Pathway Based Pharmacogenomics of Cytarabine In Pediatric Acute Myeloid Leukemia

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 294-294
Author(s):  
Jatinder Lamba ◽  
Amit Mitra ◽  
Kristine Crews ◽  
Pounds Stanley ◽  
Xueyuan Cao ◽  
...  

Abstract Abstract 294 Acute myeloid leukemia (AML) is the second most common form of childhood leukemia and has the worst prognosis of all major childhood cancers. The mainstay of AML chemotherapy is the nucleoside analog cytarabine (ara-C). Numerous studies suggest that the intracellular concentrations of the ara-C active metabolite, ara-CTP, vary widely among patients, and in turn, are associated with variability in clinical response to AML treatment. In the present study, we have taken a pathway directed approach to identify genetic predictors of ara-C response in pediatric patients treated with ara-C based antileukemic chemotherapy in the AML02 (n=187) and AML97 (n=55) clinical trials. The AML02 trial enrolled AML patients <22 years of age excluding APL or Down's syndrome patients, but those with all other subtypes of de novo or secondary AML, as well as patients with mixed-lineage leukemia, were eligible. Patients were randomized to receive induction I therapy containing high-dose cytarabine or low-dose cytarabine plus daunorubicin and etoposide. We genotyped the genomic DNA from patients enrolled in AML02 study for potentially significant single nucleotide polymorphisms (SNPs) in 10 key ara-C pathway genes and screened for association with 3 endpoints in AML02 study: in vitro ara-C LC50 determined in diagnostic leukemic cells, event free survival (EFS) and overall survival (OS). In samples from St. Jude AML97 study, we screened for association of SNPs with 4 endpoints: intracellular ara-CTP levels after start of induction, DNA synthesis relative to baseline, morphological response after induction I, and EFS. In the St Jude AML 97 study patients were randomly assigned to receive ara-C as either a short daily infusion (500 mg/m2/dose intravenously over 2 hrs daily for 5 days) or a continuous infusion (500 mg/m2/day as a continuous infusion over 5 days). Bone marrow was collected at the end of the ara-C infusion on day 1 for patients receiving the short daily infusion (n=27), and at 10 hrs after the start of the infusion for those receiving the continuous infusion (n=28). Ara-CTP levels in leukemia cells were analyzed by HPLC. Intracellular accumulation of ara-CTP was significantly higher when given as short daily infusion, as compared to continuous infusion (p = 0.01). The inter-patient variability for blast ara-CTP concentrations was 40-fold in the short infusion arm and 101-fold in the continuous infusion arm. We found significant correlations between SNPs in ara-C pathway genes (such as DCK, DCTD, CMPK, CTPS, CDA and NT5C2) and various clinical parameters (after adjusting for arm and/or risk group), some of which are listed below. These results suggest that genetic variation in key candidate genes in ara-C metabolic pathway could in?uence and predict the variability observed in cellular sensitivity and treatment response. The pharmacogenomic factors identi?ed in the present study could be potentially used for tailoring medications to better individualize cytarabine based AML therapy. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5309-5309
Author(s):  
Manal M W Elmasry ◽  
Alaa Elhaddad

Abstract Background: Acute myeloblastic leukemia (AML) can be viewed as newly formed, abnormal hemopoeitic tissue initiated by few leukemic stem cells (LSCs). Recognizing the LSC and identifying their behavior, plays a pivotal role in the approach of a targeted therapy.Colony-stimulating factor 1 (CSF-1), also known as M-CSF, is a protein ligand that acts on the CSF1R promotes mononuclear phagocytes survival, proliferation and differentiation. Aim of the work: Defining the self-renewing [Thy1-, CD34+, CD38-] LICs in AML cases before and after induction chemotherapy as a predictor for relapse and to determine how CSF1R (Fms) and CD34 markers affect the growth and survival of human leukemic cells in the CD38- Thy1- population. Patients and methods: This study was carried out on 30 samples from the peripheral blood of adult patients with de-novo acute myeloid leukemia. The majority of the patients were monocytic AML Samples were sorted into four populations (Fms+CD34-, Fms+CD34+, Fms-CD34+ and Fms-CD34-) according to the surface markers of the cells. Cells were cultured on mouse stromal cells transfected with a plasmid containing human CSF-1. Samples were cultured using Iscove's modified Dulbecc's medium (IMDM).The cultures were assessed for survival of leukemic cells in days. Results: The mean survival in days of the cells was 13.9 before chemotherapy and 14.1 after chemotherapy. The difference in growth was insignificant (p>0.05). The Fms-CD34+ population in all but two samples tested had the longest survival time in culture. Conclusion: Our results suggest that leukemic stem cells may survive chemotherapy mainly due to their quiescence. Human CSF-1 was shown to increase the number of leukemic cells in co-culture with mouse stroma after 5 weeks. A novel leukemic stem cell (Fms-CD34+) has been identified and is the cell responsible for the growth and maintenance of the leukemic bulk. Disclosures No relevant conflicts of interest to declare.


