Dual Targeting of -TORC1 and -TORC2 as a New Strategy In the Treatment of Multiple Myeloma

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 133-133 ◽  
Author(s):  
Patricia Maiso ◽  
AbdelKareem Azab ◽  
Yang Liu ◽  
Yong Zhang ◽  
Feda Azab ◽  
...  

Abstract Abstract 133 Introduction: Mammalian target of rapamycin (mTOR) is a downstream serine/threonine kinase of the PI3K/Akt pathway that integrates signals from the tumor microenvironment such as cytokines and growth factors, nutrients and stresses to regulate multiple cellular processes, including translation, autophagy, metabolism, growth, motility and survival. Mechanistically, mTOR operates in two distinct multi-protein complexes, TORC1 and TORC2. Activation of TORC1 leads to the phosphorylation of p70S6 kinase and 4E-BP1, while activation of TORC2 regulates phosphorylation of Akt and other AGC kinases. In multiple myeloma (MM), PI3K/Akt plays an essential role enhancing cell growth and survival and is activated by the loss of the tumor suppressor gene PTEN and by the bone marrow microenvironment. Rapamycin analogues such as RAD001 and CCI-779 have been tested in clinical trials in MM. Their efficacy as single agents is modest, but when used in combination, they show higher responses. However, total inhibition of Akt and 4E-BP1 signaling requires inactivation of both complexes TORC1 and TORC2. Consequently, there is a need for novel inhibitors that can target mTOR in both signaling complexes. In this study we have evaluated the role of TORC1 and TORC2 in MM and the activity and mechanism of action of INK128, a novel, potent, selective and orally active small molecule TORC1/2 kinase inhibitor. Methods: Nine different MM cell lines and BM samples from MM patients were used in the study. The mechanism of action was investigated by MTT, Annexin V, cell cycle analysis, Western-blotting and siRNA assays. For the in vivo analyses, Luc+/GFP+ MM.1S cells (2 × 106/mouse) were injected into the tail vein of 30 SCID mice and tumor progression was detected by bioluminescence imaging. Nanofluidic proteomic immunoassays were performed in selected tumors. Results: To examine activation of the mTOR pathway in MM, we performed kinase activity assays and protein analyses of mTOR complexes and its downstream targets in nine MM cell lines. We found mTOR, Akt, pS6R and 4E-BP1 are constitutively activated in all cell lines tested independently of the status of Deptor, PTEN, and PI3K. All cell lines expressed either Raptor, Rictor or both; excepting H929 and U266LR7 which were negative for both of them. Moreover, primary plasma cells from several MM patients highly expressed pS6R while normal cells were negative for this protein. We found that INK128 and rapamycin effectively suppressed phosphorylation of p6SR, but only INK128 was able to decrease phosphorylation of 4E-BP1. We observed that INK128 fully suppressed cell viability in a dose and time dependent manner, but rapamycin reached a plateau in efficacy at ± 60%. The IC50 of INK128 was in the range of 7.5–30 nM in the eight cell lines tested. Similar results were observed in freshly isolated plasma cells from MM patients. Besides the induction of apoptosis and cell cycle arrest, INK128 was more potent than rapamycin to induce autophagy, and only INK128 was able to induce PARP and Caspases 3, 8 and 9 cleavage. In the bone marrow microenvironment context, INK128 inhibited the proliferation of MM cells and decreased the p4E-BP1 induction. Importantly, treatment with rapamycin under such conditions did not affect cell proliferation. INK128 also showed a significantly greater effect inhibiting cell adhesion to fibronectin OPM2 MM1S, BMSCs and HUVECs compared to rapamycin. These results were confirmed in vivo. Oral daily treatment of NK128 (1.0 mg/kg) decreased tumor growth and improved survival of mice implanted with MM1S. Conclusion: Dual inhibition of TORC1 and TORC2 represent a new and promising approach in the treatment of MM and its microenvironment. The ability of INK128 to inhibit both TORC1 and TORC2 strongly supports the potential use of this compound in MM patients. Disclosures: Anderson: Millennium Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Ghobrial:Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1815-1815
Author(s):  
Patricia Maiso ◽  
Yi Liu ◽  
Abdel Kareem Azab ◽  
Brittany Morgan ◽  
Feda Azab ◽  
...  

