Clinical Activity, Pharmacokinetics, and Pharmacodynamics of Sorafenib In Pediatric Acute Myeloid Leukemia.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1073-1073
Author(s):  
Hiroto Inaba ◽  
Jeffrey E Rubnitz ◽  
Elaine Coustan-Smith ◽  
Lie Li ◽  
Brian D Furmanski ◽  
...  

Abstract Abstract 1073 Background: Aberrant receptor tyrosine kinase (RTK) signaling arising from genetic abnormalities, such as FLT3-internal tandem duplications (FLT3-ITD), is an important mechanism in the development and growth of acute myeloid leukemia (AML) and is often associated with a poor outcome. Hence, inhibition of RTK signaling is an attractive novel treatment option, particularly for disease that is resistant to conventional chemotherapy. We evaluated the clinical activity of the multikinase inhibitor sorafenib in children with de novo FLT3-ITD–positive AML or relapsed/refractory AML. Methods: Fourteen patients were treated. Six patients with newly diagnosed FLT3- ITD–positive AML (aged 9–16 years; median, 12 years) received 2 cycles of remission induction therapy and then started sorafenib (200 mg/m2 twice daily for 20 days) the day after completing induction II (low-dose cytarabine, daunorubicin, and etoposide). Nine patients (aged 6–17 years; median, 9 years) with relapsed AML (including one treated on the above regimen) received sorafenib alone (2 dose levels; 200 and 150 mg/m2) twice daily for the first week of therapy, concurrently with clofarabine and cytarabine on days 8–12, and then alone from days 13 to 28. Sorafenib pharmacokinetics were analyzed at steady-state on day 8 of sorafenib in patients with newly diagnosed AML and on day 7 in patients with relapsed AML. In patients with relapsed AML, the effect of sorafenib on signaling pathways in AML cells was assessed by flow cytometry. Results: All 6 newly diagnosed patients, including 2 whose AML was refractory to induction I, achieved a complete remission (CR) after induction II; 5 had negative minimal residual disease (MRD; <0.1% AML cells in bone marrow) after induction II. Both patients in this group who relapsed achieved second remissions, one with sorafenib alone and one on the relapse regimen described above. Of the 9 patients with relapsed AML, 6 (4 with FLT3-ITD) were treated with sorafenib 200 mg/m2. All 6 had a >50% decrease in blast percentage and/or bone marrow cellularity after 1 week of sorafenib. After concurrent sorafenib and chemotherapy, 5 of the 9 patients with relapsed AML achieved CR (2 had negative MRD) and 2 achieved a partial remission (PR; 5%-25% AML cells in bone marrow); all 4 patients with FLT3-ITD had a CR or PR. After sorafenib treatment, 6 patients underwent HSCT while 2 with FLT3-ITD who could not receive HSCT were treated with single-agent sorafenib and have maintained CR for up to 8 months. Hand-foot skin reaction (HFSR) or rash occurred in all patients and improved with cessation of sorafenib. Dose-limiting toxicity (DLT, grade 3 HFSR and/or rash) was observed in 3 of the 6 patients with relapsed AML treated with 200 mg/m2 of sorafenib; no DLT was observed at 150 mg/m2. The effect of sorafenib on downstream RTK signaling was tested in the leukemic cells of 4 patients: in most samples, phosphorylation of S6 ribosomal protein and 4E-BP1 was inhibited. The mean (± SD) steady-state concentration (Css) of sorafenib was 3.3 ± 1.2 mg/L in the newly diagnosed group and 6.5 ± 3.6 mg/L (200 mg/m2) and 7.3 ± 3.6 mg/L (150 mg/m2) in those with relapsed AML. In both groups, the mean conversion of sorafenib to sorafenib N-oxide was 27%-35% (approximately 3 times greater than previously reported), and mean sorafenib N-oxide Css was 1.0–3.2 mg/L (2.1-6.7 μM). In a 442-kinase screen, the inhibitory profiles of sorafenib N-oxide and sorafenib were similar, and FLT3-ITD phosphorylation was potently inhibited by both forms (sorafenib N-oxide Kd = 0.070 μM; sorafenib Kd = 0.094 μM). Sorafenib N-oxide inhibited the growth of an AML cell line with FLT3-ITD (IC50 = 0.026 μM) and 4 AML cell lines with wild-type FLT3 (IC50 = 3.9–13.3 μM) at approximately half the potency of sorafenib. Conclusion: In children with de novo FLT3-ITD and relapsed/refractory AML, sorafenib given alone or with chemotherapy induced dramatic responses and inhibited aberrant RTK signaling in leukemic cells. Sorafenib and its active metabolite (sorafenib N-oxide) likely contribute to both efficacy and toxicity. These results warrant the incorporation of sorafenib into future pediatric AML trials. Disclosures: Inaba: Bayer/Onyx: Research Funding. Off Label Use: Sorafenib and clofarabine: both used for treatment of pediatric acute myeloid leukemia.

