A Novel SIRT1 Activator SIRT1720 Triggers In Vitro and In Vivo Cytotoxicity In Multiple Myeloma Via ATM-Dependent Mechanism

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3007-3007
Author(s):  
Dharminder Chauhan ◽  
Madhavi Bandi ◽  
Ajita V Singh ◽  
Teru Hideshima ◽  
Nikhil C. Munshi ◽  
...  

Abstract Abstract 3007 Background and Rationale: SIRT1 belongs to the silent information regulator 2 (Sir2) family of proteins and functions as NAD+-dependent deacetylase. Previous studies showed that resveratrol, a polyphenolic SIRT1 activator, inhibits tumorigenesis in various solid tumor and hematologic malignancies, including human multiple myeloma (MM) cells. This notion led to the discovery and development of more potent and selective pharmacological activators of SIRT1 as potential anti-cancer therapeutics. In this context, a recent medicinal chemistry research using high-throughput screening, and mass spectrometry identified SRT1720, a small molecule activator of SIRT1 that is structurally distinct from resveratrol. Here, we examined the anti-tumor activity of SRT1720 in MM cells using in vitro and in vivo model systems. Methods and Model: We utilized MM.1S, MM.1R, RPMI-8226, U266, KMS12BM, H929, and INA-6 (an IL-6 dependent) human MM cell lines, as well as purified tumor cells from patients with MM relapsing after prior therapies including lenalidomide or bortezomib. Cell viability, proliferation, and apoptosis assays were performed using trypan blue, MTT, thymidine incorporation, and Annexin V staining. Signal transduction pathways were evaluated using immunoblot analysis, ELISA, and enzymology assays. Results: We first confirmed the functional specificity of SRT1720 against SIRT1 using different experimental strategies. First, we utilized Fluor de Lys Deacetylase Assay to measure whether SRT1720 affects the SIRT1 deacetylase enzymatic activity. Treatment of MM.1R and RPMI-8226 MM cells with SRT1720 markedly increased the deacetylating activity; conversely, pre-treatment of cells with nicotinamide (NAM) - an inhibitor of SIRT1 – significantly blocked SRT1720-triggered deacetylating activity. Second, immunoblot analysis using antibodies specific against acetylated p53 (a known substrate of SIRT1) showed a marked decrease in acetylated state of p53 in SRT1720-treated MM cells. These findings in MM cells confirm SIRT1 as a selective target of SRT1720. We next examined the efficacyof SRT1720 in MM cells. Treatment of MM cell lines and primary patient cells for 24h significantly decreased their viability (IC50 range 3–7 uM) (P < 0.005; n=3) without markedly affecting the viability of normal peripheral blood mononuclear cells, suggesting specific anti-MM activity and a favorable therapeutic index for SRT1720. SRT1720-triggered apoptosis was confirmed in MM.1R and RPMI-8226 cells, evidenced by a marked increase in Annexin V+ and PI- cell population (P < 0.001, n=3). Importantly, SRT1720 induced apoptosis in MM cells even in the presence of bone marrow stromal cells. Mechanistic studies showed that SRT1720-triggered apoptosis in MM cells is associated with 1) activation of caspase-8, caspase-9, caspase-3, and PARP; 2) activation of pATM, CHK2, endoplasmic reticulum stress molecules pEIF2, and BIP; as well as an increase in reactive oxygen species (ROS); 3) inhibition of MM cell growth and survival pathway via NF-kB; and 4) inhibition of VEGF-induced migration of MM cells and associated angiogenesis. Importantly, blockade of pATM using a biochemical inhibitor KU-5593 significantly attenuated SRT1720-induced MM cell death (P value < 0.002; n=2). These data suggest that SRT1720-induced MM cell apoptosis is predominantly mediated by an ATM-dependent apoptotic pathway. We next examined the in vivo efficacy of SRT1720 using a human plasmacytoma xenograft mouse model. Treatment of tumor-bearing mice with SRT1720 (200 mg/kg, 5 days a week for three weeks), but not vehicle alone, significantly (P < 0.008) inhibits MM tumor growth in these mice. Finally, the combination of SRT1720 with bortezomib or dexamethasone triggered synergistic anti-MM activity. Conclusions: These preclinical studies provide the rationale for novel therapeutics targeting SIRT1 to improve patient outcome in MM. Disclosures: Munshi: Millennium Pharmaceuticals: Honoraria, Speakers Bureau. Richardson:Celgene: Membership on an entity's Board of Directors or advisory committees; Millenium: Membership on an entity's Board of Directors or advisory committees. Anderson:Millennium Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1838-1838
Author(s):  
Dharminder Chauhan ◽  
Madhavi Bandi ◽  
Ajita V Singh ◽  
Klaus Podar ◽  
Paul G Richardson ◽  
...  

