of plasma cell differentiation and a marker of myeloma cells, we studied the role of HB-EGF on myeloma cell growth. The HB-EGF gene was expressed by bone marrow mononuclear cells in 8 of 8 patients with myeloma, particularly by monocytes and stromal cells, but not by purified primary myeloma cells. Six of 9 myeloma cell lines and 9 of 9 purified primary myeloma cells expressed ErbB1 or ErbB4 genes coding for HB-EGF receptor. In the presence of a low interleukin-6 (IL-6) concentration, HB-EGF stimulated the proliferation of the 6 ErbB1+ or ErbB4+ cell lines, through the phosphatidylinositol 3-kinase/AKT (PI-3K/AKT) pathway. A pan-ErbB inhibitor blocked the myeloma cell growth factor activity and the signaling induced by HB-EGF. This inhibitor induced apoptosis of patients'myeloma cells cultured with their tumor environment. It also increased patients' myeloma cell apoptosis induced by an anti–IL-6 antibody or dexamethasone. The ErbB inhibitor had no effect on the interaction between multiple myeloma cells and stromal cells. It was not toxic for nonmyeloma cells present in patients' bone marrow cultures or for the growth of hematopoietic progenitors. Altogether, these data identify ErbB receptors as putative therapeutic targets in multiple myeloma.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3014-3014
Author(s):  
Giada Bianchi ◽  
Vijay G. Ramakrishnan ◽  
Teresa Kimlinger ◽  
Jessica Haug ◽  
S. Vincent Rajkumar ◽  
...  

Abstract Abstract 3014 Background: Proteasome inhibitors have proven particularly effective in treatment of multiple myeloma, the second most frequent hematologic malignancy in the western world. Bortezomib, the first in class proteasome inhibitor in clinical use, was first approved in 2003 via fast FDA track, given the remarkable activity shown during phase II clinical trials. Nevertheless, more than 50% of multiple myeloma patients did not respond to single agent bortezomib when administered as second line agent. Moreover, bortezomib is only available for intravenous administration, representing a cumbersome therapy for patients, and its use is limited by significant toxicities (especially peripheral neuropathy). MLN9708 (Millennium Pharmaceuticals, Inc.), an investigational orally available, small molecule, is a potent, specific and reversible inhibitor of the 20S proteasome. It is currently under clinical investigation for the treatment of hematologic and non-hematologic malignancies. Upon exposure to aqueous solutions or plasma, MLN9708 rapidly hydrolyzes to MLN2238, the biologically active form, and MLN2238 was used for all of the preclinical studies reported here. In vitro biochemistry studies have shown that MLN2238 has a faster dissociation rate from the proteasome compared to bortezomib, and in vivo studies of MLN2238 have shown antitumor activity in a broader range of tumor xenografts when compared to bortezomib. Given these encouraging preclinical results, we set to investigate the anti-myeloma activity of MLN2238 in vitro. Results: MLN2238 proved to have anti-proliferative and pro-apoptotic activity against a broad range of MM cell lines with EC50 at 24 hours ranging between 10 and 50 nM, even in relatively resistant MM cell lines (OPM2, DOX6, RPMI, etc.). In MM.1S cells, induction of apoptosis was time and dose dependent and related to activation of both caspase 8 and 9. When compared to MM.1S treated for 24 hours with EC50 dose of bortezomib, treatment with EC50 dose of MLN2238 resulted in the same extent of caspases cleavage occurring at an earlier time point (8-12 hours), possibly suggesting more rapid onset and/or irreversibility of apoptosis in cells treated with MLN2238. Treatment with MLN2238 was associated with early, but persistent induction of endoplasmic reticulum (ER) stress with BiP being induced 2–4 hours after treatment with EC50 dose and gradually increasing over time. While bortezomib has been associated with early induction and late decrease in proteins involved in ER stress, MLN2238 appears to induce a persistent rise in these factors, suggesting either more sustained proteasome blockade with stabilization of proteasome substrates or de-novo induction of unfolded protein response (UPR) genes. MLN2238 also proved effective in reducing phosphorylation