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Mario Delia ◽  
Paola Carluccio ◽  
Anna Mestice ◽  
Roberta Frappampina ◽  
Francesco Albano ◽  
...  

An emerging body of evidence demonstrates that defects in antileukemic effector cells in patients with acute myeloid leukemia (AML) can contribute to the development and/or persistence of the disease. In particular, immune suppressive regulatory T cells (Tregs) may contribute to this defective antileukemic immune response, being recruited by bone marrow leukemic cells to evade immune surveillance. We evaluated Tregs (CD4+/CD45RA-/CD25high/CD127low), performing multiparametric flow cytometry on freshly collected bone marrow aspirate (BMA), in addition to the usual molecular and cytogenetic work-up in newly diagnosed AML patients to look for any correlation between Tregs and the overall response rate (ORR). We studied 39 AML younger patients (<65 years), all treated with standard induction chemotherapy. ORR (complete remission (CR)+CR with incomplete hematologic recovery (CRi)) was documented in 21 out of 39 patients (54%); two partial responder patients were also recorded. Apart from the expected impact of the molecular-cytogenetic group ( p = 0.03 ) and the NPM mutation ( p = 0.05 ), diagnostic BMA Tregs did not show any correlation with ORR. However, although BMA Tregs did not differ in the study population after treatment, their counts significantly decreased in responder patients ( p = 0.039 ), while no difference was documented in nonresponder ones. This suggested that the removal of Treg cells is able to evoke and enhance anti-AML immune response. However, the role of BMA Tregs in mediating immune system-AML interactions in the diagnostic and posttreatment phase should be confirmed in a greater number of patients.


Blood ◽  
1995 ◽  
Vol 86 (8) ◽  
pp. 2906-2912 ◽  
Author(s):  
D Haase ◽  
M Feuring-Buske ◽  
S Konemann ◽  
C Fonatsch ◽  
C Troff ◽  
...  

Acute myeloid leukemia (AML) is a heterogenous disease according to morphology, immunophenotype, and genetics. The retained capacity of differentiation is the basis for the phenotypic classification of the bulk population of leukemic blasts and the identification of distinct subpopulations. Within the hierarchy of hematopoietic development and differentiation it is still unknown at which stage the malignant transformation occurs. It was our aim to analyze the potential involvement of cells with the immunophenotype of pluripotent stem cells in the leukemic process by the use of cytogenetic and cell sorting techniques. Cytogenetic analyses of bone marrow aspirates were performed in 13 patients with AML (11 de novo and 2 secondary) and showed karyotype abnormalities in 10 cases [2q+, +4, 6p, t(6:9), 7, +8 in 1 patient each and inv(16) in 4 patients each]. Aliquots of the samples were fractionated by fluorescence-activated cell sorting of CD34+ cells. Two subpopulations, CD34+/CD38-(early hematopoietic stem cells) and CD34+/CD38+ (more mature progenitor cells), were screened for karyotype aberations as a marker for leukemic cells. Clonal abnormalities and evaluable metaphases were found in 8 highly purified CD34+/CD38-populations and in 9 of the CD34+/CD38-specimens, respectively. In the majority of cases (CD34+/CD38-, 6 of 8 informative samples; CD34+/CD38+, 5 of 9 informative samples), the highly purified CD34+ specimens also contained cytogenetically normal cells. Secondary, progression-associated chromosomal changes (+8, 12) were identified in the CD34+/CD38-cells of 2 patients. We conclude that clonal karyotypic abnormalities are frequently found in the stem cell-like (CD34+/CD38-) and more mature (CD34+/CD38+) populations of patients with AML, irrespective of the phenotype of the bulk population of leukemic blasts and of the primary or secondary character of the leukemia. Our data suggest that, in AML, malignant transformation as well as disease progression may occur at the level of CD34+/CD38-cells with multilineage potential.


