Bioluminescent Tracking of Human and Mouse Acute Lymphoblastic Leukemia Reveals Potent Immunogenicity of Luciferase In Some Preclinical Models of Leukemia

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2140-2140 ◽  
Author(s):  
David M Barrett ◽  
Alix E Seif ◽  
Carmine Carpenito ◽  
Eliza P Strong ◽  
Carl H. June ◽  
...  

Abstract Abstract 2140 Xenograft models have quickly become the preferred methodology for the preclinical evaluation of treatments for acute lymphoblastic leukemia (ALL). The efficient engraftments in immune-deficient mice achieved with both primary ALL samples and cell lines have facilitated identification of the anti-ALL activity of a wide variety of agents. Despite widespread usage, however, little is known about the early ALL localization and engraftment kinetics in this model, limiting experimental read-outs primarily to survival and end-point analysis at high disease burden. In this study, we have developed bioluminescent imaging of ALL cells to provide a noninvasive, longitudinal measure of leukemia burden that will enhance the sensitivity of preclinical models. Three human precursor B cell (BCP) ALL lines (Nalm-6, RS-4-11 and 380) and two murine BCP ALL lines (289 and 309) were stably tranduced with a lentiviral vector conferring expression of both green fluorescent protein (GFP) and firefly luciferase (ffLuc). Non-obese diabetic/severe combined immunodeficient/IL2Rgamma null (NSG) mice were injected intravenously with 1×106 ALL cells via the lateral tail vein and imaged daily for the first 7 days, then twice weekly thereafter. Animals were also monitored weekly for peripheral leukemia burden by flow cytometric detection of GFP positive cells in blood. Each human ALL line was readily detectable by bioluminescence within 48 hours of injection, providing a measure of disease burden at least one week earlier than can be achieved by peripheral disease monitoring. The human ALL lines Nalm-6 and RS-4-11 initially concentrated in the liver and bone marrow of NSG mice, only appearing in the spleen after 1–2 weeks, while 380 first localized to bone marrow only. In contrast, the murine ALL lines were rapidly detectable in spleen and bone marrow but did not accumulate in the liver. For both murine and human ALL, the initial localization was followed by in situ expansion and subsequent seeding of peripheral sites, with disease burden correlating to increasing bioluminescence intensity. This study, therefore, reveals significant cell line- and species-related differences in leukemia migration, especially early in expansion, which may confound observations between various leukemia models. Furthermore, in a pilot study we demonstrate that this in vivo imaging approach is feasible for primary human ALL samples. To evaluate the utility of bioluminescence in an immune competent leukemia model, we compared the engraftment of ffLuc/GFP+ mouse ALL in syngeneic wild-type (wt) and immune-deficient mice. In contrast to the unhindered rapid expansion of disease in NSG and syngeneic (H-2d) gc-/- (lymphocyte deficient) mice (median survival 21 days, p<0.05 versus wt), wild-type mice sustained a low level of disease for the first 7 days that was subsequently eliminated. Unlabeled and GFP-only+ ALL cells engraft and expand rapidly in wt mice (median survival 25 and 18 days, respectively), and NK-replete/T and B cell-deficient mice engraft with ffLuc/GFP+ ALL cells after an initial delay in expansion (median survival 25 days), indicating that ffLuc is the target of an immune response. This is further supported by a competitive repopulation experiment in which wt mice received 1×106 mixed population cells (95% ffLuc/GFP+ cells and 5% unlabeled leukemia); no mice developed ffLuc/GFP+ disease, while 4/9 eventually developed unlabeled disease. Overall this study demonstrates the increased sensitivity and potential for standardization that in vivo bioluminescent imaging confers on xenograft ALL models. The application of this bioluminescence approach, however, will be limited in immune competent ALL models by the strong immune-mediated clearance of ffLuc+ cells. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1169-1169
Author(s):  
Maren Weisser ◽  
Kerstin B. Kaufmann ◽  
Tomer Itkin ◽  
Linping Chen-Wichmann ◽  
Tsvee Lapidot ◽  
...  