of ERK1-2 with no overall alteration in the total ERK level, thus accounting for the observed reduction in proliferation upon treatment. Preliminary data indicate potential for additive and synergistic combination with widely used drugs, including doxorubicin and dexamethasone. Conclusion: While further clinical data are needed to establish the effectiveness of MLN2238 in the treatment of multiple myeloma, these preliminary nonclinical data, together with the favorable biochemical and pharmacokinetic properties, including oral bioavailability, make the investigational agent MLN9708 an appealing candidate for treatment of multiple myeloma. Further in vitro data could help establish whether a difference in the apoptotic mechanisms exist between MLN2238 and other proteasome inhibitors, primarily bortezomib, and could also help inform combination treatment approaches aimed at increasing effectiveness, overcoming bortezomib resistance and decreasing toxicity. Disclosures: Kumar: Celgene: Consultancy, Research Funding; Millennium: Research Funding; Merck: Consultancy, Research Funding; Novartis: Research Funding; Genzyme: Consultancy, Research Funding; Cephalon: Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3287-3287 ◽  
Author(s):  
Yu Sun ◽  
Lyubov Zaitseva ◽  
Manar S Shafat ◽  
Kristian M Bowles ◽  
Stuart A Rushworth

Abstract Background The cornerstone treatments of multiple myeloma (MM) are proteasome inhibitors bortezomib (BZ) and carfilzomib (CFZ). However, MM still remains incurable for that MM cells rapidly develop resistance to chemotherapy. Nuclear factor (erythroid-derived 2)-like 2 (NRF2) pathways have been shown to contribute to the malignant phenotypes of several cancers through effects on proliferation and drug sensitivity. NRF2 functions to rapidly change the sensitivity of the cells environment to oxidants and electrophiles by stimulating the transcriptional activation of drug metabolism and antioxidant genes. NRF2 is negatively regulated by proteasome degradation through its inhibitor KEAP1. The aim of this study was to determine if proteasome inhibitor induced NRF2 signalling orchestrates survival of MM in the bone marrow (BM) microenvironment. Methods To investigate the role of NRF2 in the MM microenvironment primary human MM and BM mesenchymal stromal cells (MSC) were obtained under UK ethical approval (LREC ref 07/H0310/146). NRF2 activity in MM and BM-MSC was measured by NRF2 protein expression, target genes expression and using promoter assays. Lentiviral mediated shRNA knockdown of NRF2 in the MM and BM-MSC. The NRF2 inhibitor, brusatol was used to verify the knockdown experiments. Results Results show that primary MM and MM cell lines have increased NRF2 activity in response to the proteasome inhibitors BZ and CFZ as measured by increased nuclear NRF2, increased NRF2 regulated genes and increased ARE activity in the promoter of heme oxygenase-1. Expression of basal NRF2 was high in the majority of primary MM cells and cell lines tested. Pharmacological inhibition and shRNA mediated knock-down of NRF2 showed a significant reduction in survival of MM cells, when treated alone and in combination with BZ or CFZ. Investigations also revealed that BM-MSC had increased NRF2 activity in response to BZ and CFZ. Moreover, knockdown of NRF2 in BM-MSC or pharmacological inhibition of NRF2 in BM-MSC/MM co-cultures reverses the protection conferred to MM by BM-MSC in response to BZ and CFZ. Conclusion: Here we show the first description of NRF2 driven cytoprotective responses in MM. We show that NRF2 in MM is activated by both BZ and CFZ which subsequently activates pro-survival mechanisms in response to proteasome inhibition. Furthermore, NRF2 is also activated in the BM microenvironment by BZ and CFZ, which also confers protection to MM. This highlights the importance of NRF2 in regulating MM drug resistance within the BM microenvironment through independent actions in both the tumour and the non-malignant BM-MSC which support it. Disclosures Rushworth: Infinity Pharmaceuticals: Research Funding.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1513-1513
Author(s):  
Philipp Baumann ◽  
Karin Mueller ◽  
Sonja Mandl-Weber ◽  
Helmut Ostermann ◽  
Ralf Schmidmaier ◽  
...  