2019 ◽  
Vol 08 (04) ◽  
pp. 193-197
Author(s):  
Anudishi Tyagi ◽  
Raja Pramanik ◽  
Radhika Bakhshi ◽  
Sreenivas Vishnubhatla ◽  
Sameer Bakhshi

AbstractThis prospective study aimed to compare the pattern of mitochondrial deoxyribonucleic acid D-loop (mt-DNA D-loop) variations in 41 paired samples of de novo pediatric acute myeloid leukemia (AML) (baseline vs. relapse) patients by Sanger's sequencing. Mean mt-DNA D-loop variation was 10.1 at baseline as compared with 9.4 per patients at relapse. In our study, 28 (68.3%) patients showed change in number of variations from baseline to relapse, 11 (26.8%) patients showed increase, 17 (41.6%) patients showed decrease, and 7 (17.1%) patients who suffered a relapse had a gain at position T489C. No statistically significant difference was observed in the mutation profile of mt-DNA D-loop region from baseline to relapse in the evaluated population of pediatric AML.


1993 ◽  
Vol 11 (8) ◽  
pp. 1448-1457 ◽  
Author(s):  
W G Woods ◽  
N Kobrinsky ◽  
J Buckley ◽  
S Neudorf ◽  
J Sanders ◽  
...  

PURPOSE Childrens Cancer Group (CCG) protocol 2861 was designed to test the feasibility of aggressively timed induction therapy followed by autologous or allogeneic bone marrow transplantation (BMT) as the sole postremission therapy for newly diagnosed children with acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS). PATIENTS AND METHODS Between April 1988 and October 1989, 142 patients were eligible for study. All patients entered received a timing-intensive five-drug induction of dexamethasone, cytarabine (Ara-C), thioguanine, etoposide, and daunorubicin (DCTER) over 4 days with a second cycle administered after 6 days of rest, irrespective of hematologic status at that time. Most patients subsequently received a second two-cycle induction course. Those who achieved remission were eligible for bone marrow ablative therapy with busulfan and cyclophosphamide, followed by 4-hydroperoxy-cyclophosphamide (4-HC)-purged autologous or allogeneic BMT rescue. RESULTS One hundred eight (76%) patients achieved remission: 19 (13%) died of complications of the leukemia and/or chemotherapy, and 15 (11%) failed to achieve remission. Seventy-four patients subsequently underwent BMT with either autologous (n = 58) or allogeneic (n = 16) rescue. For patients who received autologous rescue with 4-HC-purged grafts, the actuarial disease-free survival (DFS) rate at 3 years from the day of transplant is 51%, compared with 55% for patients who received allogeneic grafts (P = .92). At 3 years, the overall actuarial survival rate for all 142 patients entered on this study is 45%, with an event-free survival (EFS) rate of 37%. Adverse prognostic factors for outcome included an elevated WBC count or the presence of CNS leukemia at the time of AML diagnosis. CONCLUSION Results suggest that aggressively timed induction therapy followed by marrow ablation and BMT rescue with either autologous or allogeneic grafts for children with newly diagnosed AML or MDS is both feasible and effective.