Abstract Abstract 1815 Mammalian target of rapamycin (mTOR) is a downstream serine/threonine kinase of the PI3K/Akt pathway that integrates signals from the tumor microenvironment. Mechanistically, mTOR operates in two distinct multi-protein complexes, TORC1 (Raptor) and TORC2 (Rictor). TORC1 leads to the phosphorylation of p70S6 kinase and 4E- BP1, while TORC2 regulates phosphorylation of Akt and other kinases. In multiple myeloma (MM), PI3K/Akt plays an essential role enhancing cell growth and survival and is activated by the loss of the tumor suppressor gene PTEN and by the bone marrow microenvironment. Rapamycin and its analogues have not shown significant activity in MM, likely due to the lack of inhibition of TORC2. In this study, we dissected the baseline activity of the PI3K/Akt/mTOR pathway TORC1/2 in MM cell lines with different genetic abnormalities. Methods: Eight different MM cell lines and BM samples from MM patients were used in the study. The mechanism of action was investigated by MTT, Annexin V, cell cycle analysis, immunochemistry, Western-blotting and siRNA assays. For the in vivo analyses, Luc+/GFP+ MM.1S cells (2 × 106/mouse) were injected into the tail vein of 30 SCID mice and tumor progression was detected by bioluminescence imaging. In vivo homing was checked by in vivo flow. Nanofluidic proteomic immunoassays were performed in selected tumors. Results: Raptor (TORC1) and Rictor (TORC2) knockdowns led to significant inhibition of proliferation of MM cells even in the presence of bone marrow stromal cells, this effect was also accompanied by inactivation of p-Akt, p-rS6 and p-4EBP1. We used INK128, a dual and selective TORC1/2 kinase inhibitor with similar effects to Raptor plus Rictor knockdown. We examined the protein expression levels of both mTOR complex and their downstream effectors in MM plasma cells from patients and cell lines. mTOR, Akt, pS6R and 4E-BP1 are constitutively activated in all samples. We showed that dual TORC1/2 inhibition is much more active than TORC1 inhibition alone (rapamycin) even in the presence of cytokines or stromal cells. INK128 induced cell cycle arrest, autophagy and apoptosis in cell lines and primary plasma cells even in the presence of bone marrow stromal cells (BMSCs). INK128 also showed a significant effect inhibiting cell adhesion in our in vivo homing model. Oral daily treatment with INK128 highly decreased the percentage of CD138+ tumor plasma cells in mice implanted with MM cells and reduced the levels of p-Akt and p-4EBP. These results suggest that potent and complete blockade of mTOR as part of TORC1 and TORC2 is potential therapeutic strategy to induce cell cycle arrest, apoptosis and disruption of MM cells interaction with the BM microenvironment. Conclusion: Dual inhibition of TORC1 and TORC2 represent a new and promising approach in the treatment of MM and its microenvironment. The ability of INK128 to inhibit both TORC1 and TORC2 strongly supports the potential use of this compound in MM patients. Disclosures: Liu: Intellikine: Employment. Roccaro:Roche: Research Funding. Rommel:Intellikine: Employment. Ghobrial:Celgene: Consultancy; Millennium: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Research Funding; Noxxon: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 453-453
Author(s):  
Abdel Kareem A. Azab ◽  
Phong Quang ◽  
Feda Azab ◽  
John Magnani ◽  
John Patton ◽  
...  