Abstract Reactive oxygen species (ROS) have been implicated in the regulation of stemness of hematopoietic stem cells (HSC). HSC with long-term repopulating capabilities are characterized by low ROS levels, whereas increased ROS levels correlate with lineage specification and differentiation. Several tightly regulated sources of ROS production are well known among which are the NADPH oxidases (Nox). HSC are known to express Nox1, Nox2 and Nox4, however, their role in maintenance of stem cell potential or in the activation of differentiation programs are poorly understood. While Nox2 is activated in response to various extrinsic and intrinsic stimuli, mainly during infection and inflammation, Nox4 is constitutively active and is considered to be responsible for steady-state ROS production. Consequently, Nox4 deficiency might lower ROS levels at steady-state hematopoiesis and thereby could have an impact on HSC physiology. In this work we studied HSC homeostasis in Nox4 knock-out mice. Analysis of the hematopoietic stem and progenitor cell (HSPC) pool in the bone marrow (BM) revealed no significant differences in the levels of Lineage marker negative (Lin-) Sca-1+ ckit+ (LSK) and LSK-SLAM (LSK CD150+ CD48-) cells in Nox4 deficient mice compared to wild type (WT) C57BL/6J mice. HSPC frequency upon primary and secondary BM transplantation was comparable between Nox4 deficient and WT mice. In addition, the frequency of colony forming cells in the BM under steady-state conditions did not differ between both mouse groups. However, Nox4 deficient mice possess more functional HSCs as observed in in vivo competitive repopulating unit (CRU) assays. Lin- cells derived from Nox4 knock out (KO) mice showed an increased CRU frequency and superior multilineage engraftment upon secondary transplantation. Surprisingly, ROS levels in different HSPC subsets of NOX4 KO mice were comparable to WT cells, implying that the absence of Nox4 in HSCs does not have a major intrinsic impact on HSC physiology via ROS. Therefore, the increased levels of functional HSCs observed in our studies may suggest a contribution of the BM microenvironment to steady-state hematopoiesis in the BM of Nox4 KO animals. Recent observations suggest a regulation of the BM stem cell pool by BM endothelial cells, in particular by the permeability state of the blood-bone marrow-barrier (Itkin T et al., ASH Annual Meeting Abstracts, 2012). Endothelial cells interact with HSCs predominantly via paracrine effects and control stem cell retention, egress and homing as well as stem cell activation. As Nox4 is highly expressed in endothelial cells and is involved in angiogenesis, we reasoned that the absence of NOX4 could affect HSC homeostasis through altered BM endothelium properties and barrier permeability state. Indeed, in preliminary assays we found reduced short-term homing of BM mononuclear cells into the BM of Nox4 deficient mice as compared to wild type hosts. Furthermore, in vivo administration of Evans Blue dye revealed reduced dye penetration into Nox4-/- BM compared to wild type mice upon intravenous injection. Taken together, these data indicate a reduced endothelial permeability in Nox4 KO mice. Ongoing experiments aim at further characterization of the Nox4-/- phenotype in BM sinusoidal and arteriolar endothelial cells, the impact of Nox4 deletion on BM hematopoietic and mesenchymal stem cells, and in deciphering the role of Nox4 in the bone marrow microenvironment. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 837-837
Author(s):  
Hamza Celik ◽  
Cates Mallaney ◽  
Alok Kothari ◽  
Christopher A Miller ◽  
Jasreet Hundal ◽  
...  