Abstract Abstract 1838 Background and Rationale: The alkylating drug melphalan is routinely used in clinical protocols for the treatment of multiple myeloma (MM). Importantly, clinical trials in MM have effectively utilized combination of melphalan with proteasome inhibitor bortezomib and prednisolone (VMP regimen) to reduce toxicity, overcome drug resistance and enhance cytotoxicity. These findings highlight the utility of conventional alkylating agent, and importantly, provide impetus to develop conventional agents based prodrugs with a potent cytotoxic activity. In this context, pharmacological screening of alkylating oligopeptides led to the identification of a novel melphalan-containing prodrug J1 (L-melphalanyl-p-L-fluoro phenylalanine ethyl ester) - a new molecular entity with a more distinct activity profile than melphalan (Gullbo J, et al., Anticancer Drugs 2003,14:617–24; Gullbo J, et al., Invest New Drugs 2004, 22:411–20; Wickstrom M, et al., Mol Cancer Ther 2007, 6:2409–17). J1 is rapidly incorporated into the tumor cells cytoplasm, followed by intracellular hydrolysis in part mediated by aminopeptidase N (APN), resulting in a 10-fold greater release of free intracellular melphalan than exposure to melphalan at the same molar concentration (Gullbo J, et al., J Drug Target 2003,11:355–63; Wickstrom et al., Biochem Pharmacol 2010, 79(9):1281-90). In vitro studies showed a greater cytotoxic potency of J1 versus melphalan against different human solid cancers; however, its effect in MM is undefined. In the present study, we examined the anti-tumor activity of J1 in MM cells using both in vitro and in vivo model systems. Methods and Models: We utilized MM.1S, MM.1R, RPMI-8226, melphalan-resistant derivative of RPMI-8226 (LR-5), KMS12BM, and INA-6 (an IL-6 dependent) human MM cell lines, as well as purified tumor cells from patients with MM relapsing after prior therapies including lenalidomide or bortezomib. Cell viability-, proliferation-, and apoptosis assays were performed using Trypan blue, MTT, thymidine incorporation, and Annexin V/Propidium iodide staining. Signal transduction pathways were evaluated using immunoblot analysis, ELISA, and enzymologic assays. Statistical significance of data was determined using Student t test. Results: As aminopeptidase N (APN) has been shown to play a key role in conversion of J1 into melphalan in solid tumors, we first examined both expression and enzymatic activity of APN in MM cells. Immunoblot analysis showed a high expression of APN in various MM cell lines. Similarly, colorimetric analysis of APN enzymatic activity using the APN substrate L-alanine-4-nitro-anilide demonstrated elevated APN activity in MM cells. Moreover, pre-treatment of MM cells with APN inhibitor Bestatin showed a moderate, but significant blockade of J1-induced cytotoxicity in MM cells (P < 0.05; n=3). We next examined the effects of J1 in MM cells. Treatment of MM cell lines and primary patient cells for 24h significantly decreased their viability (IC50 range 0.5 – 1.0 uM; P < 0.001; n=3) without markedly affecting the viability of normal peripheral blood mononuclear cells, suggesting specific anti-MM activity and a favorable therapeutic index forJ1. Of note, the IC50 range of melphalan for MM cell lines is 10–40 uM. J1-triggered apoptosis was confirmed in MM.1R and RPMI-8226 cells, evidenced by marked increase in Annexin V+ and PI-cell population (P < 0.001, n=3). Importantly, J1induced apoptosis in MM cells even in the presence of MM bone marrow stromal cells. Mechanistic studies showed that J1-triggered apoptosis in MM cells is associated with 1) activation of caspase-7, caspase-8, caspase-9, caspase-3, and PARP; 2) induction of phospho-c-Jun and phospho-JNK, p53, and p21; 3) release of mitochondrial apoptogenic protein cytochrome-c; 4) inhibition of VEGF-induced migration of MM cells and angiogenesis; and 5) induction of DNA damage response, evidenced by increase in phospho-histone H2AX. Pre-treatment of MM cells with pan-caspase inhibitor Z-VAD-fmk attenuated J1-triggered MM cell apoptosis (P value < 0.001; n=3). Finally, treatment of tumor-bearing mice with J1 (3 mg/kg, twice a week for 2 weeks), but not vehicle alone, significantly (P < 0.008) inhibits MM tumor growth in these mice. Conclusions: Our study provides the rationale for clinical protocols evaluating J1, either alone or in combination, to improve patient outcome in MM. Disclosures: Richardson: Celgene: Membership on an entity's Board of Directors or advisory committees; Millenium: Membership on an entity's Board of Directors or advisory committees. Munshi:Millennium Pharmaceuticals: Honoraria, Speakers Bureau. Spira:Oncopeptide AB: Employment, Equity Ownership. Anderson:Millennium Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1841-1841
Author(s):  
Dharminder Chauhan ◽  
Ajita V. Singh ◽  
Arghya Ray ◽  
Teru Hideshima ◽  
Paul G. Richardson ◽  
...  