Abstract Purpose: Multiple Myeloma (MM) is still an incurable disease. Patients become resistant to cytotoxic drugs and die of disease progression. Bortezomib is the first approved member of a new class of antineoplastic agents, the proteasome inhibitors. It has synergistic effects with genotoxic drugs and steroids in vitro and in vivo. However, single agent activity in humans is only moderate and specific toxicity (e.g. neurotoxicity) often limits its clinical use. Further proteasome inhibitors need to be developed to optimize this promising treatment option. Methods: The new proteasome inhibitor S-2209 was characterized by several assays. Inhibition of the chymotryptic activity of the human 20S proteasome was determined with the in-vivo protease inhibition assay. Additionally, proteasome inhibition was determined in isolated PBMCs from S2209-pretreated wistar rats. Inhibition of NFκB activity was determined using a NFκB reporter gene assay. Cell growth rates of MM cells (OPM-2, U266, RPMI-8226 and NCI-H929) were measured with the WST-1 assay. Induction of apoptosis was shown by flow cytometry after staining with annexin-V-FITC and propidium iodide. Intracellular signal modulation was demonstrated by western blotting. Toxicity of the substance was tested in male wistar rats. Results: The proteasome inhibition assay revealed an IC50 at ∼220nM. The NFκB inhibition assay using an A549-NFκB-SEAP transfected cell line showed an EC50 of 0.9μM. Upon incubation with S-2209, cell growth as well as cell proliferation in MM cell lines was significantly inhibited (IC50 100nM – 600nM). Furthermore, the incubation with S-2209 resulted in strong induction of apoptosis in all four MM cell lines even at nanomolar concentrations (IC50 at ∼300nm) as well as primary cells. Western blotting revealed caspase-3 cleavage and upregulon of p53 and increased phosphorylation of IκB. No induction of apoptosis was detected in PBMCs from healthy humans. Despite the administration of 5, 10 or 15mg/kg/day in wistar rats, no toxicity with respect to body weight, hepatic enzymes (ALAT ASAT, ALP), creatinin or hemoglobin was seen. Proteasome inhibition in white blood cells isolated from the treated rats was higher in the S-2209 treated animals than in control animals treated with 0.1mg/kg/d bortezomib (89% vs. 70% respectively). Conclusions: The proteasome inhibitor S-2209 inhibitis MM cell growth and induces apoptosis. This is accompanied by a strong inhibition of proteasome and of the NFκB activity. Because S-2209 shows a favourable toxicity profile in vivo, further clinical development of this promising drug is urgently needed.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1843-1843
Author(s):  
Holly Stessman ◽  
Linda B. Baughn ◽  
Aaron G. Sarver ◽  
Aatif Mansoor ◽  
Tzu G. Wu ◽  
...  