Abstract Genome sequencing studies of patient samples have implicated the involvement of various components of the epigenetic machinery in myeloid diseases, including the de novo DNA methyltransferase DNMT3A (Cancer Genome Atlas Research, N Engl J Med, 2013). We have recently shown that Dnmt3a is essential for normal hematopoietic stem cell (HSC) differentiation. Genetic ablation of Dnmt3a resulted in HSCs that showed diminished capacity for peripheral blood generation after serial transplantation (on a per-HSC basis), while phenotypically-defined HSCs accumulated in the bone marrow (Challen et al., Nature Genetics, 2012). Although this differentiation arrest was insufficient to cause overt disease, in these competitive transplants the presence of wild-type whole bone marrow may have suppressed malignant transformation of the mutant HSCs. Dnmt3a-null HSCs were less proliferative than counterpart control HSCs in this transplantation setting, suggesting that the cellular turnover threshold necessary to generate additional genetic and/or epigenetic lesions required for leukemogenesis was not achieved. To further understand the contribution of Dnmt3a loss-of-function in hematopoiesis, we performed non-competitive transplantation of Dnmt3a-null bone marrow. This forces the mutant HSCs to divide in vivoto regenerate the hematopoietic system following lethal irradiation, and should uncover any predispositions to transformation. Mice transplanted with Dnmt3a-null bone marrow in the absence of wild-type support cells succumbed principally to bone marrow failure (median survival 328 days) characteristic of myelodysplastic syndromes (MDS) with symptoms including anemia, neutropenia, bone marrow hypercellularity and splenomegaly with myeloid infiltration. 2/25 mice developed myeloid leukemia with >20% blasts in the blood and bone marrow. 4/25 primary mice succumbed to myeloproliferative disorders, some of which progressed to secondary leukemia after long latency. Exome sequencing was performed to identify co-operating mutations that drove leukemic transformation, and revealed c-Kit mutations found only in the Dnmt3a-null AML samples. As DNMT3A and KIT mutations can co-occur in AML and mastocytosis, we tested whether these two pathways could co-operate in vivo by ectopic introduction of c-Kit variants into hematopoietic progenitors followed by bone marrow transplantation (Figure 1). As previously reported, expression of c-KitD814V in wild-type cells lead to development of B-cell acute lymphoblastic leukemia (B-ALL). However, expression of c-KitD814V in a Dnmt3a-null background lead to acute leukemia with a much shorter latency (median survival 67 days), implicating a synergism between these pathways in vivo. Moreover, the absence of Dnmt3a also distorted the spectrum of leukemia resulting from enforced c-Kit signaling. While some of the mice transplanted with Dnmt3a-null c-KitD814V cells also succumbed to a B-ALL, 4/13 (31%) developed mastocytosis with involvement of myeloid blasts, and 4/13 (31%) mice developed a T-cell acute lymphoblastic leukemia (T-ALL). We show for the first time that these pathways can co-operate to accelerate transformation in vivo. This Dnmt3a/c-Kit disease model resembles the classical “two-hit” model of leukemogenesis in which one mutation in a hematopoietic progenitor cell inhibits differentiation (Dnmt3a loss-of-function), whilst another drives proliferation (c-Kit gain-of-function). Such mouse models present a unique opportunity to study the sequence of early events leading to HSC transformation following Dnmt3a-inactivation. Figure 1 Kaplan-Meier survival curve of mice transplanted with control or Dnmt3a-KO bone marrow progenitor cells transduced with a lentivirus expressing c-KitD814V. *** p <0.001. Figure 1. Kaplan-Meier survival curve of mice transplanted with control or Dnmt3a-KO bone marrow progenitor cells transduced with a lentivirus expressing c-KitD814V. *** p <0.001. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1051-1051
Author(s):  
Vikas Madan ◽  
Lin Han ◽  
Norimichi Hattori ◽  
Anand Mayakonda ◽  
Qiao-Yang Sun ◽  
...  

Abstract Chromosomal translocation t(8;21) (q22;q22) leading to generation of oncogenic RUNX1-RUNX1T1 fusion is a cytogenetic abnormality observed in about 10% of acute myelogenous leukemia (AML). Studies in animal models and recent next generation sequencing approaches have suggested cooperativity of secondary genetic lesions with t(8;21) in inducing leukemogenesis. In this study, we used targeted and whole exome sequencing of 93 cases (including 30 with matched relapse samples) to profile the mutational landscape of t(8;21) AML at initial diagnosis and post-therapy relapse. We identified recurrent mutations of KIT, TET2, MGA, FLT3, NRAS, DHX15, ASXL1 and KMT2Dgenes in this subtype of AML. In addition, high frequency of truncating alterations in ASXL2 gene (19%) also occurred in our cohort. ASXL2 is a member of mammalian ASXL family involved in epigenetic regulation through recruitment of polycomb or trithorax complexes. Unlike its closely related homolog ASXL1, which is mutated in several hematological malignancies including AML, MDS, MPN and others; mutations of ASXL2 occur specifically in t(8;21) AML. We observed that lentiviral shRNA-mediated silencing of ASXL2 impaired in vitro differentiation of t(8;21) AML cell line, Kasumi-1, and enhanced its colony forming ability. Gene expression analysis uncovered dysregulated expression of several key hematopoiesis genes such as IKZF2, JAG1, TAL1 and ARID5B in ASXL2 knockdown Kasumi-1 cells. Further, to investigate implications of loss of ASXL2 in vivo, we examined hematopoiesis in Asxl2 deficient mice. We observed an age-dependent increase in white blood cell count in the peripheral blood of Asxl2 KO mice. Myeloid progenitors from Asxl2 deficient mice possessed higher re-plating ability and displayed altered differentiation potential in vitro. Flow cytometric analysis of >1 year old mice revealed increased proportion of Lin-Sca1+Kit+ (LSK) cells in the bone marrow of Asxl2 deficient mice, while the overall bone marrow cellularity was significantly reduced. In vivo 5-bromo-2'-deoxyuridine incorporation assay showed increased cycling of LSK cells in mice lacking Asxl2. Asxl2 deficiency also led to perturbed maturation of myeloid and erythroid precursors in the bone marrow, which resulted in altered proportions of mature myeloid populations in spleen and peripheral blood. Further, splenomegaly was observed in old ASXL2 KO mice and histological and flow cytometric examination of ASXL2 deficient spleens demonstrated increased extramedullary hematopoiesis and myeloproliferation compared with the wild-type controls. Surprisingly, loss of ASXL2 also led to impaired T cell development as indicated by severe block in maturation of CD4-CD8- double negative (DN) population in mice >1 year old. These findings established a critical role of Asxl2 in maintaining steady state hematopoiesis. To gain mechanistic insights into its role during hematopoietic differentiation, we investigated changes in histone marks and gene expression affected by loss of Asxl2. Whole transcriptome sequencing of LSK population revealed dysregulated expression of key myeloid-specific genes including Mpo, Ltf, Ngp Ctsg, Camp and Csf1rin cells lacking Asxl2 compared to wild-type control. Asxl2 deficiency also caused changes in histone modifications, specifically H3K27 trimethylation levels were decreased and H2AK119 ubiquitination levels were increased in Asxl2 KO bone marrow cells. Global changes in histone marks in control and Asxl2 deficient mice are being investigated using ChIP-Sequencing. Finally, to examine cooperativity between the loss of Asxl2 and RUNX1-RUNX1T1 in leukemogenesis, KO and wild-type fetal liver cells were transduced with retrovirus expressing AML1-ETO 9a oncogene and transplanted into irradiated recipient mice, the results of this ongoing study will be discussed. Overall, our sequencing studies have identified ASXL2 as a gene frequently altered in t(8;21) AML. Functional studies in mouse model reveal that loss of ASXL2 causes defects in hematopoietic differentiation and leads to myeloproliferation, suggesting an essential role of ASXL2 in normal and malignant hematopoiesis. *LH and NH contributed equally Disclosures Ogawa: Takeda Pharmaceuticals: Consultancy, Research Funding; Sumitomo Dainippon Pharma: Research Funding; Kan research institute: Consultancy, Research Funding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1249-1249
Author(s):  
Zhi Wen ◽  
Jing Zhang