Abstract Abstract 1841 Introduction: The dimeric Nuclear Factor-kappa B (NF-κB) transcription factor plays a key role during multiple myeloma (MM) cell adhesion-induced cytokine secretion in bone marrow stromal cells, which in turn triggers MM cell growth in a paracrine manner. NF-κB signaling pathway is mediated via canonical (IKK-α/IKK-β/NEMO-P50/65 or NF-κB1) and non-canonical (IKK-α/IKK-α/NIK-p52/RelB or NF-κB2) components. Prior studies have also linked constitutive activation of non-canonical NF-κB pathway to genetic abnormalities/mutation, allowing for an autocrine growth of MM cells. Other recent studies showed that constitutive NF-κB activity in tumor cells from MM patients renders these cells refractory to inhibition by bortezomib; and in fact, that bortezomib induces canonical NF-κB activity. These reports provided the impetus for the development of an agent with ability to modulate canonical and/or non-canonical NF-κB axis, allowing for a more robust and specific inhibition of NF-κB. Recent research and development efforts at Nereus Pharmaceuticals, Inc., have identified a novel small molecule acanthoic acid analog NPI-1342 as a potent NF-κB inhibitor. Here, we examined the effects of NPI-1342 on canonical versus non-canonical NF-κB signaling pathways, as well as its anti-tumor activity against MM cells using both in vitro and in vivo model systems. Methods: We utilized MM.1S, MM.1R, RPMI-8226, U266, KMS12PE, NCI-H929, OCI-MY5, LR5, Dox-40, OPM1, and OPM2 human MM cell lines, as well as purified tumor cells from patients with MM. Cell viability assays were performed using MTT and Trypan blue exclusion assays. Signal transduction pathways were evaluated using immunoblot analysis, ELISA, and enzymology assays. Animal model studies were performed using the SCID-hu model, which recapitulates the human BM milieu in vivo. Results: We first examined the effects of NPI-1342 on lipopolysaccharides (LPS)-induced NF-κB activity. Results showed that NPI-1342 inhibits LPS-stimulated NF-κB activity in vitro, as measured by phosphorylation of IkBa. To determine whether NPI-1342 triggers a differential inhibitory effect on IKKβ versus IKKα, MM.1S MM cells were treated with NPI-1342 for 48 hours, and protein lysates were subjected to kinase activity assays. NPI-1342 blocked IKKα, but not IKKβ or IKKγ phosphorylation. We next assessed whether the inhibitory effect of NPI-1342 on NF-κB activity is associated with cytotoxicity in MM cells. We utilized a panel of MM cell lines: at least five of these have mutations of TRAF3 (MM.1S, MM.1R, DOX40 and U266); one has no known NF-κB mutations (OPM2), and one has amplification of NF-κB1 (OCI-MY5). Treatment of MM cell lines and primary patient (CD138 positive) MM cells for 48 hours significantly decreased their viability (IC50 range 15–20 μM) (P < 0.001; n=3) without affecting the viability of normal peripheral blood mononuclear cells, suggesting selective anti-MM activity and a favorable therapeutic index for NPI-1342. NPI-1342-induced a marked increase in Annexin V+ and PI- apoptotic cell population (P < 0.001, n=3). Mechanistic studies showed that NPI-1342-triggered apoptosis in MM cells is associated with activation of caspase-8, caspase-9, caspase-3, and PARP cleavage. We next examined the in vivo effects of NPI-1342 in human MM xenograft models. For these studies, we utilized the SCID-hu MM model, which recapitulates the human BM milieu in vivo. In this model, MM cells are injected directly into human bone chips implanted subcutaneously in SCID mice, and MM cell growth is assessed by serial measurements of circulating levels of soluble human IL-6R in mouse serum. Treatment of tumor-bearing mice with NPI-1342 (20 mg/kg intraperitoneally, QD1-5 for 2 weeks), but not vehicle alone, significantly inhibits MM tumor growth in these mice (10 mice each group; P = 0.004). The doses of NPI-1342 were well tolerated by the mice, without significant weight loss. Finally, immunostaining of implanted human bone showed robust apoptosis and blockade of NF-κB in mice treated with NPI-1342 versus vehicle alone. Conclusions: We demonstrate the efficacy of a novel small molecule inhibitor of NF-κB NPI-1342 in MM using both in vitro and in vivo models. NPI-1342 blocks NF-κB activity with a preferential inhibitory activity against IKK-α component of NF-κB signaling. Our preclinical studies support evaluation of NPI-1342 as a potential MM therapy. Disclosures: Hideshima: Acetylon: Consultancy. Richardson:Millennium: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Johnson & Johnson: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees. Palladino:Nereus Pharmaceuticals, Inc: Employment, Equity Ownership. Anderson:Celgene: Consultancy; Millennium: Consultancy; Onyx: Consultancy; Merck: Consultancy; Bristol Myers Squibb: Consultancy; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; Acetylon:; Nereus Pharmaceuticals, Inc: Consultancy.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 942-942 ◽  
Author(s):  
Naoya Mimura ◽  
Hiroto Ohguchi ◽  
Diana Cirstea ◽  
Francesca Cottini ◽  
Gullu Topal Gorgun ◽  
...  

Abstract Abstract 942 The PI3K/Akt pathway mediates multiple myeloma (MM) cell growth and drug resistance, and targeting this molecule is a promising therapeutic option. In this study, we examined anti-MM activities of TAS-117 (TAIHO PHARMACEUTICAL CO., LTD., JAPAN), a selective potent Akt inhibitor in MM cell lines including MM.1S, MM.1R, OPM1 and H929 cells with high level of baseline Akt phosphorylation. TAS-117 induced significant growth inhibition in these cell lines, associated with downregulation of phosphorylation (Ser473 and Thr308) of Akt and downstream molecule FKHR/FKHRL1, without cytotoxicity in normal peripheral blood mononuclear cells. TAS-117 triggered G0/G1 arrest followed by apoptosis, evidenced by increased annexin V-positive cells, in both MM.1S and H929 cell lines. Apoptosis was further confirmed by cleavage of caspase-8, -3 and PARP. Interestingly, TAS-117 also induced: autophagy, evidenced by increased LC3-II; as well as endoplasmic reticulum (ER) stress, confirmed by induction of phospho-eIF2α, phospho-IRE1α and a molecular chaperone BiP/GRP78. Since the bone marrow (BM) microenvironment plays a crucial role in MM cell pathogenesis including drug resistance, we further examined the effect of TAS-117 in the presence of BM stromal cells (BMSCs). TAS-117 induced significant cytotoxicity in MM cells even in the presence of BMSCs, associated with downregulation of phospho-Akt. Importantly, TAS-117 inhibited secretion of IL-6 from BMSCs, and exogenous IL-6 and IGF-1 did not block cytotoxicity induced by this agent. We have previously shown the bortezomib activates Akt, and that Akt inhibition with bortezomib triggers synergistic MM cell cytotoxicity. TAS-117 enhanced bortezomib-induced cytotoxicity in MM.1S cells, associated with increased CHOP followed by PARP cleavage, suggesting that TAS-117 augments bortezomib-induced ER stress and apoptotic signaling. TAS-117 also enhanced cytotoxicity induced by other therapeutic agents (ie, rapamycin, dexamethasone, 17-AAG) in MM.1S cells. Finally, we examined anti-MM activities of TAS-117 in a xenograft murine model. Oral administration of TAS-117 for 14 days significantly inhibited growth of H929 plasmacytoma and was well tolerated. Taken together, the novel and selective Akt inhibitor TAS-117 blocks MM cell growth in vitro and in vivo, providing the preclinical framework for clinical evaluation of this agent to improve patient outcome in MM. Disclosures: Shimomura: TAIHO PHARMACEUTICAL CO., LTD.: Employment. Utsugi:TAIHO PHARMACEUTICAL CO., LTD.: Membership on an entity's Board of Directors or advisory committees. Anderson:Celgene, Millennium, BMS, Onyx: Membership on an entity's Board of Directors or advisory committees; Acetylon, Oncopep: Scientific Founder, Scientific Founder Other.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2095-2095
Author(s):  
Zezhou Wang ◽  
Jaehyun Choi ◽  
Peter Dove ◽  
Chunlei Wang ◽  
Aaron D. Schimmer ◽  
...  

