Good and Poor Response Gene Expression Signatures to Proteasome Inhibitors Using a Mouse Model of Multiple Myeloma

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1843-1843
Author(s):  
Holly Stessman ◽  
Linda B. Baughn ◽  
Aaron G. Sarver ◽  
Aatif Mansoor ◽  
Tzu G. Wu ◽  
...  

Abstract Abstract 1843 The proteasome inhibitor bortezomib (Bz) has been used extensively and with much success in the treatment of multiple myeloma (MM) patients; however, patients eventually relapse, many as non-responders to subsequent treatments with Bz making drug resistance a significant problem. Here we utilized cell lines created using a iMycCa/Bcl-xL transgenic mouse model of MM (Cheung, et al. J Clin Invest (2004) 113: 1763) to identify 1) gene expression signatures of Bz response, 2) differences in gene expression between sensitive and resistant cell lines, and 3) cytogenetic abnormalities associated with Bz sensitive and resistant phenotypes. The iMycCa/Bcl-xL transgenic mice develop plasma cell tumors with 100% penetrance and have shown strikingly strong similarities to human MM by extensive gene expression profiling (GEP), spectral karyotyping and histology (Boylan, et al. Cancer Res (2007) 67: 4069). Six cell lines created from these mice were dose escalated with Bz over approximately six months to create Bz resistant (BzR) cell lines with approximately 5–8 fold increase in IC50 to Bz compared to their sensitive counterparts. The BzR characteristics were stable, as lines grown in the absence of drug for as long as 6 months maintained drug resistance upon subsequent challenge. Notably, BzR lines showed cross resistance to other investigational proteasome inhibitors (MLN9708 and carfilzomib) while maintaining sensitivity to other chemotherapeutic agents (dexamethasone and melphalan), suggesting a common mechanism of emerging resistance to proteasome inhibitors. The results of GEP of these mouse tumor cell lines treated with Bz were compared with a recently published human drug trial where GEP was completed prior to and 48 hours after a “test dose” of Bz was administered to patients (Shaughnessy, et al. Blood (2011), ahead of print). In the mouse tumor cell lines, 116 genes were differentially expressed upon in vitro Bz treatment (p=0.001, ≥1.5 fold change). Between the mouse and human drug response data sets was an overlapping common 27-gene signature (p=1×10−25, Fishers exact test) of Bz-induced expression changes that has not previously been described. Time points were collected in these mouse cell line GEP experiments at 0, 2, 8, 16, and 24 hours after Bz treatment. A comparison of the Bz sensitive and derived BzR lines prior to drug treatment revealed a 50 gene signature (p=0.05, ≥2 fold change) that distinguishes three pairs of sensitive and resistant lines. Gene-set enrichment analyses have revealed significant pathways that are differentially regulated in the sensitive and resistant responses. Additional GEP differences were seen when time course expression patterns were examined from Bz sensitive compared to resistant tumor lines. Thus, GEP signatures that distinguish tumor lethality from resistance were identified both prior to Bz treatment, as well as in the early response to Bz. In addition, array comparative genomic hybridization on 4 pairs of mouse Bz sensitive and established BzR lines revealed not only gross differences in copy number between the differentially responding groups of cells but copy number abnormalities that may be unique to the emerging resistance. Taken together, these data indicate that this model is useful for the identification of good and poor Bz response signatures in MM. These signatures are currently being evaluated in human tumor cells from single agent bortezomib phase II and phase III clinical trials. Because the in vitro adapted tumor mouse lines can be genetically manipulated using lentiviral vectors, this model can be used as a preclinical platform to validate existing gene models with respect to Bz response, something that cannot be done using human patients. Subsequent transfer of manipulated lines into syngeneic, immunocompetent recipients can further test Bz response in vivo presenting a significant advantage of this robust mouse MM model system over other in vitro systems. Disclosures: Stessman: Millennium: The Takeda Oncology Company: Research Funding. Mansoor:Millennium: The Takeda Oncology Company: Research Funding. Janz:Millennium: The Takeda Oncology Company: Research Funding. Van Ness:Millennium: The Takeda Oncology Company: Research Funding.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3014-3014
Author(s):  
Giada Bianchi ◽  
Vijay G. Ramakrishnan ◽  
Teresa Kimlinger ◽  
Jessica Haug ◽  
S. Vincent Rajkumar ◽  
...  