Ras proteins belong to the super family of small GTPases. Although RAS mutations are oncogenic, it remains highly controversial whether wild-type (WT) RAS facilitates or inhibits tumorigenesis in the presence of oncogenic RAS. Previous studies suggest that this might depend on cell type, specific RAS isoforms, and/or stage of tumorigenesis (e.g. tumor initiation versus tumor progression). Recently, we found that deletion of WT Kras in oncogenic Kras mice promotes myeloidproliferative neoplasm (MPN) in a cell-autonomous manner. This is through promoting activation of all Ras isoforms and thus enhancing cytokine signaling in vivo. However, it remains unknown whether WT Kras plays a similar role in oncogenic Nras-induced leukemogenesis. To address this issue, we conditionally down-regulated WT Kras expression in a novel leukemia model induced by endogenous NrasQ61R/+. Detailed characterization of NrasQ61R allele reveals that NrasQ61R/+ displays an intermediate leukemogenic activity between NrasG12D/+ and NrasG12D/G12D. NrasQ61R/+ mice developed MPN (100%) and acute T-cell lymphoblastic leukemia/lymphoma (T-ALL) (~10%) at the moribund stage with a median survival of 197 days. Therefore, NrasQ61R/+ mice provide an excellent experimental system to test genetic lesions promoting or inhibiting oncogenic Nras-induced leukemogenesis. We observed that 3-weeks after activation of NrasQ61R/+ and deletion of WT Kras, the double mutant mice displayed more severe MPN phenotypes than NrasQ61R/+ mice, as demonstrated by more prominent hepatosplenomegaly and further expanded myeloid compartment in bone marrow and spleen. Consistent with these MPN phenotypes, NrasQ61R/+; Kras-/- myeloid progenitor and precursor cells showed prolonged and hyperactivated GM-CSF signaling compared to NrasQ61R/+ cells. In addition, NrasQ61R/+; Kras-/- mice displayed further expanded common lymphoid progenitor compartment and a less differentiated phenotype in thymic T-cells than NrasQ61R/+ mice. In NrasQ61R/+; Kras-/- mice, early thymic T cell progenitors demonstrated enhanced cell proliferation and stronger ERK1/2 signaling compared to NrasQ61R/+ cells. Consequently, NrasQ61R/+; Kras-/- mice survived significantly shorter than NrasQ61R/+ mice (median survival: 97 days; P < 0.001) and 100% of them developed both MPN and T-ALL at the moribund stage. Preliminary results from bone marrow transplantation assay indicate that loss of WT Kras expression promoted NrasQ61R/+-induced MPN and T-ALL in a cell-autonomous manner. Taken together, our results suggest that loss of WT Kras promotes leukemogenesis in NrasQ61R/+ mice. We are currently studying on the underlying mechanisms. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 344-344
Author(s):  
Marcin Wysoczynski ◽  
Janina Ratajczak ◽  
Gregg Rokosh ◽  
Roberto Bolli ◽  
Mariusz Z Ratajczak