Abstract Abstract 1843 The proteasome inhibitor bortezomib (Bz) has been used extensively and with much success in the treatment of multiple myeloma (MM) patients; however, patients eventually relapse, many as non-responders to subsequent treatments with Bz making drug resistance a significant problem. Here we utilized cell lines created using a iMycCa/Bcl-xL transgenic mouse model of MM (Cheung, et al. J Clin Invest (2004) 113: 1763) to identify 1) gene expression signatures of Bz response, 2) differences in gene expression between sensitive and resistant cell lines, and 3) cytogenetic abnormalities associated with Bz sensitive and resistant phenotypes. The iMycCa/Bcl-xL transgenic mice develop plasma cell tumors with 100% penetrance and have shown strikingly strong similarities to human MM by extensive gene expression profiling (GEP), spectral karyotyping and histology (Boylan, et al. Cancer Res (2007) 67: 4069). Six cell lines created from these mice were dose escalated with Bz over approximately six months to create Bz resistant (BzR) cell lines with approximately 5–8 fold increase in IC50 to Bz compared to their sensitive counterparts. The BzR characteristics were stable, as lines grown in the absence of drug for as long as 6 months maintained drug resistance upon subsequent challenge. Notably, BzR lines showed cross resistance to other investigational proteasome inhibitors (MLN9708 and carfilzomib) while maintaining sensitivity to other chemotherapeutic agents (dexamethasone and melphalan), suggesting a common mechanism of emerging resistance to proteasome inhibitors. The results of GEP of these mouse tumor cell lines treated with Bz were compared with a recently published human drug trial where GEP was completed prior to and 48 hours after a “test dose” of Bz was administered to patients (Shaughnessy, et al. Blood (2011), ahead of print). In the mouse tumor cell lines, 116 genes were differentially expressed upon in vitro Bz treatment (p=0.001, ≥1.5 fold change). Between the mouse and human drug response data sets was an overlapping common 27-gene signature (p=1×10−25, Fishers exact test) of Bz-induced expression changes that has not previously been described. Time points were collected in these mouse cell line GEP experiments at 0, 2, 8, 16, and 24 hours after Bz treatment. A comparison of the Bz sensitive and derived BzR lines prior to drug treatment revealed a 50 gene signature (p=0.05, ≥2 fold change) that distinguishes three pairs of sensitive and resistant lines. Gene-set enrichment analyses have revealed significant pathways that are differentially regulated in the sensitive and resistant responses. Additional GEP differences were seen when time course expression patterns were examined from Bz sensitive compared to resistant tumor lines. Thus, GEP signatures that distinguish tumor lethality from resistance were identified both prior to Bz treatment, as well as in the early response to Bz. In addition, array comparative genomic hybridization on 4 pairs of mouse Bz sensitive and established BzR lines revealed not only gross differences in copy number between the differentially responding groups of cells but copy number abnormalities that may be unique to the emerging resistance. Taken together, these data indicate that this model is useful for the identification of good and poor Bz response signatures in MM. These signatures are currently being evaluated in human tumor cells from single agent bortezomib phase II and phase III clinical trials. Because the in vitro adapted tumor mouse lines can be genetically manipulated using lentiviral vectors, this model can be used as a preclinical platform to validate existing gene models with respect to Bz response, something that cannot be done using human patients. Subsequent transfer of manipulated lines into syngeneic, immunocompetent recipients can further test Bz response in vivo presenting a significant advantage of this robust mouse MM model system over other in vitro systems. Disclosures: Stessman: Millennium: The Takeda Oncology Company: Research Funding. Mansoor:Millennium: The Takeda Oncology Company: Research Funding. Janz:Millennium: The Takeda Oncology Company: Research Funding. Van Ness:Millennium: The Takeda Oncology Company: Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4701-4701
Author(s):  
Blake T. Aftab ◽  
Daniel J Anderson ◽  
Ronan Le Moigne ◽  
Stevan Djakovic ◽  
Eugen Dhimolea ◽  
...  