Abstract Abstract 3014 Background: Proteasome inhibitors have proven particularly effective in treatment of multiple myeloma, the second most frequent hematologic malignancy in the western world. Bortezomib, the first in class proteasome inhibitor in clinical use, was first approved in 2003 via fast FDA track, given the remarkable activity shown during phase II clinical trials. Nevertheless, more than 50% of multiple myeloma patients did not respond to single agent bortezomib when administered as second line agent. Moreover, bortezomib is only available for intravenous administration, representing a cumbersome therapy for patients, and its use is limited by significant toxicities (especially peripheral neuropathy). MLN9708 (Millennium Pharmaceuticals, Inc.), an investigational orally available, small molecule, is a potent, specific and reversible inhibitor of the 20S proteasome. It is currently under clinical investigation for the treatment of hematologic and non-hematologic malignancies. Upon exposure to aqueous solutions or plasma, MLN9708 rapidly hydrolyzes to MLN2238, the biologically active form, and MLN2238 was used for all of the preclinical studies reported here. In vitro biochemistry studies have shown that MLN2238 has a faster dissociation rate from the proteasome compared to bortezomib, and in vivo studies of MLN2238 have shown antitumor activity in a broader range of tumor xenografts when compared to bortezomib. Given these encouraging preclinical results, we set to investigate the anti-myeloma activity of MLN2238 in vitro. Results: MLN2238 proved to have anti-proliferative and pro-apoptotic activity against a broad range of MM cell lines with EC50 at 24 hours ranging between 10 and 50 nM, even in relatively resistant MM cell lines (OPM2, DOX6, RPMI, etc.). In MM.1S cells, induction of apoptosis was time and dose dependent and related to activation of both caspase 8 and 9. When compared to MM.1S treated for 24 hours with EC50 dose of bortezomib, treatment with EC50 dose of MLN2238 resulted in the same extent of caspases cleavage occurring at an earlier time point (8-12 hours), possibly suggesting more rapid onset and/or irreversibility of apoptosis in cells treated with MLN2238. Treatment with MLN2238 was associated with early, but persistent induction of endoplasmic reticulum (ER) stress with BiP being induced 2–4 hours after treatment with EC50 dose and gradually increasing over time. While bortezomib has been associated with early induction and late decrease in proteins involved in ER stress, MLN2238 appears to induce a persistent rise in these factors, suggesting either more sustained proteasome blockade with stabilization of proteasome substrates or de-novo induction of unfolded protein response (UPR) genes. MLN2238 also proved effective in reducing phosphorylation of ERK1-2 with no overall alteration in the total ERK level, thus accounting for the observed reduction in proliferation upon treatment. Preliminary data indicate potential for additive and synergistic combination with widely used drugs, including doxorubicin and dexamethasone. Conclusion: While further clinical data are needed to establish the effectiveness of MLN2238 in the treatment of multiple myeloma, these preliminary nonclinical data, together with the favorable biochemical and pharmacokinetic properties, including oral bioavailability, make the investigational agent MLN9708 an appealing candidate for treatment of multiple myeloma. Further in vitro data could help establish whether a difference in the apoptotic mechanisms exist between MLN2238 and other proteasome inhibitors, primarily bortezomib, and could also help inform combination treatment approaches aimed at increasing effectiveness, overcoming bortezomib resistance and decreasing toxicity. Disclosures: Kumar: Celgene: Consultancy, Research Funding; Millennium: Research Funding; Merck: Consultancy, Research Funding; Novartis: Research Funding; Genzyme: Consultancy, Research Funding; Cephalon: Research Funding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3053-3053
Author(s):  
Amit Kumar Mitra ◽  
Ujjal Mukherjee ◽  
Taylor Harding ◽  
Snigdhansu Chatterjee ◽  
Brian G Van Ness