Abstract Abstract 344 Background: Stromal derived factor-1 (SDF-1), which binds to the CXCR4 receptor expressed on the surface of hematopoietic stem/progenitor cells (HSPCs), plays an important role in the retention of HSPCs in BM niches. Heme oxygenase (HO-1) is a stress-responsive enzyme that catalyzes the degradation of heme and plays an important function in various physiological and pathophysiological states associated with cellular stress, such as ischemic/reperfusion injury, atherosclerosis, and cancer. Interestingly, it has also been reported that HO-1 regulates the expression of SDF-1 in myocardium (J Mol Cell Cardiol. 2008;45:44–55). Aim of study: Since SDF-1 plays a crucial role in retention and survival of HSPCs in BM, we become interested in whether HO-1 is expressed by BM stromal cells and whether deficiency of HO-1 affects normal hematopoiesis and retention of HSPCs in BM. Experimental approach: To address this issue, we employed several complementary strategies to investigate HO-1–/–, HO-1+/–, and wild type (wt) mouse littermates for i) the expression level of SDF-1 in BM, ii) the number of clonogenic progenitors from major hematopoietic lineages in BM, iii) peripheral blood (PB) cell counts, iv) the chemotactic responsiveness of HSPCs to an SDF-1 gradient as well as to other chemoattractants, including sphingosine-1-phosphate (S1P), ceramide-1-phosphate (C1P), and extracellular nucleotiodes (ATP, UTP), iv) the adhesiveness of clonogenic progenitors to immobilized SDF-1 and stroma, v) the number of circulating HSPCs in PB, and vi) the degree of mobilization in response to granulocyte-colony stimulating factor (G-CSF) or AMD3100, assessed by enumerating the number of CD34–SKL cells and clonogeneic progenitors (CFU-GM) circulating in PB. We also exposed mice to the small HO-1 molecular inhibitor tin protoporphyrin IX (SnPP) and studied the effect of this treatment on G-CSF- or AMD3100-induced mobilization of HSPCs. Finally, to prove an environmental HSPC retention defect in HO-1-deficient mice, we created radiation chimeras, wild type mice transplanted with HO-1-deficient BM cells, and, vice versa, HO-1-deficient mice reconstituted with wild type BM cells. Results: Our data indicate that under normal, steady-state conditions, HO-1–/– and HO+/– mice have normal PB cell counts and numbers of circulating CFU-GM, while a lack of HO-1 leads to an increase in the number of erythroid (BFU-E) and megakaryocytic (CFU-GM) progenitors in BM. However, while BMMNCs from HO-1–/– have normal expression of the SDF-1-binding receptor, CXCR4, we observed that the mRNA level for SDF-1 in BM-derived fibroblasts was ∼4 times lower. This corresponded with the observation in vitro that HSPCs from HO-1–/– animals respond more robustly to an SDF-1 gradient, and HO-1–/– animals mobilized a higher number of CD34–SKL cells and CFU-GM progenitors into PB in response to G-CSF and AMD3100. Both G-CSF and AMD3100 mobilization were also significantly enhanced in normal wild type mice after in vivo administration of HO-1 inhibitor. Finally, mobilization studies in irradiation chimeras confirmed the crucial role of the microenvironmental SDF-1-based retention mechanism of HSPCs in BM niches. Conclusions: Our data demonstrate for the first time that HO-1 plays an important and underappreciated role in modulating the SDF-1 level in the BM microenvironment and thus plays a role in retention of HSPCs in BM niches. Furthermore, our recent data showing a mobilization effect by a small non-toxic molecular inhibitor of HO-1 (SnPP), suggest that blockage of HO-1 could be a promising strategy to facilitate mobilization of HSPCs. Further studies are also needed to evaluate the role of HO-1 in homing of HSPCs after transplantation to BM stem cell niches. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4295-4295
Author(s):  
Jae-Hung Shieh ◽  
Tsann-Long Su ◽  
Jason Shieh ◽  
Malcolm A.S. Moore