2003 ◽  
Vol 21 (24) ◽  
pp. 4496-4504 ◽  
Author(s):  
Thomas Büchner ◽  
Wolfgang Hiddemann ◽  
Wolfgang E. Berdel ◽  
Bernhard Wörmann ◽  
Claudia Schoch ◽  
...  

Purpose: To examine the efficacy of prolonged maintenance chemotherapy versus intensified consolidation therapy for patients with acute myeloid leukemia (AML). Materials and Methods: Eight hundred thirty-two patients (median age, 54 years; range, 16 to 82 years) with de novo AML were randomly assigned to receive 6-thioguanine, cytarabine, and daunorubicin (TAD) plus cytarabine and mitoxantrone (HAM; cytarabine 3 g/m2 [age < 60 years] or 1 g/m2 [age ≥ 60 years] × 6) induction, TAD consolidation, and monthly modified TAD maintenance for 3 years, or TAD-HAM-TAD and one course of intensive consolidation with sequential HAM (S-HAM) with cytarabine 1 g/m2 (age < 60 years) or 0.5 g/m2 (age ≥ 60 years) × 8 instead of maintenance. Results: A total of 69.2% patients went into complete remission (CR). Median relapse-free survival (RFS) was 19 months for patients on the maintenance arm, with 31.4% of patients relapse-free at 5 years, versus 12 months for patients on the S-HAM arm, with 24.7% of patients relapse-free at 5 years (P = .0118). RFS from maintenance was superior in patients with poor risk by unfavorable karyotype, age ≥ 60 years, lactate dehydrogenase level greater than 700 U/L, or day 16 bone marrow blasts greater than 40% (P = .0061) but not in patients with good risk by complete absence of any poor risk factors. Although a survival benefit in the CR patients is not significant (P = .085), more surviving patients in the maintenance than in the S-HAM arm remain in first CR (P = .026). Conclusion: We conclude that TAD-HAM-TAD-maintenance first-line treatment has a higher curative potential than TAD-HAM-TAD-S-HAM and improves prognosis even among patients with poor prognosis.


Blood ◽  
1995 ◽  
Vol 86 (8) ◽  
pp. 2906-2912 ◽  
Author(s):  
D Haase ◽  
M Feuring-Buske ◽  
S Konemann ◽  
C Fonatsch ◽  
C Troff ◽  
...  

Acute myeloid leukemia (AML) is a heterogenous disease according to morphology, immunophenotype, and genetics. The retained capacity of differentiation is the basis for the phenotypic classification of the bulk population of leukemic blasts and the identification of distinct subpopulations. Within the hierarchy of hematopoietic development and differentiation it is still unknown at which stage the malignant transformation occurs. It was our aim to analyze the potential involvement of cells with the immunophenotype of pluripotent stem cells in the leukemic process by the use of cytogenetic and cell sorting techniques. Cytogenetic analyses of bone marrow aspirates were performed in 13 patients with AML (11 de novo and 2 secondary) and showed karyotype abnormalities in 10 cases [2q+, +4, 6p, t(6:9), 7, +8 in 1 patient each and inv(16) in 4 patients each]. Aliquots of the samples were fractionated by fluorescence-activated cell sorting of CD34+ cells. Two subpopulations, CD34+/CD38-(early hematopoietic stem cells) and CD34+/CD38+ (more mature progenitor cells), were screened for karyotype aberations as a marker for leukemic cells. Clonal abnormalities and evaluable metaphases were found in 8 highly purified CD34+/CD38-populations and in 9 of the CD34+/CD38-specimens, respectively. In the majority of cases (CD34+/CD38-, 6 of 8 informative samples; CD34+/CD38+, 5 of 9 informative samples), the highly purified CD34+ specimens also contained cytogenetically normal cells. Secondary, progression-associated chromosomal changes (+8, 12) were identified in the CD34+/CD38-cells of 2 patients. We conclude that clonal karyotypic abnormalities are frequently found in the stem cell-like (CD34+/CD38-) and more mature (CD34+/CD38+) populations of patients with AML, irrespective of the phenotype of the bulk population of leukemic blasts and of the primary or secondary character of the leukemia. Our data suggest that, in AML, malignant transformation as well as disease progression may occur at the level of CD34+/CD38-cells with multilineage potential.