Abstract Multiple myeloma (MM) is the second-most common hematopoietic malignancy in the United States with significant complexity and heterogeneity at the molecular level. Proteasome inhibitors (PIs) including Bortezomib/Bz (Velcade), carfilzomib/Cz (Krypolis) and recent orally active second generation PIs MLN9708 (Ixazomib/Ix) and Oprozomib/Opz are becoming effective chemotherapeutic agents in the treatment of MM, used alone or in combination with other anti-cancer agents. However, despite these recent improvements in treatment strategies, MM still remains an incurable disease with median survival rate of around 7 years. Wide inter-individual variation in response/resistance to PI treatment is a major limitation in achieving consistent therapeutic effect in MM. Such heterogeneity in response to PI-based treatment is likely governed by the underlying molecular characteristics of the MM tumor cells including genomic and transcriptomic alterations. In the current study, we used in vitro chemosensitivity data to develop a gene expression-based model to predict therapeutic response to proteasome inhibitors that were cross-validated in other cell-based MM models and clinical trials on MM patients. A panel of 50 human multiple myeloma cell lines (HMCLs) representing the biological and genetic heterogeneity of MM was used to generate single-agent cytotoxicity profiles for 4 the PIs Bz, Cz, Ix and Opz based on half maximal inhibitory concentration (IC50) values. Gene expression profiling (GEP) was performed using llumina's HiSeq 2000 next-generation high-throughput sequencing technology (RNAseq) for 50 paired-end reads with depth of >20 million reads per sample. Subsequently, GEP data was used to perform relevant gene selection and eventually develop a gene-based prognostic prediction model associated with PI response. In terms of statistical methodology, we used a locally additive polynomial regression model, which is a nonparametric regression model, on multivariate responses generated by our data. This was coupled with a sparsity-driven statistical model for dimension reduction and grouping of GEP data corresponding to drug response of the different cell-lines. Our GEP-based prediction model could successfully distinguish between good or poor PI response with high level of significance (p<0.005) and stratify survival in the PI-treatment arms of two independent sets of clinical trials on MM patients, APEX (Hazards ratio (HR) = 2.185; p=0.001) and UAMS-MMTT3a (HR= 2.091; p=0.009) but not for the non-PI arms suggesting PI-specificity of our prediction model. Therefore, we could successfully generate a gene expression signature-based prediction model qualitatively and quantitatively associated with PI response that could be effectively cross-validated on in vitro tumor models and human MM clinical trials. Our research will benefit clinical decision-making through the pre-identification of non-responders to PI treatment prior to initiating MM therapy and the development of novel treatment strategies specifically targeted at PI-resistant MM patients. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2108-2108 ◽  
Author(s):  
Vikas A. Gupta ◽  
Scott Newman ◽  
Nizar J. Bahlis ◽  
Jonathan J Keats ◽  
Shannon Matulis ◽  
...  

Abstract BCL2 family members such as MCL1, BCLXL, and BCL2 are critical for cancer cell survival and therefore represent promising therapeutic targets. Both B cells and CLL cells depend primarily on BCL-2 and are thus sensitive to the BCL2 specific inhibitor venetoclax, while plasma cells and multiple myeloma typically depend on Mcl-1 and would therefore be resistant to venetoclax. However, a subset of myeloma is venetoclax sensitive based on recent in vitro and clinical trial data. In preliminary results from a phase I trial of venetoclax in multiple myeloma, 40% of patients positive for t(11;14) had objective responses, while only 6% of t(11;14) negative patients responded. We have made similar observations with in vitro testing of 30 freshly isolated myeloma patient samples, identifying both non-t(11;14) samples sensitive to venetoclax as well as resistant t(11;14) positive samples. Together, these results suggest not only that a subset of multiple myeloma is co-dependent on BCL2 but also that t(11;14) is neither necessary nor sufficient for responding to venetoclax. We therefore set out to identify other factors that may predict BCL2 dependence in multiple myeloma. Previous studies of t(11;14) myeloma have noted increased expression of CD20, CD23, CD79a, and PAX5 which are typically associated with B cells prior to their differentiation into plasma cells. Based on these observations we hypothesized that venetoclax sensitivity in myeloma may be associated with the retention of B cell properties including BCL2 dependence. We probed an online expression database of myeloma cell lines for non-t(11;14) cell lines expressing CD20 and identified two cell lines, OCI-My5 and PCM6, both of which we found to have an IC50 of approximately 50nM when treated with venetoclax. We went on to characterize a panel of 13 cell lines. In addition to OCI-My5 and PCM6, 4 other cell lines were sensitive to venetoclax, all positive for t(11;14). Of the 7 venetoclax resistant cell lines, 2 were t(11;14) positive. Protein levels of MCL1, BCLXL, and BCL2 were comparable among the 13 lines and therefore anti-apoptotic expression is unlikely to be responsible for venetoclax sensitivity. Consistent with our previous co-immunoprecipitation studies, more of the pro-apoptotic BIM was bound to BCL2 in venetoclax sensitive lines compared to resistant lines. In the absence of differences in BCL2 family expression, we next sought to identify other B cell related features correlating with venetoclax sensitivity. We used RNAseq data from our 13 cell lines to compare the expression of 100 genes previously reported to be differentially expressed between normal B cells and plasma cells. Interestingly, unsupervised clustering revealed a group of venetoclax sensitive cells enriched for other B cell associated genes. GSEA revealed enrichment of genes associated with immune system activation at a p < 0.001. We also analyzed the differential expression of genes between our sensitive and resistant lines and again identified overexpression of B cell related genes such as CD20, CD79A, STAT5A, and RASGRP2 in venetoclax sensitive lines, though no single marker was present in all of the venetoclax sensitive lines. We examined the expression of CD20, CD79a, and CD79b in the CoMMpass data set (IA8) as well and found that they were not co-expressed in most patients, again suggesting that no single marker is likely to be predictive. Finally, we created a gene signature from the top differentially expressed genes to predict sensitivity or resistance to venetoclax and used this signature to evaluate a database of 68 myeloma cell lines. One of the top hits predicted to be sensitive by our gene signature is the t(11;14) negative line MOLP2, and indeed this cell line was recently reported to be highly responsive to venetoclax. In conclusion, B cell markers and our gene signature correlate with BCL2 dependence and venetoclax sensitivity independent of t(11;14). Disclosures Bahlis: BMS: Honoraria; Onyx: Consultancy, Honoraria; Janssen: Consultancy, Honoraria, Other: Travel Expenses, Research Funding, Speakers Bureau; Celgene: Consultancy, Honoraria, Other: Travel Expenses, Research Funding, Speakers Bureau; Amgen: Consultancy, Honoraria. Nooka:Spectrum, Novartis, Onyx pharmaceuticals: Consultancy. Kaufman:Pharmacyclics: Consultancy; Incyte: Consultancy; Novartis: Consultancy, Research Funding; Celgene: Consultancy, Research Funding. Lonial:Onyx: Consultancy; Onyx: Consultancy; BMS: Consultancy; Janssen: Consultancy; Merck: Consultancy; Celgene: Consultancy; Novartis: Consultancy; Millenium: Consultancy; BMS: Consultancy; Celgene: Consultancy; Novartis: Consultancy; Janssen: Consultancy.