Abstract Abstract 4295 Pre-B cell acute lymphoblastic leukemia (pre-B ALL) is the most common leukemia in children and is treatable. However, no in vitro nor in vivo models are available to investigate their pathophysiology other than a number of established cell lines that grow in the absence of any cytokine dependence or stromal interaction. We developed a serum-free MS-5 cell (a murine bone marrow stromal cell line) co-culture system that is capable of expanding human primary pre-B ALL CD34+CD19+ cells in vitro. To define a population of pre-B ALL initiating cells, our study reveals that a sorted CD34bright population displays a slow proliferation and maintains a high % of CD34+ cells. In contrast, CD34dim cells/CD34− cells fraction shows a higher proliferation but expanded cells lost CD34 antigens. A group of alkylating molecules (BO-1055, -1090, 1099, -1393 and -1509) was evaluated for proliferation of the pre-B ALL CD34+ cells, the pre-B ALL CD34− cells, human mesenchymal stem cells (hMSC), murine MSC (MS-5 cells and Op9 cells), human bone marrow derived endothelial cells (BMEC), and human cord blood (CB) CD34+ cells, as well as for a week 5 cobblestones area forming (CAFC) assay with CB CD34+ cells. BO-1055 molecule efficiently suppressed the growth of pre-B ALL CD34+ cells (IC50 = 0.29 μM) and CD34− cells (IC50 = 0.31 μM). In contrast, IC50 of BMEC, MSC, CB CD34+ cells and CAFC are >10, >25, 8, and >5 μM, respectively. Pre-B ALL cells expressing green fluorescent protein (GFP) and luciferase (GFP-Lu-pre-B ALL) were created, and a xenograft of the GFP-Lu-pre-B ALL cells to NOD/SCID IL2R gamma null (NSG) mice was established. The in vivo effect of BO-1055 to the GFP-Lu-pre-B ALL cells in NSG mice is under investigation. Our stromal culture system supports primary pre-B ALL cells and closely recapitulates the growth of primary human pre-B ALL cells in their niche in vivo. Based on this co-culture system, we identified BO-1055 as a potential therapeutic agent with an excellent toxicity window between pre-B ALL cells and normal tissues including BMEC, MSC and hematopoietic progenitor/stem cells. The in vitro stromal co-culture system combined with the xenograft model of GFP-Lu-pre-B ALL cells provides an efficient and powerful method to screen new drugs for pre-B ALL therapy. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2838-2838
Author(s):  
Anna Lena Illert ◽  
Christian Fritz ◽  
Hiroyuki Kawaguchi ◽  
Petra Schenk ◽  
Stephan W. Morris ◽  
...  

Abstract The regulated oscillation of protein expression is an essential mechanism of cell cycle control. The SCF class of E3 ubiquitin ligases is involved in this process by targeting cell cycle regulatory proteins for degradation by the proteasome, with the F-Box subunit of the SCF specifically recruiting a given substrate to the SCF core. We previously reported the cloning of NIPA (Nuclear Interaction Partner of ALK) in complex with constitutively active oncogenic fusions of ALK, which contributes to the development of lymphomas and sarcomas. Subsequently we characterized NIPA as a F-Box protein that defines an oscillating ubiquitin E3 ligase targeting nuclear cyclin B1 in interphase thus contributing to the timing of mitotic entry. Using a conditional knockout strategy we inactivated the gene encoding NIPA. NIPA-deficient animals are viable, but sterile due to a block of spermatogenesis. Moreover, our studies demonstrate that loss of NIPA has no substantive effect on the physiological cell cycle progression of primary MEFs indicating that this cell cycle checkpoint is inactive under optimal proliferation conditions. Interestingly, NIPA checkpoint control can be unmasked by oncogenic transformation by c-Myc. Here we show that transformed focus formation assays revealed higly significant differences in c-Myc-induced transformation in NIPA-null and wild-type MEFs. c-Myc transduction caused a pronounced upregulation of cyclin-B in NIPA-null MEFs, which was completely reversible by ectopic NIPA expression. This increased cyclin-B1 expression after c-Myc transduction in the absence of NIPA has considerable functional consequences for the cells: Focus formation ability of c-Myc-infected Nipa−/− MEFs was greatly reduced in comparison to wild-type MEFs (24.6% vs. 100%). Moreover, c-Myc expression caused 12.8% apoptotic subG1 cells in wild-type MEFs, whereas Nipa−/− MEFs were more affected by c-Myc-induced apoptosis (22.45%). By contrast, transduction with other oncogenes like k-Ras in p53 knockdown Nipa−/− and Nipa+/+ MEFs showed no differences in various transformation and apoptosis assays pointing out the exclusive role of the G2/M checkpoint NIPA in c-Myc induced transformation. Furthermore, we investigated the impact of these findings for the pathogenesis of c-Myc induced tumorigenesis in vivo. Recipient mice transplanted with c-Myc transduced wild-type bone marrow rapidly developed an AML-like disease (median survival 33 days) characterized by bone marrow infiltration and expression of the myeloid lineage markers CD11b and Gr1. In contrast, animals transplanted with c-myc transduced NIPA knockout BM showed a substantially delayed onset of leukemia and survived significantly longer compared to the control group (median survival 52 days, p&lt;0.01). Taken together, our data demonstrate that NIPA is required for efficient c-Myc transformation in vitro and and in vivo in a murine bone marrow transplantation model. Moreover, our results highlight the functional importance of NIPA in cell cycle regulation and suggest that deregulation of the protein provides a substantial contribution during the process of tumorigenesis.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1430-1430
Author(s):  
Gregor SD Reid ◽  
David Barrett ◽  
Alix Eden Seif ◽  
Valerie I. Brown ◽  
Stephan A. Grupp