Abstract Although recent advances in the development of multiple myeloma (MM) therapies such as proteasome inhibitors and immunomodulatory agents have improved patient outcomes, MM remains incurable. Additional therapeutic agents with high efficacy, low toxicity and the convenience of oral administration are in high demand. BET inhibitors, such as JQ-1, have been considered as potential therapeutic agents for MM. In the present study, we report that TTI-281, an orally bioavailable BET inhibitor, displays anti-MM activity with a low toxicity profile in preclinical studies. First, TTI-281 was tested for binding and anti-tumor activity in vitro. BROMOscan and AlphaScreen assays demonstrated that TTI-281 bound to bromodomains of BRD2/BRD3/BRD4 with Kd values less than 10 nM. In MTS assays, TTI-281 inhibited the growth of MM cell lines (MM.1s, NCIH929, and RPMI-8826) with cell growth-inhibition (IC50) values less than 300 nM. Next, in vitro ADME screening and in vivo PK studies were conducted. Permeability assays using murine gastrointestinal epithelial cells indicated that TTI-281 had good permeability with little efflux liability (efflux ratio <1), suggesting favorable properties for oral absorption. Indeed, TTI-281 displayed excellent oral bioavailability in both mice and rats (93.1% and 91.8%, respectively). In addition, TTI-281 did not interfere with the metabolism of representative CYP isozyme substrates at concentrations up to 50 μM in pooled human liver microsomes. Data also suggested minimal potential for drug-drug interactions, allowing for the possible combination with first-line therapy to improve therapeutic and survival outcomes. Finally, TTI-281 was tested for anti-myeloma efficacy and tolerability in vivo. NOD-SCID mice (n=10/group) subcutaneously engrafted with the human myeloma cell line MM.1S were treated orally once daily for 21 days with different doses of TTI-281, vehicle control or the benchmark drug carfilzomib. TTI-281 reduced tumor growth in a dose-dependent manner in this MM xenograft model. At 30 mg/kg/day, TTI-281 led to a statistically significant decrease in tumor growth compared with the vehicle control and carfilzomib (reduced tumor volume: 67% after TTI-281 treatment vs 33% after carfilzomib treatment, p<0.0003). Furthermore, TTI-281 treatment was well tolerated, with no effect on body weight or other obvious toxicity. In summary, our preclinical data suggest that the orally available BET inhibitor TTI-281 has an excellent efficacy and safety profile, highlighting its potential as a promising drug candidate for myeloma therapy. Disclosures Wang: Trillium Therapeutics: Employment, Patents & Royalties. Choi:Trillium Therapeutics: Employment. Dove:Trillium Therapeutics: Employment, Patents & Royalties. Wang:Trillium Therapeutics: Employment. Schimmer:Novartis: Honoraria. Petrova:Trillium Therapeutics Inc: Employment, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties. Uger:Trillium Therapeutics: Employment, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties. Slassi:Trillium Therapeutics: Employment, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1589-1589
Author(s):  
Michael Kline ◽  
Terry Kimlinger ◽  
Michael Timm ◽  
Jessica Haug ◽  
John A. Lust ◽  
...  

Abstract Background: Multiple myeloma (MM) is a plasma cell proliferative disorder that is incurable with the currently available therapeutics. New therapies based on better understanding of the disease biology are urgently needed. MM is characterized by accumulation of malignant plasma cells predominantly in the bone marrow. These plasma cells exhibit a relatively low proliferative rate as well as a low rate of apoptosis. Elevated expression of the anti-apoptotic Bcl-2 family members has been reported in MM cell lines as well as in primary patient samples and may be correlated with disease stage as well as resistance to therapy. ABT-737 (Abbott Laboratories, Abbott Park, IL) is a small-molecule inhibitor designed to specifically inhibit anti-apoptotic proteins of the Bcl-2 family and binds with high affinity to Bcl-XL, Bcl-2, and Bcl-w. ABT-737 exhibits toxicity in human tumor cell lines, malignant primary cells, and mouse tumor models. We have examined the in vitro activity of this compound in the context of MM to develop a rationale for future clinical evaluation. Methods: MM cell lines were cultured in RPMI 1640 containing 10% fetal bovine serum supplemented with L-Glutamine, penicillin, and streptomycin. The KAS-6/1 cell line was also supplemented with 1 ng/ml IL-6. Cytotoxicity of ABT-737 was measured using the MTT viability assay. Apoptosis was measured using flow cytometry upon cell staining with Annexin V-FITC and propidium iodide (PI). Flow cytometry was also used to measure BAX: Bcl-2 ratios after ABT-737 treatment and cell permeabilization with FIX & PERM (Caltag Laboratories, Burlingame, CA) Results: ABT-737 exhibited cytotoxicity in several MM cell lines including RPMI 8226, KAS-6/1, OPM-1, OPM-2, and U266 with an LC50 of 5-10μM. The drug also had significant activity against MM cell lines resistant to conventional agents such as melphalan (LR5) and dexamethasone (MM1.R) with similar LC50 (5-10 μM), as well as against doxorubicin resistant cells (Dox40), albeit at higher doses. Furthermore, ABT-737 retained activity in culture conditions reflective of the permissive tumor microenvironment, namely in the presence of VEGF, IL-6, or in co-culture with marrow-derived stromal cells. ABT-737 was also cytotoxic to freshly isolated primary patient MM cells. Time and dose dependent induction of apoptosis was confirmed using Annexin V/PI staining of the MM cell line RPMI 8226. Flow cytometry analysis of cells treated with ABT-737 demonstrated a time and dose dependent increase in pro-apoptotic BAX protein expression without significant change in the Bcl-XL or Bcl-2 expression. Ongoing studies are examining the parameters and mechanisms of ABT-737 cytotoxicity to MM cells in more detail. Conclusion: ABT-737 has significant activity against MM cell lines and patient derived primary MM cells in vitro. It is able to overcome resistance to conventional anti-myeloma agents suggesting a different mechanism of toxicity that may replace or supplement these therapies. Additionally, it appears to be able to overcome resistance offered by elements of the tumor microenvironment. The results of these studies will form the framework for future clinical evaluation of this agent in the clinical setting.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3842-3842
Author(s):  
Dharminder Chauhan ◽  
Ajita V. Singh ◽  
Madhavi Bandi ◽  
Noopur Raje ◽  
Robert L Schlossman ◽  
...  