Abstract Hematological malignancies such as multiple myeloma (MM) have an increased reliance on the ubiquitin proteasome system (UPS) presumably as a consequence of their high protein synthetic and secretory burden. Chemical agents that target the proteasome, such as bortezomib and carfilzomib, have been successful in treating multiple myeloma; however patients treated with these drugs ultimately relapse. The AAA-ATPase p97/VCP (p97) facilitates ATP-dependent extraction and degradation of ubiquitinated proteins destined for proteasomal elimination. In addition to ubiquitin-dependent protein degradation, p97 is also closely involved in other aspects of protein homeostasis, including endoplasmic reticulum-associated degradation (ERAD) and autophagy. Pharmacologic inhibition of p97 provides a compelling therapeutic approach for hematological malignancies that rely on tight regulation of protein homeostasis as a component of their survival. CB-5083 is a novel small molecule inhibitor of p97 ATPase activity with nanomolar enzymatic and cellular potency. Treatment of cancer cells with CB-5083 causes a dramatic increase in poly-ubiquitinated proteins as well as an accumulation of substrates of the UPS and ERAD. CB-5083 causes a profound induction of the unfolded protein response (UPR) with consequent activation of the DR5 death receptor, caspase 8, caspase 3/7 and ultimately cell death. Induction of the UPR occurs to a greater magnitude with CB-5083 when compared to the proteasome inhibitor, bortezomib, suggesting the potential for increased efficacy in cancers with sensitivity to UPR-mediated cell death. In addition, activation of apoptosis and cell death occur more rapidly with CB-5083 than with bortezomib. Sequencing of cell lines made resistant to CB-5083 reveals missense mutations mapping to the D2 ATPase site in p97, supporting on-target association with cytotoxicity. In an expanded panel of MM cell lines there is no correlation between the cytotoxic sensitivity to CB-5083 and the cytotoxic sensitivity to proteasome inhibitors, suggesting differential mechanisms of cytotoxicity and potential activity of CB-5083 in proteasome inhibitor resistant settings. Compared to myeloma cell lines, CB-5083 has reduced cytotoxic potency in immortalized stromal cell lines and in patient-derived CD138-negative bone marrow mononuclear cells. Furthermore, unlike the reduced potency demonstrated by carfilzomib in the context of MM cell-bone marrow stromal cell (BMSC) interactions, the cyto-reductive potential of CB-5083 is unaffected in co-cultures of MM cells with patient-derived BMSCs or immortalized BMSCs from healthy donors. In vivo, CB-5083 is orally bioavailable, shows a pharmacodynamic effect in tumor tissue (as measured by poly-ubiquitin accumulation) and demonstrates robust anti-tumor activity across several MM models. CB-5083 treatment of mice bearing subcutaneous xenografts leads to tumor stasis and regression in RPMI8226 and AMO1 MM models, respectively. In advanced models of disseminated, ortho-metastatic disease, intermittent oral administration of CB-5083 demonstrates significant inhibition of myeloma burden and improves survival, with an overall efficacy profile that compares favorably to that of clinically approved proteasome inhibitors. Furthermore, in the Vk*Myc genetically engineered mouse model of MM, treatment with CB-5083 results in a significant reduction in M-spike by 55%. Combination treatment of mice bearing the RPMI8226 subcutaneous xenograft model with CB-5083, dexamethasone and lenalidomide results in tumor regression. Taken together, these data demonstrate that CB-5083 is a potent and selective inhibitor of the p97 ATPase with robust activity in vitro and in vivo in numerous MM models and strongly support clinical evaluation. Based on these observations, a phase 1 dose-escalation trial has recently been initiated and is currently underway in patients with relapsed/refractory multiple myeloma. Disclosures Anderson: Cleave Biosciences: Employment. Le Moigne:Cleave Biosciences: Employment. Djakovic:Cleave Biosciences: Employment. Rice:Cleave Biosciences: Employment. Wong:Cleave Biosciences: Employment. Kumar:Cleave Biosciences: Employment. Valle:Cleave Biosciences: Employment. Menon:Cleave Biosciences: Employment. Kiss von Soly:Cleave Biosciences: Employment. Wang:Cleave Biosciences: Employment. Yao:Cleave Biosciences: Employment. Soriano:Cleave Biosciences: Employment. Bergsagel:ONYX: Consultancy; Janssen: Consultancy; BMS: Consultancy; Novartis: Research Funding. Yakes:Cleave Biosciences: Employment. Zhou:Cleave Biosciences: Employment. Wustrow:Cleave Biosciences: Employment. Rolfe:Cleave Biosciences: Employment.