Blood ◽  
1997 ◽  
Vol 90 (11) ◽  
pp. 4532-4538 ◽  
Author(s):  
Krzysztof Mrózek ◽  
Kristiina Heinonen ◽  
David Lawrence ◽  
Andrew J. Carroll ◽  
Prasad R.K. Koduru ◽  
...  

Abstract Following reports of childhood acute myeloid leukemia (AML) showing that patients with t(9; 11)(p22; q23) have a better prognosis than those with translocations between 11q23 and other chromosomes, we compared response to therapy and survival of 24 adult de novo AML patients with t(9; 11) with those of 23 patients with other 11q23 translocations [t(11q23)]. Apart from a higher proportion of French-American-British (FAB) M5 subtype in the t(9; 11) group (83% v 43%, P = .006), the patients with t(9; 11) did not differ significantly from patients with t(11q23) in terms of their presenting clinical or hematologic features. Patients with t(9; 11) more frequently had an extra chromosome(s) 8 or 8q as secondary abnormalities (46% v 9%, P = .008). All patients received standard cytarabine and daunorubicin induction therapy, and most of them also received cytarabine-based intensification treatment. Two patients, both with t(9; 11), underwent bone marrow transplantation (BMT) in first complete remission (CR). Nineteen patients (79%) with t(9; 11) and 13 (57%) with t(11q23) achieved a CR (P = .13). The clinical outcome of patients with t(9; 11) was significantly better: the median CR duration was 10.7 versus 8.9 months (P = .02), median event-free survival was 6.2 versus 2.2 months (P = .009), and median survival was 13.2 versus 7.7 months (P = .009). All patients with t(11q23) have died, whereas seven (29%) patients with t(9; 11) remain alive in first CR. Seven of eight patients with t(9; 11) who received postremission regimens with cytarabine at a dose of 100 (four patients) or 400 mg/m2 (2 patients) or who did not receive postremission therapy (2 patients) have relapsed. In contrast, 7 (64%) of 11 patients who received intensive postremission chemotherapy with high-dose cytarabine (at a dose 3 g/m2) (5 patients), or underwent BMT (2 patients) remain in continuous CR. We conclude that the outcome of adults with de novo AML and t(9; 11) is more favorable than that of adults with other 11q23 translocations; this is especially true for t(9; 11) patients who receive intensive postremission therapy.


2004 ◽  
Vol 22 (6) ◽  
pp. 1087-1094 ◽  
Author(s):  
John C. Byrd ◽  
Amy S. Ruppert ◽  
Krzysztof Mrózek ◽  
Andrew J. Carroll ◽  
Colin G. Edwards ◽  
...  