1988 ◽  
Vol 8 (10) ◽  
pp. 4492-4501 ◽  
Author(s):  
C D Woodworth ◽  
J W Kreider ◽  
L Mengel ◽  
T Miller ◽  
Y L Meng ◽  
...  

Five simian virus 40 (SV40)-hepatocyte cell lines were examined for tumorigenicity and the effect of in vitro passage on the expression of four liver-specific genes (albumin, transferrin, alpha 1-antitrypsin, and phosphoenolpyruvate carboxykinase), two oncogenes (c-Ha-ras and c-raf), and two genes associated with hepatocarcinogenesis (alpha-fetoprotein and placental-type glutathione-S-transferase). At low passage (12 to 22), all five cell lines expressed the four liver-specific genes at levels similar to those in the liver and were not tumorigenic or were weakly tumorigenic. At high passage (33 to 61), the cell lines formed carcinomas, and four out of five cell lines produced primary tumors that metastasized. At least two cell lines produced well-differentiated hepatocellular carcinomas that expressed liver-specific RNAs. Levels of expression of liver-specific genes changed with time in culture. Some of the changes in liver-specific gene expression in the tumor tissue (such as for the phosphoenolpyruvate carboxykinase gene) paralleled those that occurred with in vitro passage, while other changes (such as for the albumin gene) did not parallel those that occurred with in vitro passage. Correlations between enhanced expression of c-Ha-ras and tumorigenic potential and between the process of SV40 immortalization and induced expression of c-raf and glutathione-S-transferase-P were observed. Induction of alpha-fetoprotein was detected with in vitro and in vivo passage only in the CWSV14 cell line and was paralleled by diminished albumin expression. In conclusion, we developed a model system with five SV40-hepatocyte cell lines, tumors induced by them, and tumor cell lines to examine changes in gene expression that accompany the progression from a normal cell to a hepatocellular carcinoma. Because the SV40-hepatocyte cell lines and tumor cell lines remain highly differentiated and vary in the magnitude of expression of specific genes, they can be used to study the molecular mechanisms regulating gene expression, in particular those regulating specific genes associated with differentiation.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 832-832 ◽  
Author(s):  
Michael A Chapman ◽  
Jean-Philippe Brunet ◽  
Jonathan J Keats ◽  
Angela Baker ◽  
Mazhar Adli ◽  
...  