Abstract Abstract 1430 Poster Board I-453 B cell precursor (BCP) acute lymphoblastic leukemia (ALL) is the most common childhood malignancy. While the peak age of onset for this disease is 4 years, abnormal cells that will eventually give rise to disease can be detected in blood taken from patients at birth. Interestingly, similar abnormal cell populations can also be detected in blood taken at birth from many children who do not go onto develop ALL. Understanding the factors that influence the survival and expansion or elimination of these abnormal pre-leukemic cells will shed light on the process of leukemogenesis and may suggest strategies for the prevention of BCP-ALL progression. We have used a mouse model of BCP-ALL to investigate the influence of normal immune cells on the pre-leukemic population. An abnormal BCP population arises in Eμ-RET (RFP) transgenic mice during fetal development, with overt leukemia developing between 3 and 9 months of age. We show that purified BCP from bone marrow of 4-week old pre-leukemic RFP mice undergo rapid expansion when adoptively transferred into immune-deficient mice, in many cases reaching white blood cell counts of >105 (with >90% showing the abnormal BCP phenotype). Secondary and tertiary transfer of expanded BCP into immune-deficient mice again produced a severe BCP lymphoproliferative disease. Such an expansion was not observed when purified BCP were transferred into wild-type mice or when unsorted pre-leukemic RFP bone marrow was transferred into immune-deficient mice. In addition, outgrowth of the abnormal cells was significantly curtailed if the purified RFP cells were mixed with a tenfold excess of wild-type bone marrow cells prior to adoptive transfer. This inhibition of BCP outgrowth was not achieved with Rag1-deficient bone marrow cells, suggesting that competition with normal adaptive immune cells for limited growth factors may impair the expansion of RFP pre-leukemic cells. Consistent with this hypothesis, blockade of the IL-7 receptor on pre-leukemic cells abrogated their expansion following adoptive transfer. As production of IL-7 is elevated in lymphopenic settings, we evaluated the impact of T cell-depletion on pre-leukemic cells in RFP mice. Pre-leukemic cell populations were significantly elevated in the spleen (31.3% +/- 15.4 vs 9% +/- 9, p<0.01) and blood (17% +/-19.2 vs 3% +/- 4.8, p<0.05) of T cell-depleted mice compared to controls. Taken together, these results suggest that competition for growth factors such as IL-7 may be a limiting step in the early expansion of pre-leukemic cell populations and may provide a mechanistic link between immune responses and pediatric ALL through the cytokine-mediated expansion of the pre-leukemic cell pool. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1523-1523
Author(s):  
Juliana M Benito ◽  
Volgin Y Andrei ◽  
Ye Chen ◽  
Lu Hongbo ◽  
Yuexi Shi ◽  
...  