Purpose To study the impact of repetitive (three to four courses) versus a single course of high-dose cytarabine (HDAC) consolidation therapy on outcome of patients with acute myeloid leukemia (AML) and inv(16)(p13q22) or t(16;16)(p13;q22). Patients and Methods We examined the cumulative incidence of relapse (CIR), relapse-free survival (RFS), and overall survival (OS) for 48 adults younger than 60 years with inv(16)/t(16;16) who had attained a complete remission on one of four consecutive clinical trials and were assigned to receive HDAC consolidation therapy. Twenty-eight patients were assigned to either three or four courses of HDAC, and 20 patients were assigned to one course of HDAC followed by alternative intensive consolidation therapy. Results Pretreatment features were similar for the two groups. The CIR was significantly decreased in patients assigned to receive three to four cycles of HDAC compared with patients assigned to one course (P = .03; 5-year CIR, 43% v 70%, respectively). The difference in RFS also approached statistical significance (P = .06). In a multivariable analysis that adjusted for potential confounding covariates, only treatment assignment (three to four cycles of HDAC) predicted for superior RFS (P = .02). The OS of both groups was similar (P = .93; 5-year OS, 75% for the three to four cycles of HDAC group v 70% for the one cycle of HDAC group), reflecting a high success rate with stem-cell transplantation salvage treatment administered among patients in both treatment groups. Conclusion We conclude that, in AML patients with inv(16)/t(16;16), repetitive HDAC therapy decreases the likelihood of relapse compared with consolidation regimens including less HDAC.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4457-4457
Author(s):  
Hideki Uchiumi ◽  
Takafumi Matsushima ◽  
Arito Yamane ◽  
Hiroshi Handa ◽  
Hiroyuki Irisawa ◽  
...  

Abstract Background: HLA-DR antigen is present on hematopoietic progenitors and granulocyte/monocyte, erythrocyte and megakaryocytic precursors but absent at the promyelocytic stage during myeloid cell maturation. In accordance with this, majority of promyelocytic leukemia (APL) cells were negative for HLA-DR. Meanwhile, some of non-APL acute myeloid leukemia (AML) cells is found to express HLA-DR. However, the clinical significance of HLA-DR antigen on AML cells is currently unclear. Purpose: We sought to determine the prevalence and clinical characteristics of negativity in HLA-DR expression by retrospectively analyzing 181 consecutive patients with de novo adult AML. Patients and Methods: AML patients examined in the current study (aged 15–86 years) had been diagnosed between August 1995 and July 2004, and categorized to M0 (8 patients), M1 (35), M2 (74), M3 (20), M4 (25), M5 (15), and M6 (4), based on the FAB classification. Median follow-up time was 19.3 months. Phenotypic analyses of leukemic cells were performed using CD45 gating methods. HLA-DR-negative AML was defined as HLA-DR expression less than 20% of cells in the CD45 leukemic cell gate. Results: Among 181 patients, HLA-DR antigens were not detected on AML cells from 46 patients; 20 with APL and 26 with non-APL (non-APL/DR(−)), the latter of which included M0 (2 patients), M1 (15), M2 (7), M4 (2). Leukemic cells from other non-APL patients were HLA-DR-positive (non-APL/DR(+)). None of non-APL/DR(−) patients had t(15;17) nor PML/RARa rearrangement on cytogenetic analysis. Twenty out of 26 patients with non-APL/DR(−) had normal chromosome, and 6 had abnormal karyotypes. In the non-APL/DR(−) group, various degrees of nuclear folding, convolution, or lobulation were observed in 9 patients. Although treatment response and overall survival rate were similar in the three groups (APL, non-APL/DR(−), and non-APL/DR(+)), both FDP levels at diagnosis (57.3 vs 13.2, p&lt;0.05) and maximal FDP levels (232.6 vs 43.8, p&lt;0.01) were significantly higher in non-APL/DR(−) compared with non-APL/DR(+). The maximal FDP levels in the non-APL/DR(−) patients were comparable to those in the APL patients. FDP levels greater than 40 mg/ml were significantly more prevalent in the non-APL/DR(−) than in the the non-APL/DR(−) group. Logistic regression analysis demonstrated that low HLA-DR expression was an independent risk factor for FDP &gt; 40 mg/ml. Conclusion: Our study suggests that AML with negative HLA-DR antigen tend to be associated with abnormality in coagulation and fibrinolysis even if they are genetically non-APL. We propose that more attention should be paied for HLA-DR expression to avoid a devastating coagulopathy which carries a high risk of mortality unless specifically addressed.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1980-1980 ◽  
Author(s):  
Gesine Bug ◽  
Steffen Koschmieder ◽  
Juergen Krauter ◽  
Stefanie Wiebe ◽  
Carla Hannig ◽  
...  