Abstract Abstract 832 We hypothesized that new therapeutic targets for multiple myeloma (MM) could be discovered through the integrative computational analysis of genomic data. Accordingly, we generated gene expression profiling and copy number data on 250 clinically-annotated MM patient samples. Utilizing an outlier statistical approach, we identified HOXA9 as the top candidate gene for further investigation. HOXA9 expression was particularly high in patients lacking canonical MM chromosomal translocations, and allele-specific expression analysis suggested that this overexpression was mono-allelic. Indeed, focal copy number amplifications at the HOXA locus were observed in some patients. Outlier HOXA9 expression was further validated in both a collection of 52 MM cell lines and 414 primary patient samples previously described. To further verify the aberrant expression of HOXA9 in MM, we performed quantitative RT-PCR, which confirmed expression in all MM patients and cell lines tested, with high-level expression in a subset. To further investigate the mechanism of aberrant HOXA9 expression, we interrogated the pattern of histone modification at the HOXA locus because HOXA gene expression is particularly regulated by such chromatin marks. Accordingly, immunoprecipitation studies showed an aberrantly low level of histone 3 lysine 27 trimethylation marks (H3K27me3) at the HOXA9 locus. H3K27me3 modification is normally associated with silencing of HOXA9 in normal B-cell development. As such, it appears likely that the aberrant expression of HOXA9 in MM is due at least in part to defects in histone modification at this locus. To determine the functional consequences of HOXA9 expression in MM, we performed RNAi-mediated knock-down experiments in MM cell lines. Seven independent HOXA9 shRNAs that diminished HOXA9 expression resulted in growth inhibition of 12/14 MM cell lines tested. Taken together, these experiments indicate that HOXA9 is essential for survival of MM cells, and that the mechanism of HOXA9 expression relates to aberrant histone modification at the HOXA9 locus. The data thus suggest that HOXA9 is an attractive new therapeutic target for MM. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1831-1831 ◽  
Author(s):  
Michael Mangone ◽  
Luigi Scotto ◽  
Enrica Marchi ◽  
Owen A. O'Connor ◽  
Hearn J. Cho

Abstract Abstract 1831 Multiple myeloma (MM) is the second most common hematologic malignancy. Although there are effective new agents that can induce remission, relapse is inevitable and the disease is currently incurable. Progress in the treatment of this disease demands development of novel therapeutics and identification of functional biomarkers that may be used to distinguish tumors that are susceptible to specific targeted agents, creating a “personalized” therapeutic strategy for individual patients. We investigated these principles with anti-folates, which are not commonly used in MM but have demonstrated activity in this disease. Pralatrexate (PDX, 10-propargyl 10-deazaaminopterin) is a folate analogue that was rationally designed to have high affinity for Reduced Folate Carrier (RFC)-1, an oncofetal protein expressed in many cancers that actively transports folates into cells. PDX induced dose-dependent apoptotic cell death in a subset of human myeloma cell lines (HMCL) and CD138+ MM cells isolated from a clinical specimen. In sensitive cell lines, PDX exhibited 10-fold greater potency compared to the structurally related drug methotrexate (MTX). PDX induced dose-dependent, intrinsic apoptosis in sensitive HMCLs, characterized by cleavage of caspase-3 and -9 and accompanied by the loss of full-length Mcl-1, a Bcl-2 family protein that plays a critical role in drug-induced apoptosis in MM. Furthermore, the activity of PDX is not abrogated by the presence of exogenous interleukin-6 or by co-culture with HS-5 bone marrow stromal cells, both of which exert powerful survival effects on MM cells and can antagonize apoptosis in response to some cytotoxic chemotherapy drugs. Sensitivity to PDX-induced apoptosis correlated with higher relative levels of RFC-1 mRNA in sensitive compared to resistant HMCL. Resistant HMCL also exhibited a dose-dependent up-regulation of dihydrofolate reductase (DHFR) protein, a primary molecular target for anti-folates, in response to PDX exposure, whereas sensitive HMCL did not. These changes in functional folate metabolism biomarkers, high baseline RFC-1 expression and upregulation of DHFR in response to PDX, appeared to be mutually exclusive to sensitive or resistant HMCL, respectively. Importantly, PDX was also effective against sensitive HMCL in vivo in a novel mouse xenograft model. NOD/Shi-scid/IL-2Rγnull (NOG) mice were inoculated with MM.1s HMCL stably transduced to express both GFP and luciferase (GFP-luc). GFP-luc MM.1s cells engrafted into the long bones, pelvis, and vertebral column of NOG mice within 4–7 days after injection of cells, as assessed by in vivo bioluminescent imaging. Treatment with PDX resulted in a significant reduction in tumor burden after two doses. These results demonstrate that PDX has potent anti-myeloma activity in vitro and in vivo, and that RFC-1 expression and DHFR upregulation are robust functional biomarkers that may identify patients who are likely to benefit from PDX therapy. These data support further exploration of PDX therapy in clinical trials for MM and investigation of folate metabolism biomarkers as indices for treatment with this class of drugs. Improved anti-folates such as PDX are a promising class of agents that may be a valuable addition to the arsenal against MM. Disclosures: O'Connor: Celgene: Consultancy, Research Funding; Merck: Research Funding; Novartis: Research Funding; Spectrum: Research Funding.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1344-1344
Author(s):  
Holly A. F. Stessman ◽  
Tian Xia ◽  
Aatif Mansoor ◽  
Raamesh Deshpande ◽  
Linda B. Baughn ◽  
...  