Abstract Abstract 3842 Poster Board III-778 Background and Rationale Vascular disrupting agents (VDAs) act via selectively disrupting established tumor vasculature and have shown remarkable clinical success as anti-cancer therapies. NPI-2358 is a novel VDA with a distinct structure and mechanism of action from other available VDAs. NPI-2358 binds to the colchicine-binding site of beta-tubulin preventing polymerization and disrupting the cytoplasmic microtubule network, thereby causing loss of vascular endothelial cytoskeletal function, and inducing cytotoxicity in cancer cells. Here, we examined the anti-angiogenic and anti-tumor activity of NPI-2358 in multiple myeloma (MM) cells using both in vitro and in vivo model systems. Material and Methods We utilized MM.1S, MM.1R, RPMI-8226, U266, and INA-6 human MM cell lines, as well as purified tumor cells from MM patients relapsing after prior anti-MM therapies. Cell viability/apoptosis assays were performed using MTT, trypan blue exclusion, and Annexin V/PI staining. Angiogenesis was measured in vitro using Matrigel capillary-like tube structure formation assays: Since human vascular endothelial cells (HUVECs) plated onto Matrigel differentiate and form capillary-like tube structures similar to in vivo neovascularization, this assay measures anti-angiogenic effects of drugs/agents. Migration assays were performed using transwell insert assays. Immunoblot analysis was performed using antibodies to caspase-8, caspase-9, caspase-3, PARP, Bcl-2, Bax, pJNK and GAPDH. Statistical significance was determined using a Student t test. Results Treatment of MM.1S, RPMI-8226, MM.1R, INA-6, and KMS-12BM with NPI-2358 for 24h induces a dose-dependent significant (P < 0.005) decrease in viability of all cell lines (IC50 range: 5-8 nM; n=3). To determine whether NPI-2358-induced decrease in viability is due to apoptosis, MM cell lines were treated with NPI-2358 for 24h; harvested, and analyzed for apoptosis using Annexin V/PI staining. A significant increase in NPI-2358-induced apoptosis was observed in all MM cell lines (% Annexin V+/PI- apoptotic cells: MM.1S, 48 ± 2.3%; MM.1R, 46.6 ± 3.1%; RPMI-8226, 61.7 ± 4.5%; and INA-6, 59.9 ± 3.2%; P < 0.05; n=3). Importantly, NPI-2358 decreased viability of freshly isolated MM cells from patients (IC50 range: 3-7 nM; P < 0.005), without affecting the viability of normal peripheral blood mononuclear cells, suggesting specific anti-MM activity and a favorable therapeutic index for NPI-2358. Examination of in vitro angiogenesis using capillary-like tube structure formation assay showed that even low doses of NPI-2358 (7 nM treatment for 12h; IC50: 20 nM at 24h) significantly decreased tubule formation in HUVECs (70-80% decrease; P < 0.05). Transwell insert assays showed a marked reduction in serum-dependent migration of NPI-2358-treated MM cells (42 ± 2.1% inhibition in NPI-2358-treated vs. control; P < 0.05). NPI-2358 at the concentrations tested (5 nM for 12h) in the migration assays did not affect survival of MM cells (> 95% viable cells). A similar anti-migration activity of NPI-2358 was noted against HUVEC cells (48 ± 1.7% decrease in migration; P < 0.05). Mechanistic studies showed that NPI-2358-induced apoptosis was associated with activation of caspase-8, caspase-9, caspase-3 and PARP. Importantly, treatment of MM.1S cells with NPI-2358 (5 nM) triggered phosphorylation of c-Jun amino-terminal kinase (JNK), a classical stress response protein, without affecting Bcl-2 family members Bax and Bcl-2. Blockade of JNK using dominant negative strategy markedly abrogated NPI-2358-induced apoptosis. Conclusion Our preclinical data provide evidence for remarkable anti-angiogenic and anti-tumor activity of NPI-2358 against MM cells, without significant toxicity in normal cells. Ongoing studies are examining in vivo anti-MM activity of NPI-2358 in animal models. Importantly, a Phase-1 study of NPI-2358 as a single agent in patients with advanced malignancies (lung, prostrate and colon cancer) has already established a favorable pharmacokinetic, pharmacodynamic and safety profile; and, a Phase-2 study of the combination of NPI-2358 and docetaxel in non-small cell lung cancer showed encouraging safety, pharmacokinetic and activity data. These findings, coupled with our preclinical studies, provide the framework for the development of NPI-2358-based novel therapies to improve patient outcome in MM. Disclosures: Chauhan: Nereus Pharmaceuticals, Inc: Consultancy. Lloyd:Nereus Pharmaceuticals, In: Employment. Palladino:Nereus Pharmaceuticals, Inc: Employment. Anderson:Nereus Pharmaceuticals, Inc: Consultancy.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 133-133 ◽  
Author(s):  
Patricia Maiso ◽  
AbdelKareem Azab ◽  
Yang Liu ◽  
Yong Zhang ◽  
Feda Azab ◽  
...  