Abstract Introduction: In acute myeloid leukemia (AML), granulocyte-colony stimulating factor (G-CSF) has been used in combination with induction chemotherapy to improve complete remission rates (CR) by sensitization of leukemic cells. This randomized prospective oligocenter study was designed to assess whether two induction cycles given simultaneously with and followed by G-CSF (G-CSFpriming) was superior to G-CSF administered only after induction (G-CSFpost) with regard to CR and disease-free survival (DFS) in patients older than 60 years. Secondary objectives were comparison of this concept in de novo versus secondary AML and to examine the feasibility of autologous stem cell transplantation (ASCT) as late consolidation. Methods: Overall, 183 eligible pts (median age 67 yrs) were randomly assigned to receive G-CSF starting on the day before (n=91) or after chemotherapy (n=92) during two induction cycles consisting of idarubicin, cytarabine and etoposide (IdAV). The two treatment groups were evenly matched with respect to age, diagnosis and cytogenetic risk factors. G-CSF was given as daily s.c. injection at 5μg/kg. Pts achieving a CR were scheduled to receive early consolidation chemotherapy with fludarabine, cytarabine, idarubicin plus G-CSF (mini-FlagIda) and peripheral blood stem cell (PBSC) harvest, followed by ASCT as late consolidation. Pts lacking PBSC due to mobilization failure were optionally treated with a second cycle of mini-FlagIda as late consolidation. Results: After induction chemotherapy, 118 out of 183 pts (64%) achieved CR. Response was not different in the G-CSFpost vs. G-CSFpriming group (70% vs. 59%, p=0.148). Recovery of neutrophils was similar in both groups after cycle 1 (21.8 vs. 20.5 days) and cycle 2 (14.9 vs. 16.3 days). Notably, G-CSF priming resulted in a significantly increased mortality in induction 1 (25% vs. 9%, p=0.003) associated with a higher rate of severe mucositis and infectious complications. The probability of OS and DFS at 5 years was 16% and 20%, resp., with no significant differences between the induction groups. With a median follow up of 26 months (range, 5–77), 77 out of 118 complete responders have relapsed and 7 died while in CR. Patients with de novo AML had a significantly better OS than those with secondary AML (17 vs. 11 months, p<0.001). Unfavorable cytogenetics were associated with a poor median OS (7 vs. 15 months, p<0.001). Following mini-FlagIda I, collection of at least 2x10E6 CD34+ PBSC/kg was feasible in 35 of 67 pts in whom mobilization of CD34+ cells was monitored. Late consolidation with ASCT (n=19) was not superior to mini-FlagIda II (n=16, DFS 24 vs. 27 months). Conclusions: In this randomized study with elderly AML patients, G-CSF priming did not result in an increased CR rate and was associated with higher induction mortality, but OS was not influenced. We demonstrated feasibility of ASCT in patients up to the age of 70 years, which was not superior to chemotherapy consolidation.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1011-1011
Author(s):  
Marek Seweryn ◽  
Jerzy Wojnar ◽  
Dariusz Kata ◽  
Slawomira Kyrcz-Krzemien

Abstract Abstract 1011 Poster Board I-33 Background: Addition of purine analogues to standard induction therapy of acute myeloid leukemia (AML) had previously been demonstrated to increase complete remission rate. The aim of this study was to analyze whether the use of cladribine or fludarabine during induction and consolidation increases the risk of infectious complications. Material and methods: 118 AML patients, included in two consecutive randomized trials between 1999-2006 in a single centre were analyzed. Induction therapy consisted of daunorubicin + cytarabine (DA-7, n=53) alone or in combination with cladribine or fludarabine (DAC-7 + DAF-7, n=65 ). Consolidation included one course of high-dose AraC + mitoxantrone and one course of high-dose AraC +/- purine analogues. A median age was 45(17-58) years and 48(20-60) years for patients treated with and without purine analogues, respectively. Results: The frequency of neutropenic fever as well as microbiologically documented bacterial, fungal and viral infections during induction and consolidation did not differ between two compared groups - receiving or not purine analogues. Time to infection occurrence and infection duration were similar in both study groups. During induction and both consolidation treatments significant lower values of lymphocytosis were observed in the group of patients treated with purine analogues. There was a slight tendency to increased rate of mucositis for patients treated with purine analogues (60% vs. 44.3%, p=0.07) during induction treatment, while infections affecting skin and soft tissues were significant frequent for patients treated without purine analogues (43.3% vs. 18%, p=0.03) during second consolidation treatment (high dose AraC). The usage of intravenous anti-infectious medications (antibiotics, antifungal, antiviral) and periods of hospitalization did not differ between two groups in this study. Conclusions: We conclude that the use of purine analogues, either cladribine or fludarabine along with conventional induction and consolidation therapy does not aggreviate infectious complications in adults with AML. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4135-4135
Author(s):  
Maria Paola Martelli ◽  
Lorenzo Brunetti ◽  
Luca De Carolis ◽  
Elisabetta Agliani ◽  
Laura Berchicci ◽  
...  