Abstract Abstract 1344 Bortezomib/VELCADE® (Bz) is a proteasome inhibitor that has been used successfully in the treatment of multiple myeloma (MM) patients. However, acquired resistance to Bz is an emerging problem. Thus, there is a need for novel therapeutic combinations that enhance Bz sensitivity or re-sensitize Bz resistant MM cells to Bz. The Connectivity Map (CMAP; Broad Institute) database contains treatment-induced transcriptional signatures from 1,309 bioactive compounds in 4 human cancer cell lines. An input signature can be used to query the database for correlated drug signatures, a technique that has been used previously to identify drugs that combat chemoresistance in cancer (Wei, et al. Cancer Cell (2006) 10:331). In this study we used in silico bioinformatic screening of gene expression profiles from isogenic pairs of Bz sensitive and resistant mouse cell lines derived from the iMycCα/Bcl-xL mouse model of plasma cell malignancy to identify compounds that combat Bz resistance. We established Bz-induced kinetic gene expression profiles (GEPs) in 3 pairs of Bz sensitive and resistant mouse cell lines over the course of 24 hours. GEPs were collected in the absence of large-scale cell death. The 16 and 24 hour time points were averaged and compared between each Bz sensitive and resistant pair. Genes in the sensitive cell line with a fold change greater than 2, relative to the resistant line, were given the binary distinction of “up” or “down” depending on the direction of change. Genes that met these criteria were assembled into signatures, and then used as inputs for CMAP queries to identify compounds that induce similar transcriptional responses. In all pairs, treatment of the Bz sensitive line correlated with GEPs of drugs that target the proteasome, NF-κB, HSP90 and microtubules, as indicated by positive connectivity scores. However eight compounds, all classified as Topoisomerase (Topo) I and/or II inhibitors, were negatively correlated to our input signature. A negative connectivity score could have two interpretations: (1) this could indicate simply that Topos are upregulated by Bz treatment in Bz sensitive lines, which has been previously reported (Congdan, et al. Biochem. Pharmacol. (2008) 74: 883); or (2) this score could be interpreted as Topos are inhibited in Bz resistant cells upon Bz treatment. This led us to ask whether Topo inhibitors could target Bz resistant MM cells and re-sensitize them to Bz. Indeed, we found that multiple Topo inhibitors were significantly more active against Bz resistant cells as single agents and restored sensitivity to Bz when combined with Bz as a cocktail regimen. This work demonstrates the potential of this in silico bioinformatic approach for identifying novel therapeutic combinations that overcome Bz resistance in MM. Furthermore, it identifies Topo inhibitors – drugs that are already approved for clinical use – as agents that may have utility in combating Bz resistance in refractory MM patients. Disclosures: Stessman: Millennium: The Takeda Oncology Company: Research Funding. Van Ness:Millennium: The Takeda Oncology Company: Research Funding.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 573-573
Author(s):  
Jessica Schmidt ◽  
Esteban Braggio ◽  
Marta Chesi ◽  
Jan Egan ◽  
Yuan Xiao Zhu ◽  
...  