Abstract Abstract 133 Introduction: Mammalian target of rapamycin (mTOR) is a downstream serine/threonine kinase of the PI3K/Akt pathway that integrates signals from the tumor microenvironment such as cytokines and growth factors, nutrients and stresses to regulate multiple cellular processes, including translation, autophagy, metabolism, growth, motility and survival. Mechanistically, mTOR operates in two distinct multi-protein complexes, TORC1 and TORC2. Activation of TORC1 leads to the phosphorylation of p70S6 kinase and 4E-BP1, while activation of TORC2 regulates phosphorylation of Akt and other AGC kinases. In multiple myeloma (MM), PI3K/Akt plays an essential role enhancing cell growth and survival and is activated by the loss of the tumor suppressor gene PTEN and by the bone marrow microenvironment. Rapamycin analogues such as RAD001 and CCI-779 have been tested in clinical trials in MM. Their efficacy as single agents is modest, but when used in combination, they show higher responses. However, total inhibition of Akt and 4E-BP1 signaling requires inactivation of both complexes TORC1 and TORC2. Consequently, there is a need for novel inhibitors that can target mTOR in both signaling complexes. In this study we have evaluated the role of TORC1 and TORC2 in MM and the activity and mechanism of action of INK128, a novel, potent, selective and orally active small molecule TORC1/2 kinase inhibitor. Methods: Nine different MM cell lines and BM samples from MM patients were used in the study. The mechanism of action was investigated by MTT, Annexin V, cell cycle analysis, Western-blotting and siRNA assays. For the in vivo analyses, Luc+/GFP+ MM.1S cells (2 × 106/mouse) were injected into the tail vein of 30 SCID mice and tumor progression was detected by bioluminescence imaging. Nanofluidic proteomic immunoassays were performed in selected tumors. Results: To examine activation of the mTOR pathway in MM, we performed kinase activity assays and protein analyses of mTOR complexes and its downstream targets in nine MM cell lines. We found mTOR, Akt, pS6R and 4E-BP1 are constitutively activated in all cell lines tested independently of the status of Deptor, PTEN, and PI3K. All cell lines expressed either Raptor, Rictor or both; excepting H929 and U266LR7 which were negative for both of them. Moreover, primary plasma cells from several MM patients highly expressed pS6R while normal cells were negative for this protein. We found that INK128 and rapamycin effectively suppressed phosphorylation of p6SR, but only INK128 was able to decrease phosphorylation of 4E-BP1. We observed that INK128 fully suppressed cell viability in a dose and time dependent manner, but rapamycin reached a plateau in efficacy at ± 60%. The IC50 of INK128 was in the range of 7.5–30 nM in the eight cell lines tested. Similar results were observed in freshly isolated plasma cells from MM patients. Besides the induction of apoptosis and cell cycle arrest, INK128 was more potent than rapamycin to induce autophagy, and only INK128 was able to induce PARP and Caspases 3, 8 and 9 cleavage. In the bone marrow microenvironment context, INK128 inhibited the proliferation of MM cells and decreased the p4E-BP1 induction. Importantly, treatment with rapamycin under such conditions did not affect cell proliferation. INK128 also showed a significantly greater effect inhibiting cell adhesion to fibronectin OPM2 MM1S, BMSCs and HUVECs compared to rapamycin. These results were confirmed in vivo. Oral daily treatment of NK128 (1.0 mg/kg) decreased tumor growth and improved survival of mice implanted with MM1S. Conclusion: Dual inhibition of TORC1 and TORC2 represent a new and promising approach in the treatment of MM and its microenvironment. The ability of INK128 to inhibit both TORC1 and TORC2 strongly supports the potential use of this compound in MM patients. Disclosures: Anderson: Millennium Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Ghobrial:Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1852-1852 ◽  
Author(s):  
Malathi Kandarpa ◽  
Stephanie J Kraftson ◽  
Sean P Maxwell ◽  
Dilara McCauley ◽  
Sharon Shacham ◽  
...  