Blood ◽  
1993 ◽  
Vol 82 (10) ◽  
pp. 3125-3132 ◽  
Author(s):  
LJ Bendall ◽  
K Kortlepel ◽  
DJ Gottlieb

Abstract Acute myeloid leukemia (AML) cells respond to exogenous stimulation from myeloid growth factors that may be secreted by cells of the bone marrow (BM) stroma and retained by glycosaminoglycans in the extracellular matrix. We have analyzed the capacity of malignant cells from patients with AML to maintain close proximity to sites of growth factor production and retention by binding to BM stromal elements, including fibroblasts and extracellular matrix proteins. Leukemic cells from all cases of AML adhered to BM fibroblast (BMF) monolayers (mean +/- standard error [SE] percentage binding, 30.9% +/- 2.5%; n = 23) and to fibronectin and laminin (mean +/- SE percentage binding, 28.0% +/- 4.1% [n = 11] and 21.5% +/- 2.3% [n = 8], respectively). Binding to bovine and human collagen type 1, vitronectin, hyaluronic acid, and albumin was minimal. Analysis of binding mechanisms indicated that very late antigen-4 (VLA-4) and VLA-5 were responsible for AML cell binding to fibronectin. Binding to laminin could be inhibited by antibody to the alpha chain of VLA-6. In contrast, AML cell adhesion to BMF monolayers was not impaired by blocking antibodies to either beta 1 or beta 2 integrins used alone, although the combination of anti-CD11/CD18 and anti-VLA-4 inhibited binding in more than 50% of cases. When anti- VLA-5 was added in these cases, mean +/- SE inhibition of binding of 45.5% +/- 9.1% (P < .001) was observed. Binding of AML cells to extracellular matrix proteins fibronectin and laminin is predominantly beta 1-integrin-dependent, but AML cell adhesion to BMF relies on the simultaneous involvement of beta 1 and beta 2 integrins as well as other currently unrecognized ligands.


Blood ◽  
1993 ◽  
Vol 81 (11) ◽  
pp. 3043-3051 ◽  
Author(s):  
HJ Adriaansen ◽  
PA te Boekhorst ◽  
AM Hagemeijer ◽  
CE van der Schoot ◽  
HR Delwel ◽  
...  

Abstract Extensive immunologic marker analysis was performed to characterize the various leukemic cell populations in eight patients with inv(16)(p13q22) in association with acute myeloid leukemia with abnormal bone marrow eosinophilia (AML-M4Eo). The eight AML cases consisted of heterogeneous cell populations; mainly due to the presence of multiple subpopulations, which varied in size between the patients. However, the immunophenotype of these subpopulations was comparable, independent of their relative sizes. Virtually all AML-M4Eo cells were positive for the pan-myeloid marker CD13. In addition, the AML were partly positive for CD2, CD11b, CD11c, CD14, CD33, CD34, CD36, CDw65, terminal deoxynucleotidyl transferase (TdT), and HLA-DR. Double immunofluorescence stainings demonstrated coexpression of the CD2 antigen and myeloid markers and allowed the recognition of multiple AML subpopulations. The CD2 antigen was expressed by immature AML cells (CD34+, CD14-) and more mature monocytic AML cells (CD34-, CD14+), whereas TdT expression was exclusively found in the CD34+, CD14- cell population. The eight AML-M4Eo cases not only expressed the CD2 antigen, but also its ligand CD58 (leukocyte function antigen-3). Culturing of AML-M4Eo cell samples showed a high spontaneous proliferation in all three patients tested. Addition of a mixture of CD2 antibodies against the T11.1, T11.2, and T11.3 epitopes diminished cell proliferation in two patients with high CD2 expression, but no inhibitory effects were found in the third patient with low frequency and low density of CD2 expression. These results suggest that high expression of the CD2 molecule in AML-M4Eo stimulates proliferation of the leukemic cells, which might explain the high white blood cell count often found in this type of AML.


Blood ◽  
2002 ◽  
Vol 100 (13) ◽  
pp. 4622-4628 ◽  
Author(s):  
Gunter Schuch ◽  
Marcelle Machluf ◽  
Georg Bartsch ◽  
Masashi Nomi ◽  
Henri Richard ◽  
...  