Abstract Abstract 573 Using high throughput RNA interference screening on 6,722 druggable genes we previously identified XPO1/CRM1 as one of the 50 most vulnerable targets in Multiple Myeloma (MM)1. XPO1 knockdown proved lethal in MM cell lines, but had no effect on human embryonic kidney (293) cells or lung cancer (A549) cells, showing that XPO1 is a specific myeloma vulnerability, and that myeloma cell survival is dependent upon XPO1 expression. XPO1 encodes the protein exportin 1, a nuclear transport protein that exports tumor suppressor proteins from the nucleus, where they are active, to the cytoplasm, where they become inactive. We next analyzed XPO1 in MM via gene expression profiling (GEP). XPO1 expression is up-regulated as the disease progresses: patients with active MM have a higher level of XPO1 compared to normal plasma cells (p<0.04) and to patients with monoclonal gammopathy of undetermined significance or smoldering MM (p<0.0001). The highest levels were in human MM cell lines. TC classification revealed highest levels in t(11;14) and lowest levels in t(4;14) disease. Selective inhibitors of nuclear export (SINE) compounds have recently been developed that irreversibly inhibit XPO1/CRM1 and its nuclear export function. One such inhibitor, KPT-276, decreased the viability of all 12 MM cell lines tested in vitro, as shown by MTT assay. After 72 hours of drug treatment, a median IC50 value of approximately 175 nM (range 30–1000 nM) was observed. No synergy with other commonly used anti-MM therapeutics was observed in vitro. In contrast, the drug had little effect in 8 solid tumor cell lines with the exception of the B cell lymphoma line Ramos. KPT-276 was also consistently active in inducing apoptosis against MM primary patient samples. Using an IC80 dose of KPT-276, drug-treated samples had a reduced population of cells in S phase (8%) compared to cells treated with DMSO (21%). Using the vkappa*myc transgenic MM model, KPT-276 reduced monoclonal spikes (by a mean of 56%) in all mice treated orally with 150 mg/kg dose three times per week for 4 weeks. Furthermore, KPT-276 significantly reduced tumor growth in a xenograft MM1.S mouse model. GEP was performed in the presence or absence of drug in two different MM cell lines. Two genes of probable relevance, cell division cycle 25 homolog A (CDC25A) and Bromodomain-containing protein 4 (BRD4), were dysregulated by SINE treatment. Both are involved in cell cycle control and have been linked to MYC. RT-PCR and western blotting confirm that MYC, CDC25A and BRD4 are down-regulated, as soon as six hours, after treatment with KPT-276. KPT-276 has shown marked anticancer activities against B cell malignancies in vitro and is active and tolerated in Phase I canine studies. KPT-330, a close analog of KPT-276, is currently in Phase 1 studies in human with advanced hematological and solid tumors. Disclosures: Schmidt: Karyopharm: Research Funding. McCauley:Karyopharm Therapeutics Inc: Employment. Shacham:Karyopharm Therapeutics: Employment. Kauffman:Karyopharm Therapeutics Inc: Employment. Stewart:Millenium: Consultancy, Honoraria, Research Funding; Onyx: Consultancy; Celgene: Consultancy.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3493-3493
Author(s):  
Ahmad-Samer Samer Al-Homsi ◽  
Zhongbin Lai ◽  
Tara Sabrina Roy ◽  
Niholas Kouttab

Abstract Introduction Constitutive and immunoproteasome inhibitors (C&IPI) were thought to suppress nuclear factor-κB (NF-κB) pathway by preventing IκB degradation, which prevents NF-κB translocation into the nucleus. This mechanism of action has since been questioned by a number of studies. First, bortezomib promoted constitutive NF-κB activity in endothelial cell carcinoma. Second, NF-κB constitutive activity was resistant to bortezomib in multiple myeloma cell lines. Third, bortezomib increased IκB mRNA but post-transcriptionally downregulated IκB in normal cells and in multiple myeloma cell lines resulting in induced canonical NF-κB activation. Lastly, bortezomib increased nuclear levels of IκB as opposed to lowering cytoplasmic levels in cutaneous T cell lymphoma cell line suggesting that nuclear translocation of IκB was possibly responsible for NF-κB inhibition. The inhibitory activity of C&IPI on dendritic cells (DC) is of interest in the prevention of graft versus host disease (GvHD). It has been shown that different C&IPI impede DC maturation and T cell priming both in vitro and in vivo. Herein we sought to understand the mechanism of action of proteasome and immunoproteasome inhibitors on DC and to test their effect on IκB and NF-IκB expression. Materials and Methods We first performed RT PCR on lysates of DC obtained from the peripheral blood of 7 patients who received post-transplant cyclophosphamide and bortezomib as prevention of GvHD on a phase I clinical trial. Patients received allogeneic transplantation from matched-related or unrelated donors. Patients received no other immunosuppressive therapy except for rabbit anti-thymocyte globulin for those receiving graft from unrelated donor. Steroids were not allowed on the study. Samples were obtained on days +1, +4, and +7. The results were analyzed in comparison to samples obtained on day 0 before stem cell infusion. We then performed the same experiment on lysates of DC obtained from the peripheral blood of healthy volunteer donors. DC were untreated or incubated with bortezomib (10 nM for 4 h), carfilzomib (30 nM for 1 h), oprozomib (100 nM and 300 nM for 4 h), ONX 0914 (200 nM for 1 h), PR-825 (125 nM for 1 h), or PR-924 (1000 nM for 1 h). The drug concentration and duration of exposure were chosen based on the IC50 on proteasome activity and to reproduce in vivo conditions. We also performed IκB western blot on DC isolated from peripheral blood of healthy volunteers, untreated or incubated with bortezomib (10 nM for 4 h) or oprozomib (300 nM for 4 h). Each experiment was performed at least in triplicate. Results We found that the combination of cyclophosphamide and bortezomib significantly and progressively increased IκB mRNA while decreasing NF-κB mRNA in DC studied ex vivo. We also found that all studied C&IPI increased IκB mRNA to a variable degree while only oprozomib (300 nM) decreased NF-κB mRNA in DC in vitro. Finally, both bortezomib and oprozomib increased IκB protein level in DC in vitro (figure). Conclusion Our data suggest that C&IPI increase IκB expression in DC. As opposed to the previously reported data in other cell types, the effect is not associated with post-transcriptional downregulation. Cyclophosphamide and bortezomib also decrease NF-κB expression in DC in vivo while only oprozomib had the same effect in vitro. The effect of C&IPI on IκB and NF-κB expression may represent a new mechanism of action and suggests their effect may be cell-type dependent. Disclosures: Al-Homsi: Millennium Pharmaceuticals: Research Funding. Off Label Use: The use of cyclophosphamide and bortezomib for GvHD prevention. Lai:Millennium Pharmaceuticals: Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5149-5149
Author(s):  
Cheryl London ◽  
Luis feo Bernabe ◽  
Sandra Barnard ◽  
William Kisseberth ◽  
Antonella Borgatti ◽  
...  