Abstract Abstract 1852 Background: CRM1 (XPO1, exportin) is a nuclear export protein which controls the nuclear-cytoplasmic localization of multiple tumor suppressor proteins and cell proliferation pathways including p53, p21, PI3K/AKT/FOXO, Wnt/ß-catenin/APC, topoisomerase II, and NF-κB/I-κB. Transport of nuclear proteins to the cytoplasm can render them ineffective as tumor suppressors or as targets for chemotherapy. Small molecule, selective inhibitors of nuclear export (SINE) that block CRM1-dependent nuclear export can force the nuclear retention of tumor suppressor proteins, thus rendering cancer cells more susceptible to apoptosis and responsive to other chemotherapy. In this study we evaluated CRM1 as a potential target in MM and the effect of SINE on the activity of established anti-myeloma agents currently in use in treatment of MM. KPT-276 is the lead CRM1 inhibitor being investigated which will be submitted for IND in 2012. Methods: To evaluate expression of CRM1, bone marrow aspirates from MM patients and tonsil tissue from normal patients were enriched for plasma cells (PC) and proteins from cell lysates were separated by SDS-PAGE followed by immunoblotting with CRM1 antibodies. In functional experiments, isolated fresh MM PCs from patients, and NCI-H929, MM1.S, MM1.R and RPMI-8226 cell lines were cultured in RPMI-1640 with 10–15% serum. Cells were treated for 24–72 hrs with CRM1 inhibitors KPT-SINE compounds with or without bortezomib and dexamethasone and were analyzed for cytotoxicity by MTT assay. Drug concentrations for combination experiments were chosen to be at or below IC50 for each individual drug. Apoptosis induction in primary MM cells and cell lines was studied by Annexin V labeling and flow cytometry. Cell lysates from primary MM PCs and cell lines were prepared after treatment with KPT-SINE and were used to determine the expression of p53 and CRM1. Results: Primary MM plasma cells derived from naïve, previously untreated patients show 4–20 fold higher CRM1 protein expression, compared to normal peripheral blood mononuclear cells (PBMCs) and normal tonsilar PCs. Dose response analysis of KPT-SINE compounds in myeloma cell lines showed potent activity with IC50s in the range of 10–100nM. The lead compound KPT-276 had an IC50 of <100 nM in NCI-H929, MM1.S, MM1.R and RPMI-8226 cells. Functional studies in MM patient plasma cells showed that in vitro inhibition of CRM1 with related SINEs KPT-185, −225 or −276 increase apoptosis induction as measured by Annexin V assay. In addition, the inhibition of CRM1 with KPT-SINE results in a dose-dependent increase in levels of nuclear as well as total p53 in MM patient plasma cells within 48 hrs. When combined with proteasome inhibitors like bortezomib and/or dexamethasone, KPT-SINE compounds potently increase the cellular cytotoxicity of these drugs in MM cell lines. Mechanism of activity of drug combinations is under investigation in MM cell lines and MM patient plasma cells. Conclusions: MM plasma cells express CRM1 that is functionally active and therefore is a valid target in the treatment of myeloma. Moreover, higher expression of CRM1 in malignant plasma cells compared to normal PBMCs and normal PCs suggests possibility of therapeutic index. Early mechanistic studies indicate that CRM1 inhibition can lead to an increased expression of p53 (and other tumor suppressors) and its nuclear localization in myeloma cells and therefore might serve as a mechanism for the activity of CRM1 inhibitors in MM. Potentiation of cytotoxicity of bortezomib and dexamethasone by KPT-SINE suggests that these drugs might be useful in treating MM refractory to currently used agents and provide rationale for combining inhibitors of nuclear transport with other drugs. Disclosures: Off Label Use: KPT-SINE family of drugs are not approved for the treatment of multiple myeloma. These drugs have a novel mechanism and are in pre-clinical development for the treatment of several malignancies. McCauley:Karyopharm Therapeutic Inc.: Employment. Shacham:Karyopharm Therapeutics Inc.: Employment. Kauffman:Karyopharm Therapeutics Inc.: Employment. Jakubowiak:Exelixis: Consultancy, Honoraria; Bristol-Myers Squibb: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Onyx Pharmaceuticals: Consultancy, Membership on an entity's Board of Directors or advisory committees; Millennium Pharmaceuticals, Inc.: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Celgene: Consultancy, Honoraria, Speakers Bureau; Ortho Biotech: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2520-2520
Author(s):  
Hua Wang ◽  
Veerabhadran Baladandayuthapani ◽  
Zhiqiang Wang ◽  
Jiexin Zhang ◽  
Heather Yan Lin ◽  
...  

Abstract Background Proteasome inhibitors such as bortezomib and carfilzomib are an important part of our current chemotherapeutic armamentarium against multiple myeloma, and have improved outcomes in the up-front, relapsed, and relapsed/refractory settings. Their efficacy has been demonstrated both as single agents, and as part of rationally designed combination regimens, but they are at this time used empirically, since biomarkers to identify patients who would most or least benefit from their application have not been clinically validated. Moreover, the vast majority of patients eventually develop drug-resistant disease which precludes further proteasome inhibitor use through mechanisms that have not been fully elucidated. Methods We compared gene expression profiles (GEPs) of a panel of bortezomib-resistant myeloma cell lines and their vehicle-treated, drug-naïve counterparts to identify significant changes associated with drug resistance. The list of genes whose expression was changed by at least 2-fold was compared with independent RNA interference studies whose goal was to identify genes whose suppression conferred drug resistance. Further validation of genes of interest was pursued in a panel of myeloma cell lines, and in clinically annotated GEP databases. Results Suppression of PTPROt expression was noted in bortezomib-resistant RPMI 8226 and ANBL-6 myeloma cells compared to isogenic, drug-naïve controls, and this was confirmed by quantitative PCR. Overexpression of PTRPOt in RPMI 8226, ANBL-6 and other myeloma cell lines was by itself sufficient to increase the level of apoptotic, sub-G0/G1 cells compared to vector controls, or cells expressing a phosphatase-dead PTPROt mutant. Moreover, PTPROt enhanced the ability of bortezomib to reduce myeloma cell viability, in association with increased activation of caspases 8 and 9. Exogenous over-expression of PTPROt was found to reduce the activation status of Akt, a known anti-apoptotic pathway that reduces bortezomib activity, based on Western blotting with antibodies to phospho-Akt (Ser473), and Akt kinase activity assays. Notably, we also found that exogenous over-expression of PTPROt resulted in increased expression levels of p27Kip1. Interestingly, array CGH data from studies of myeloma cell lines and primary cells showed that the PTPROt gene was located in a genomic region with a high propensity for loss. Analysis of the Total Therapy databases of GEP and patient outcomes available on the Multiple Myeloma Genomics Portal showed that higher than median expression of PTPROt was associated with better long-term survival (P=0.0175). Finally, analysis of the Millennium Pharmaceuticals database of studies of bortezomib in the relapsed and relapsed/refractory setting showed high PTRPOt expression was more frequently seen in patients who achieved complete remission (P<0.01), and was associated with a better median overall survival (P=0.0003). Conclusions Taken together, the data support the possibility that high expression of PTPROt is a good prognostic factor for response to bortezomib-containing therapies, and that this may occur through modulation by PTPROt of the Akt pathway. Moreover, they suggest that strategies to enhance the expression of PTPROt should be investigated to restore bortezomib sensitivity in patients with proteasome inhibitor-resistant disease. Disclosures: Orlowski: Bristol-Myers Squibb: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Celgene: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Millennium: The Takeda Oncology Company: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Onyx: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Resverlogix: Research Funding; Array Biopharma: Honoraria, Membership on an entity’s Board of Directors or advisory committees; Genentech: Honoraria, Membership on an entity’s Board of Directors or advisory committees; Merck: Membership on an entity’s Board of Directors or advisory committees.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4712-4712 ◽  
Author(s):  
Deepika Sharma Das ◽  
Ze Tian ◽  
Arghya Ray ◽  
Durgadevi Ravillah ◽  
Yan Song ◽  
...  