Recent findings implied that the progression of hematologic malignancies, like that of solid tumors, is dependent on neovascularization. Recent studies on patients with acute myeloid leukemia (AML) showed increased levels of leukocyte-associated vascular endothelial growth factor (VEGF) and neovascularization of the bone marrow. Murine (32D, M1) and human (HEL, U937, and UKE-1) leukemic cell lines and freshly isolated leukemic cells were analyzed for the expression of VEGF and VEGF receptor mRNA. The expression of VEGF and VEGF receptors KDR and neuropilin-1 (NRP-1) was detected in these cells. In a murine chloroma model, delivery of VEGF165using microencapsulation technology resulted in enhanced tumor growth and vascularization, whereas treatment with a VEGF antagonist soluble NRP-1 (sNRP-1) inhibited tumor angiogenesis and growth. In a systemic leukemia model, survival of mice injected with adenovirus (Ad) encoding for Fc-sNRP-1 (sNRP-1 dimer) was significantly prolonged as compared with mice injected with Ad-LacZ. Further analyses showed a reduction in circulating leukemic cells and infiltration of liver and spleen as well as bone marrow neovascularization and cellularity. Taken together, these results demonstrate that angiogenic factors such as VEGF promote AML progression in vivo. The use of VEGF antagonists as an antiangiogenesis approach offers a potential treatment for AML. Finally, our novel in vivo drug delivery model may be useful for testing the activities of other peptide antiangiogenic factors.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4457-4457
Author(s):  
Hideki Uchiumi ◽  
Takafumi Matsushima ◽  
Arito Yamane ◽  
Hiroshi Handa ◽  
Hiroyuki Irisawa ◽  
...  

Abstract Background: HLA-DR antigen is present on hematopoietic progenitors and granulocyte/monocyte, erythrocyte and megakaryocytic precursors but absent at the promyelocytic stage during myeloid cell maturation. In accordance with this, majority of promyelocytic leukemia (APL) cells were negative for HLA-DR. Meanwhile, some of non-APL acute myeloid leukemia (AML) cells is found to express HLA-DR. However, the clinical significance of HLA-DR antigen on AML cells is currently unclear. Purpose: We sought to determine the prevalence and clinical characteristics of negativity in HLA-DR expression by retrospectively analyzing 181 consecutive patients with de novo adult AML. Patients and Methods: AML patients examined in the current study (aged 15–86 years) had been diagnosed between August 1995 and July 2004, and categorized to M0 (8 patients), M1 (35), M2 (74), M3 (20), M4 (25), M5 (15), and M6 (4), based on the FAB classification. Median follow-up time was 19.3 months. Phenotypic analyses of leukemic cells were performed using CD45 gating methods. HLA-DR-negative AML was defined as HLA-DR expression less than 20% of cells in the CD45 leukemic cell gate. Results: Among 181 patients, HLA-DR antigens were not detected on AML cells from 46 patients; 20 with APL and 26 with non-APL (non-APL/DR(−)), the latter of which included M0 (2 patients), M1 (15), M2 (7), M4 (2). Leukemic cells from other non-APL patients were HLA-DR-positive (non-APL/DR(+)). None of non-APL/DR(−) patients had t(15;17) nor PML/RARa rearrangement on cytogenetic analysis. Twenty out of 26 patients with non-APL/DR(−) had normal chromosome, and 6 had abnormal karyotypes. In the non-APL/DR(−) group, various degrees of nuclear folding, convolution, or lobulation were observed in 9 patients. Although treatment response and overall survival rate were similar in the three groups (APL, non-APL/DR(−), and non-APL/DR(+)), both FDP levels at diagnosis (57.3 vs 13.2, p&lt;0.05) and maximal FDP levels (232.6 vs 43.8, p&lt;0.01) were significantly higher in non-APL/DR(−) compared with non-APL/DR(+). The maximal FDP levels in the non-APL/DR(−) patients were comparable to those in the APL patients. FDP levels greater than 40 mg/ml were significantly more prevalent in the non-APL/DR(−) than in the the non-APL/DR(−) group. Logistic regression analysis demonstrated that low HLA-DR expression was an independent risk factor for FDP &gt; 40 mg/ml. Conclusion: Our study suggests that AML with negative HLA-DR antigen tend to be associated with abnormality in coagulation and fibrinolysis even if they are genetically non-APL. We propose that more attention should be paied for HLA-DR expression to avoid a devastating coagulopathy which carries a high risk of mortality unless specifically addressed.


Sign in / Sign up

Export Citation Format

Share Document