2020 ◽  
Author(s):  
Rachel L. Mynott ◽  
Craig T. Wallington-Beddoe

AbstractThe aim of this study is to determine whether manipulation of the drug transporter P-glycoprotein improves the efficacy of proteasome inhibitors in multiple myeloma cells. P-glycoprotein is a well-known drug transporter that is associated with chemotherapy resistance in a number of cancers but its role in modulating the efficacy of proteasome inhibitors in multiple myeloma is not well understood. Research has shown that the second generation proteasome inhibitor carfilzomib is a substrate of P-glycoprotein and as such its efficacy may correlate with P-glycoprotein activity. In contrast to carfilzomib, research concerning the first-in-class proteasome inhibitor bortezomib is inconsistent with some reports suggesting that inhibition of P-glycoprotein increases bortezomib cytotoxicity in multiple myeloma cells whereas others have shown no effect. Through the mining of publicly available gene expression microarrays of patient bone marrow, we show that P-glycoprotein gene expression increases with the disease stages leading to multiple myeloma. However, RNA-seq on LP-1 cells treated with bortezomib or carfilzomib demonstrated minimal basal P-glycoprotein expression which did not increase with treatment. Moreover, only one (KMS-18) of nine multiple myeloma cell lines expressed P-glycoprotein, including RPMI-8226 cells that are resistant to bortezomib or carfilzomib. We hypothesised that by inhibiting P-glycoprotein, multiple myeloma cell sensitivity to proteasome inhibitors would increase, thus providing a potential approach to improving responses and reversing resistance to these agents. However, the sensitivity of multiple myeloma cells lines to proteasome inhibition was not enhanced by inhibition of P-glycoprotein with the specific inhibitor tariquidar. In addition, targeting glucosylceramide synthase with eliglustat did not inhibit P-glycoprotein activity and also did not improve proteasome inhibitor efficacy except at a high concentration. We conclude that P-glycoprotein is poorly expressed in multiple myeloma cells, its inhibition does not enhance the efficacy of proteasome inhibitors, and it is unlikely to be a useful avenue for further translational research.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4344-4344
Author(s):  
Seiichi Okabe ◽  
Yuko Tanaka ◽  
Mitsuru Moriyama ◽  
Akihiko Gotoh

Introduction: Multiple myeloma (MM) is one of the hematological malignancy and characterized by the clonal expansion of plasma cells in the bone marrow. The treatment of MM patients has been dramatically changed by new agents such as proteasome inhibitors and immunomodulatory drugs, however, many patients will relapse even if new agents provide therapeutic advantages. Therefore, a new strategy is still needed to increase MM patient survival. Hypoxia is an important component of the bone marrow microenvironment. Hypoxia may increase myeloma cell survival. Because cells shift primarily to a glycolytic mode for generation of energy in hypoxic conditions, glycolytic activities can be targeted therapeutically in MM patients. The 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB) is responsible for maintaining the cellular levels of fructose-2,6-bisphosphate which is a regulator of glycolysis. Materials and Methods: In this study, we investigated whether PFKFB was involved in myeloma cells in hypoxia condition. We also investigated whether PFKFB inhibitors could suppress myeloma cells and enhance the sensitivity of myeloma cells to proteasome inhibition. Results: We first investigated the expression of PFKBP in the myeloma cell lines in hypoxia condition. PFKFB family contains four tissue-specific isoenzymes encoded by four different genes. We found expression of PFKBP3 and PFKBP4 were increased in hypoxia condition. We found gene expression of PFKBP3 and PFKBP4 were involved in myeloma cell lines and myeloma patient samples in hypoxia condition from the public microarray datasets (GSE80140 and GSE80545). In hypoxia condition, expression of hypoxia-inducible factor 1α (HIF1α) was increased and phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) was activated in myeloma cell lines. Expression of PFKBP3 and PFKBP4 were inhibited by HIF1α inhibitor and p38 MAPK inhibitor treatment. In the hypoxia condition, activity of proteasome inhibitors were reduced compared to normoxia condition. We next investigated