Abstract SINE (Selective Inhibitors of Nuclear Export) block the activity of XPO1/CRM1, 1 of 7 nuclear export proteins in cells, forcing the nuclear retention of key tumor suppressor proteins (TSP), leading to selective apoptosis of tumor cells.  The purpose of these studies was to evaluate the in vitro activity of SINE against canine tumor cell lines and investigate the biological activity of Verdinexor (KPT-335) in dogs with spontaneous cancers as proof of principle for human clinical studies with SINE. Several different canine tumor cell lines including those derived from Non-Hodgkin Lymphoma (NHL) exhibited growth inhibition and apoptosis in response to nanomolar concentrations of SINE; NHL cells were particularly sensitive with IC50 concentrations ranging from 2-42 nM. A Phase I clinical trial of Verdinexor was performed in dogs with cancer with an emphasis on NHL given in vitro activity demonstrated against the tumor cell lines. The maximum tolerated dose (MTD) was 1.75 mg/kg twice per week although biological activity was observed at 1 mg/kg. Clinical benefit including Partial Response (PR) and Stable Disease (SD) for at least 4 weeks was observed in 9/14 dogs with NHL with a median time to progression of 66 days (range 35-256). A dose expansion study was performed in 6 dogs with NHL given 1.5 mg/kg Verdinexor on a Monday/Wednesday/Friday (MWF) regimen; clinical benefit (PR + SD) was observed in 4/6 dogs with a median time to progression of 83 days (range 35-250+). Toxicities were primarily gastrointestinal in nature consisting of anorexia, weight loss, vomiting and diarrhea and were manageable with supportive care and dose modulation.  A validated health related Quality of Life (QOL) form used to assess dogs during treatment demonstrated that the overall quality of life did not decrease in dogs in this study supporting the notion that clinical toxicities associated with Verdinexor are generally well tolerated.  Based on these findings, a Phase IIb study was performed in 58 dogs with either newly diagnosed or relapsed NHL.  Drug was administered initially at 1.5 mg/kg MWF, but this dosing regimen was changed to 1.25 mg/kg M/Th due to the high rate of anorexia and weight loss on the MWF regimen; dose escalation was permitted to 1.5 mg/kg on the M/Th regimen.  The objective response rate was 34% (1 CR, 19 PR) with an additional 33 dogs experiencing SD for a minimum of 4 weeks, resulting in a of 91% disease control rate. While the median time to progression was approximately 5 weeks, 19 dogs (32%) remained on study drug for >8 weeks; several dogs continue to receive Verdinexor.  Laboratory abnormalities were minimal and clinical toxicities were mild on the M/Th regimen.  Together, these data provide robust evidence that the novel orally bioavailable XPO1 inhibitor Verdinexor exhibits single agent biological activity in a spontaneous large animal model of human NHL. Furthermore, Verdinexor was well tolerated even in the absence of supportive care, suggesting that SINE compounds could exhibit good long-term tolerability in people. Disclosures: London: Zoetis: Honoraria, Research Funding; Karyopharm: Consultancy, Research Funding; Abbott: Honoraria. Modiano:Karyopharm: Research Funding. Saint-Martin:Karyopharm: Employment. McCauley:Karyopharm : Employment, Equity Ownership, Patents & Royalties. Shacham:Karyopharm : Employment, Equity Ownership, Membership on an entity’s Board of Directors or advisory committees, Patents & Royalties. Kauffman:Karyopharm Therapeutics Inc.: Employment.


Sign in / Sign up

Export Citation Format

Share Document