Abstract Abstract 1523 We have recently demonstrated that the leukemic bone marrow (BM) niche is highly hypoxic and that hypoxia promotes resistance of leukemic cells to chemotherapy (Benito et al., PLoS One 2011, e23108). Our preliminary data indicate that AML cells surviving chemotherapy in the human xenograft mouse models of leukemia reside within hypoxic areas of BM microenvironment as documented by staining with the hypoxia marker CAIX. These findings support utility of hypoxia-activated pro-drugs with the goal to eliminate leukemic blasts and leukemic stem cells residing in hypoxic BM microenvironment. TH-302 is a 2-nitroimidazole linked bromo-isophosphoramide mustard cytotoxin that upon hypoxia-dependent activation induces DNA cross-linking. TH-302 exhibited potent hypoxia-selective anti-leukemia activity in pre-B ALL (REH, NALM6), AML (OCI-AML3, MOLM-13, KG-1) and CML cell lines (KBM5), with IC50s at 1% O2 ranging from 0.04μM to 2.3μM and hypoxia cytotoxicity ratio (HCR) ranging from 116 for KBM5 to 11 for REH cells. TH-302 at 5–7.5μM also exhibited hypoxia-dependent anti-leukemia activity in primary ALL and AML samples (N=3; normoxia, 2–8%; hypoxia, 28–65% apoptotic cells).To better recapitulate the multidimensional BM niche we utilized co-cultures of GFP-labeled leukemic cells with bone marrow-derived RFP-labeled mesenchymal stromal cells (MSC) immobilized within Matrigel. MSC and leukemic cells generated three-dimensional (3D) structures- “spheroids”- and co-proliferated over time with colonies of leukemic cells firmly attached to MSC, as monitored by confocal microscopy (Fig. 1). Pimonidazole staining shows that vast hypoxia is present in the MSC/AML spheroids grown at normal oxygen tension, in contrast to what is observed in plastic-based (2-D) stromal co-cultures. Anti-leukemia activity of TH-302 was next determined in 2D vs 3D co-cultures of MSCs plus MOLM-13 or OCI-AML3 cells. In 2D co-cultures, MSC protected MOLM-13 and OCI-AML3 cells from TH-302-induced cytotoxicity, while extensive apoptosis was documented in hypoxic spheroid co-cultures (at 50nM TH-302, reduction in viability 10–15% vs >60%, Fig. 1). These findings suggest that culture conditions faithfully mimicking BM microenvironment promote pathologic hypoxia generated by rapidly proliferating AML cells, which in turn leads to their increased sensitivity to hypoxia-activated cytotoxins. To validate these findings in vivo, we next tested anti-leukemia efficacy of TH-302 in the in vivo model of primary AML established in NSG mice. TH-302 (50 mg/kg IP 3 times a week for three weeks) reduced the number of circulating AML cells (control, 13.2+/−5.7 ×106/ml; TH-302, 2.5+/−2.1 ×106/ml) and prolonged survival of NSG mice engrafted with primary AML cells compared to the vehicle treated mice (median survival time: TH-302=75 days; Control=56 days; P=0.003, n= 8 mice/group). To test the ability of hypoxia-activated prodrug to target leukemia-initiating cells, secondary transplant experiments were performed in which BM cells from control or TH-302 treated mice (collected after two weeks of therapy) were serially diluted and injected into secondary NSG recipient mice at 0.01, 0.005 or 0.0001×106̂ cells/mouse (N=5 mice/dilution). Although all mice transplanted with higher cell doses died from leukemia, we observed significantly prolonged survival of animals injected with 0.01×106 cells from TH-302-treated primary recipients compared with vehicle-treated controls (median survival control=68 days; TH-302=79 days; P=0.0031) or with 0.005×106 cells (control=79 days; TH-302=83 days; P=0.0462). In summary, our findings suggest that pathologic hypoxia is a prevalent condition of leukemic BM microenvironment that promotes survival of leukemic blasts and leukemia-initiating cells. The results support targeting hypoxia with hypoxia-activated cytotoxins such as TH-302 to enhance the efficacy of therapeutic regimens in AML. A Phase 1 single agent clinical trial of TH-302 in patients with relapsed/refractory hematologic malignancies is ongoing. Figure 1. Spheroids of MSCs and MOLM-13 cells were incubated with or without TH-302 for 72hr. Effect on cell viability was determined by WST-1 assay. Figure 1. Spheroids of MSCs and MOLM-13 cells were incubated with or without TH-302 for 72hr. Effect on cell viability was determined by WST-1 assay. Disclosures: Handisides: Threshold Pharmaceuticals: Employment. Hart:Threshold Pharmaceuticals: Employment. Konopleva:Threshold Pharmaceuticals: Research Funding.


Blood ◽  
2005 ◽  
Vol 106 (13) ◽  
pp. 4093-4101 ◽  
Author(s):  
Longbiao Yao ◽  
Takafumi Yokota ◽  
Lijun Xia ◽  
Paul W. Kincade ◽  
Rodger P. McEver

In vitro studies suggest that bone marrow endothelial cells contribute to multilineage hematopoiesis, but this function has not been studied in vivo. We used a Cre/loxP-mediated recombination to produce mice that lacked the cytokine receptor subunit gp130 in hematopoietic and endothelial cells. Although normal at birth, the mice developed bone marrow dysfunction that was accompanied by splenomegaly caused by extramedullary hematopoiesis. The hypocellular marrow contained myeloerythroid progenitors and functional repopulating stem cells. However, long-term bone marrow cultures produced few hematopoietic cells despite continued expression of gp130 in most stromal cells. Transplanting gp130-deficient bone marrow into irradiated wild-type mice conferred normal hematopoiesis, whereas transplanting wild-type bone marrow into irradiated gp130-deficient mice did not cure the hematopoietic defects. These data provide evidence that gp130 expression in the bone marrow microenvironment, most likely in endothelial cells, makes an important contribution to hematopoiesis.


Sign in / Sign up

Export Citation Format

Share Document