Abstract Background and Rationale: Multiple Myeloma (MM) remains incurable despite the advent of novel drugs, highlighting the need for further identification of factors mediating disease progression and resistance. The bone marrow (BM) microenvironment confers growth, survival, and drug resistance in MM cells. Studies to date suggest an important role of BM hypoxia (low oxygenation) in MM cell survival, drug resistance, migration, and metastasis. Therapies targeting the MM cell in its BM milieu under hypoxic conditions may therefore achieve responses in patients resistant to various therapies. Recent studies led to the development of a novel aerospace-industry derived Phase 2 molecule RRx-001 with epigenetic and NO-donating properties. RRx-001 generates reactive oxygen and nitrogen species (RONS), which induces oxidative stress in tumor cells. Importantly, RRx-001 is also a potent vascular disrupting agent, which further provides rationale for utilizing RRx-001 as a therapeutic agent since tumor-associated angiogenesis is a characteristic of MM. A Phase I clinical trial has shown RRx-001 to have antitumor activity in heavily pretreated cancer patients and to be safe and well tolerated with no dose-limiting toxicities (Reid et al. J Clin Oncol 32:5s, 2014 suppl; abstr 2578). Here we examined the anti-MM activity of RRx-001 using in vitro and in vivo models of MM. Materials and methods: MM cell lines, patient MM cells, and peripheral blood mononuclear cells (PBMCs) from normal healthy donors were utilized to assess the anti-MM activity of RRx-001 alone or in combination with other agents. Drug sensitivity, cell viability, apoptosis, and migration assays were performed using WST, MTT, Annexin V staining, and transwell Inserts, respectively. Synergistic/additive anti-MM activity was assessed by isobologram analysisusing “CalcuSyn” software program. Signal transduction pathways were evaluated using immunoblotting. ROS release, nitric oxide generation, and mitochondrial membrane potential was measured as previously described (Chauhan et al., Blood, 2004, 104:2458). In vitro angiogenesis was assessed using matrigel capillary-like tube structure formation assays. DNMT1 activity was measured in protein lysates using EpiQuik DNMT1 assay kit. 5-methyl cytosine levels were analyzed in gDNA samples using methylflash methylated DNA quantification kit from Enzo life sciences; USA. For xenograft mouse model, CB-17 SCID-mice were subcutaneously inoculated with MM.1S cells as previously described (Chauhan et al., Blood, 2010, 115:834). Statistical significance of data was determined using a Student’st test. RRx-001 was obtained from RadioRx Inc., CA, USA; bortezomib, SAHA, and pomalidomide were purchased from Selleck chemicals, USA. Results: Treatment of MM cell lines (MM.1S, MM.1R, RPMI-8226, OPM2, H929, Dox-40 ARP-1, KMS-11, ANBL6.WT, ANBL6.BR, and LR5) and primary patient cells for 24h significantly decreased their viability (IC50 range 1.25nM to 2.5nM) (p < 0.001; n=3) without markedly affecting PBMCs from normal healthy donors, suggesting specific anti-MM activity and a favorable therapeutic index for RRx-001. Tumor cells from 3 of 5 patients were obtained from patients whose disease was progressing while on bortezomib, dexamethasone, and lenalidomide therapies. Moreover, RRx-001 inhibits proliferation of MM cells even in the presence of BM stromal cells. Mechanistic studies show that RRx-001-triggered apoptosis is associated with 1) induction of DNA damage response signaling via ATM/p53/gH2AX axis; 2) activation of caspases mediating both intrinsic and extrinsic apoptotic pathways; 3) increase in oxidative stress through release of ROS and generation of NO; and 4) decrease in DNA methyltransferase (DNMT1) enzymatic activity and global methylation levels. Furthermore, RRx-001 blocked migration of MM cells and angiogenesis. In vivo studies using subcutaneous human MM xenograft models show that RRx-001 is well tolerated and inhibits tumor growth. Finally, combining RRx-001 with bortezomib, SAHA, or pomalidomide induces synergistic anti-MM activity and overcomes drug resistance. Conclusion: Our preclinical studies showing efficacy of RRx-001 in MM disease models provide the framework for clinical trial of RRx-001, either alone or in combination, to improve outcome in relapsed and refractory MM patients. Disclosures Richardson: Oncopeptides AB: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees. Oronsky:RadioRx Inc, : Employment. Scicinski:RadioRx Inc,: Employment. Chauhan:Triphase Accelerator: Consultancy. Anderson:Celgene: Consultancy; Millenium: Consultancy; Onyx: Consultancy; Gilead: Consultancy; Sanofi Aventis: Consultancy; BMS: Consultancy; Oncopep/Acetylon: Equity Ownership.


Sign in / Sign up

Export Citation Format

Share Document