Abstract Abstract 4135 Acute myeloid leukemia (AML) expressing mutated NPM1 gene and cytoplasmic nucleophosmin (NPMc+ AML) [Falini B et al, NEJM 2005;352:254-266] is a new entity of WHO classification that shows distinctive biological and clinical features. AML with mutated NPM1 usually presents with a high white blood cell count; the bone marrow biopsy is usually markedly hypercellular and leukemic cells frequently show myelomonocytic or monocytic features, with dysplasia and involvement of two or more cell lineages in about 25% of cases. Lack, or low expression, of CD34 in over 90% of cases is the most distinctive immunophenotypic feature of NPM1-mutated AML and is independent of leukemic cell maturation. NPM1 gene mutation without concomitant FLT3-ITD identify a subgroup of AML patients with a favorable prognosis and has been associated with an approximately 50-60% probability of survival at 5 years in younger patients. Here we report 4 out of 41 (10%) patients, admitted at our Hospital in the last year, with new-diagnosed AML with mutated NPM1 presenting with life-threatening thromboembolic (either arterial or venous) events. The main characteristics of these patients are summarized in Table 1. The patients had neither personal nor family history concerning thromboembolism. Hyperleukocytosis was a common feature of the vast majority of NPM1-mutated AML patients at diagnosis. Immunophenotypic analysis did not show a peculiar phenotype in these patients. Table 1 Characteristics of patients with NPM1-mutated AML and thrombosis. Case report no Age Sex (M/F) FAB subtype WBC/mmc Type of thrombosis Site of thrombosis 1 41 F M1 14970 arterial Anterior interventricular branch of left coronary artery 2 56 M M4 93990 arterial external iliac and femoral (right limb) 3 63 M M2 113000 deep venous great saphenous veins (bilateral) 4 73 F M4 190000 deep venous iliac and femoral In two patients (cases 1 and 2), the arterial thromboembolic event (acute myocardial infarction and acute ischemia of right lower limb, respectively) presented about one month before diagnosis of leukemia. In the other 2 patients (cases 3 and 4), deep venous thromboembolism was concomitant with the diagnosis of leukemia. One patient (case 4), who could not initiate chemotherapy for severe concomitant renal failure, died few days after diagnosis. The other patients recovered from the acute event and upon diagnosis of leukemia were promptly treated with standard polychemotherapy which allowed to obtain complete hematological remission associated with complete resolution of the thromboembolic event. The clinical course after chemotherapeutic treatment of the patients outlines the importance and life saving role of early chemotherapy even under adverse circumstances. The pathogenesis of thromboembolic disease in hematological malignancies is complex and multifactorial: tumor cell-derived procoagulant, fibrinolytic or proteolytic factors and inflammatory cytokines affect clotting activation. Other important factors include infectious complications and hyperleukocytosis. However, large vessel thrombosis is a very rare clinical presentation. Our report of severe thromboembolic events at presentation in AML with mutated NPM1 suggests some still unidentified biological features of this leukemia which we are currently investigating. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1073-1073
Author(s):  
Hiroto Inaba ◽  
Jeffrey E Rubnitz ◽  
Elaine Coustan-Smith ◽  
Lie Li ◽  
Brian D Furmanski ◽  
...  