whether PFKBP3 inhibitor, PFK158 and PFKBP4 inhibitor, 5MPN could inhibit the proliferation of myeloma cells. We found PFK158 and 5MPN treatment inhibited the growth of myeloma cells in a dose dependent manner in hypoxia condition. Combined treatment of myeloma cells with carfilzomib and PFK158 or 5MPN caused more cytotoxicity than each drug alone. Caspase 3/7 activity and cellular cytotoxicity was also increased. We found proteasomal activity was also reduced by carfilzomib and PFK158 or 5MPN treatment. Adenosine triphosphate (ATP) is the most important source of energy for intracellular reactions. Intracellular ATP levels drastically decreased after carfilzomib and PFK158 or 5MPN treatment. Because mitochondria generate ATP and participate in signal transduction and cellular pathology and cell death. The quantitative analysis of JC-1 stained cells changed mitochondrial membrane potential in cell death, which were induced by carfilzomib and PFK158 or 5MPN on myeloma cells. In the hypoxia condition and inhibitor treatment, glycolytic activities (e.g. glucose and lactate) were changed in myeloma cells. Conclusion: The PFKBP3 and PFKBP4 are enhanced in hypoxia condition and involved in proteasome inhibitor sensitivity. Our data also suggested that administration of PFKBP3 and PFKBP4 inhibitors may be a powerful strategy against myeloma cells and enhance cytotoxic effects of proteasome inhibitors in hypoxia condition. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 5070-5070
Author(s):  
Marc J. Braunstein ◽  
Na Liu ◽  
Uwe Klueppelberg ◽  
Craig Scott ◽  
Shannon Behrman ◽  
...  

Abstract Multiple myeloma (MM) remains fatal despite prolonged survival by recent advances in treatment, including the use of proteasome inhibitors. It has been proposed that proteasome inhibitors target MM by modulating the NF-κB pathway. Alternatively, proteasome inhibitors may target MM cells because the proteasome helps alleviate the unfolded protein response (UPR) that results from the accumulation of aberrant proteins in the endoplasmic reticulum (ER), which in turn may trigger apoptosis. Indeed, the UPR is induced in neoplastic plasma cells, possibly because of increased immunoglobulin (IG) synthesis that exceeds the protein folding capacity of the ER. Consequently, the degree to which inhibition of the proteasome induces apoptosis may be related to the concentration of unfolded light chains within the ER in MM. We therefore examined whether inhibition of a protein-folding mediator, the Hsp70 molecular chaperone, results in synergistic induction of MM cell apoptosis when combined with a proteasome inhibitor. To this end, the effects of MAL3-101, a novel inhibitor of Hsp70 function, both alone and in combination with a proteasome inhibitor (MG132) on three MM cell lines as well as primary patient MM cells were examined. Dose-response and time course studies in MM cell lines U266, RPMI-8226, and NCI-H929 showed increasing apoptosis and inhibition of proliferation after 16 hours of exposure to MAL3-101 (IC50: 0.9 μM) or to MG132 (IC50: 7 μM). Strikingly, when sub-effective concentrations of MG132 and MAL3-101 were combined, a strong, synergistic apoptotic response was observed in the NCI cell line after 16 hours, and synergistic effects were observed in all cell lines after 36 hours of exposure to the two drugs. Next, we studied MM cells and endothelial progenitor cells (EPCs) derived from the bone marrow of five untreated patients. These two cell populations, which were shown to bear clonotypic similarities, also showed sensitivity to dual targeting. However, these effects occurred at drug concentrations different than those found to be most potent in the cell lines. Moreover, semi-quantitative RT-PCR studies indicated that RPMI cells but not U266 cells exhibited a strong UPR induction after 16 hours of exposure to 7 μM MG132. These data correlated with the greater degree of IG secretion observed in RPMI cells compared to U266 cells as assessed by pulse-chase analysis. Taken together, these results suggest that the apoptotic response of MM cells via targeting the UPR and ER stress pathways may be dependent on basal protein production, including IG synthesis. Studies relating the secretion “index” to UPR induction and sensitivity to Hsp70 and proteasome inhibition in primary tumor cells as well as in microvascular cells from MM patients are ongoing.


Sign in / Sign up

Export Citation Format

Share Document