Abstract Abstract 1073 Background: Aberrant receptor tyrosine kinase (RTK) signaling arising from genetic abnormalities, such as FLT3-internal tandem duplications (FLT3-ITD), is an important mechanism in the development and growth of acute myeloid leukemia (AML) and is often associated with a poor outcome. Hence, inhibition of RTK signaling is an attractive novel treatment option, particularly for disease that is resistant to conventional chemotherapy. We evaluated the clinical activity of the multikinase inhibitor sorafenib in children with de novo FLT3-ITD–positive AML or relapsed/refractory AML. Methods: Fourteen patients were treated. Six patients with newly diagnosed FLT3- ITD–positive AML (aged 9–16 years; median, 12 years) received 2 cycles of remission induction therapy and then started sorafenib (200 mg/m2 twice daily for 20 days) the day after completing induction II (low-dose cytarabine, daunorubicin, and etoposide). Nine patients (aged 6–17 years; median, 9 years) with relapsed AML (including one treated on the above regimen) received sorafenib alone (2 dose levels; 200 and 150 mg/m2) twice daily for the first week of therapy, concurrently with clofarabine and cytarabine on days 8–12, and then alone from days 13 to 28. Sorafenib pharmacokinetics were analyzed at steady-state on day 8 of sorafenib in patients with newly diagnosed AML and on day 7 in patients with relapsed AML. In patients with relapsed AML, the effect of sorafenib on signaling pathways in AML cells was assessed by flow cytometry. Results: All 6 newly diagnosed patients, including 2 whose AML was refractory to induction I, achieved a complete remission (CR) after induction II; 5 had negative minimal residual disease (MRD; <0.1% AML cells in bone marrow) after induction II. Both patients in this group who relapsed achieved second remissions, one with sorafenib alone and one on the relapse regimen described above. Of the 9 patients with relapsed AML, 6 (4 with FLT3-ITD) were treated with sorafenib 200 mg/m2. All 6 had a >50% decrease in blast percentage and/or bone marrow cellularity after 1 week of sorafenib. After concurrent sorafenib and chemotherapy, 5 of the 9 patients with relapsed AML achieved CR (2 had negative MRD) and 2 achieved a partial remission (PR; 5%-25% AML cells in bone marrow); all 4 patients with FLT3-ITD had a CR or PR. After sorafenib treatment, 6 patients underwent HSCT while 2 with FLT3-ITD who could not receive HSCT were treated with single-agent sorafenib and have maintained CR for up to 8 months. Hand-foot skin reaction (HFSR) or rash occurred in all patients and improved with cessation of sorafenib. Dose-limiting toxicity (DLT, grade 3 HFSR and/or rash) was observed in 3 of the 6 patients with relapsed AML treated with 200 mg/m2 of sorafenib; no DLT was observed at 150 mg/m2. The effect of sorafenib on downstream RTK signaling was tested in the leukemic cells of 4 patients: in most samples, phosphorylation of S6 ribosomal protein and 4E-BP1 was inhibited. The mean (± SD) steady-state concentration (Css) of sorafenib was 3.3 ± 1.2 mg/L in the newly diagnosed group and 6.5 ± 3.6 mg/L (200 mg/m2) and 7.3 ± 3.6 mg/L (150 mg/m2) in those with relapsed AML. In both groups, the mean conversion of sorafenib to sorafenib N-oxide was 27%-35% (approximately 3 times greater than previously reported), and mean sorafenib N-oxide Css was 1.0–3.2 mg/L (2.1-6.7 μM). In a 442-kinase screen, the inhibitory profiles of sorafenib N-oxide and sorafenib were similar, and FLT3-ITD phosphorylation was potently inhibited by both forms (sorafenib N-oxide Kd = 0.070 μM; sorafenib Kd = 0.094 μM). Sorafenib N-oxide inhibited the growth of an AML cell line with FLT3-ITD (IC50 = 0.026 μM) and 4 AML cell lines with wild-type FLT3 (IC50 = 3.9–13.3 μM) at approximately half the potency of sorafenib. Conclusion: In children with de novo FLT3-ITD and relapsed/refractory AML, sorafenib given alone or with chemotherapy induced dramatic responses and inhibited aberrant RTK signaling in leukemic cells. Sorafenib and its active metabolite (sorafenib N-oxide) likely contribute to both efficacy and toxicity. These results warrant the incorporation of sorafenib into future pediatric AML trials. Disclosures: Inaba: Bayer/Onyx: Research Funding. Off Label Use: Sorafenib and clofarabine: both used for treatment of pediatric acute myeloid leukemia.


Sign in / Sign up

Export Citation Format

Share Document