Abstract Abstract 453 Introduction: The interaction of multiple myeloma (MM) cells with the bone marrow (BM) microenvironment, which includes stromal (BMSCs) and endothelial cells (ECs), plays a crucial role in MM pathogenesis and drug resistance. We have previously shown that the chemokine stromal cell-derived factor-1 (SDF-1), its receptor-CXCR4, and GTPases in the downstream signaling of the receptor regulate this interaction. Selectins are adhesion molecules which are involved in the primary interaction of lymphocytes with the endothelium. In this study, we have tested the expression of selectins and their ligands in MM, and explored their role in the interaction with the BM milieu and its potential therapeutic applications. Methods AND RESULTS: Flow cytometry and immunohistochemical (IHC) staining of tissue microarrays revealed that P-selectin glycoprotein ligand-1 (PSGL-1, CD162) was over expressed in MM cells from patients (n=20) and cell lines (MM1s, H929, RPMI, OPM1 and OPM2) compared to normal plasma cells (n=3). Gene expression profiling (GEP) analysis showed that the expression of PSGL-1 was directly correlated with MM stage of progression (normal plasma cells, n=15 < MGUS, n=20 < smoldering MM, n=23 < MM, n=68 p<0.01). Moreover, it was shown that both BMSCs (isolated from MM patients and HS5 cell line) and ECs (isolated from MM patients and HUVECs) had high expression of P-selectin. SDF1 treatment increased the expression of P-selectin on ECs but it had no effect on the expression of PSGL on MM cells. The interaction of PSGL and P-selectin played a major role in the adhesion of MM cell to both BMSCs and ECs, and the inhibition of this interaction either by the pan-selectin inhibitor GMI-1070 (500uM, 3hrs) or by knock-down of P-selectin expression significantly decreased (50-60%) the adhesion of MM cells to BMSCs and ECs. The CXCR4 inhibitor AMD3100 (25uM, 3hrs) similarly induced similar inhibition of adhesion, and the combination of AMD3100 and GM1070 had more profound inhibition of MM adhesion to BMSCs and ECs (p = 0.006). Both AMD3100 and GMI1070 induced MM cell de-adhesion from BMSCs and ECs, but the combination of both drugs was not additive. AMD3100, GMI1070 or their combination prevented BMSCs or ECs mediated induction of proliferation of MM cells. Moreover, it was shown that the co-culture of MM cells with BMSCs and ECs reduced their sensitivity to bortezomib (5nM, 24hrs) and dexamethasone (25nm, 24hrs) compared to MM cells cultured alone. Importantly, GMI1070 restored the sensitivity of MM cells to bortezomib and dexamethasone to the level observed without co-culture with BMSCs or ECs. These effects were next tested in vivo using an orthotopic xenograft model of MM. SCID-beige mice were injected with luciferase-expressing MM1S cells, and tumor burden was assessed bioluminescence imaging. Mice with established disease were divided into treatment groups (n=10 per group) treated with vehicle, GMI1070 by osmotic pump, velcade at 1.5 mg/kg IP weekly, or a combination of GMI1070 and bortezomib. Tumor burden was determined by bioluminescence imaging. Treatment with GMI1070 alone was not different from vehicle treated control mice. While treatment with bortezomib alone had a minimal delay in tumor progression, the combined treatment of bortezomib and GMI1070 resulted in synergistic anti-tumor efficacy (p=0.0017). Conclusion: We have shown that PSGL-1 is highly expressed in MM cells as compared to normal plasma cells, and that it plays a major role in the interaction of MM cells with the BM microenvironment in relation with the SDF1/CXCR4 axis in vitro, an effect which was inhibited by the pan-selectin inhibitor GMI1070. We also demonstrated that selectin inhibition by GMI1070 reduced MM cell proliferation induced by BMSCs and ECs sensitized MM cells to bortezomib and dexamethasone in vitro, and significantly increased the sensitivity of MM tumors to bortezomib in vivo. This information provides the rationale for future clinical trials for increasing efficacy of existing therapies through a combination with selectin inhibitors for the treatment of myeloma. Disclosures: Anderson: Millennium Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Ghobrial:Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 191-191
Author(s):  
Fengyan Jin ◽  
Shaji K. Kumar ◽  
Yun Dai

Abstract Introduction: Histone lysine methylation, a reversible event dynamically and reciprocally regulated by lysine methyltransferases (KMTs) and demethylases (KDMs), represents one of the major epigenetic mechanisms for regulation of chromatin remodeling and gene expression re-programming. The KDM4 family, which belongs to the Jumonji C (JmjC)-domain-containing proteins (JMJDs), consists of five members, including KDM4A-E that demethylate H3K9me2/3 and/or H3K36me2/3 in a Fe2+- and α-ketoglutarate-dependent manner. KDM4 proteins are involved in various cellular processes such as gene transcription and translation, DNA replication, DNA repair, apoptosis, and stem cell renewal. Notably, increasing evidence implicates KDM4 dysregulation in promoting genomic instabilities and oncogenesis, thereby which is considered as a potential target for emerging cancer epigenetic therapy. Although KDM4A, a member of the KDM4 family, has been widely studied in many solid tumors including breast, prostate, bladder cancer, its role in hematopoietic malignancies, including multiple myeloma (MM), remains unknown. Materials and Methods: Human MM cell lines (U266, RPMI8226, H929, OPM-2) were employed. After exposed to hypoxia (or the chemical hypoxia mimetic lactic acid) and anti-MM agents (e.g., bortezomib/Btz), cells were analyzed by flow cytometry, qPCR, Western blot to monitor apoptosis, cell cycle, proliferation (Ki67), DNA double-strand break/DSB (γH2A.X), expression of 1q21 and anti-apoptotic genes, as well as activation of the NF-κB and HIF pathways. The shRNA approach was used to knock down KDM4A for functional evaluation. The findings from in vitro experiments involving cell lines were then validated in primary MM samples to link KDM4A expression to disease progression and therapeutic response. Results: Analysis of the MM genome-wide GEP databases revealed that KDM4A mRNA was significantly up-regulated in MGUS and MM, but not SMM, compared to normal control, as well as in relapsed MM, compared to newly-diagnosed MM. To our surprise, KDM4A expression rather favored overall survival of MM patients, including those carrying 1q21 gain in whom KDM4A expression was indeed lower than those who did not have this high risk cytogenetic abnormality. Moreover, KDM4A expression correlated adversely with expression of 1q21 genes (e.g., CKS1B, MCL1, PSMD4, ARNT). Whereas basal KDM4A protein level was moderately but clearly higher in MM cell lines carrying 1q21 gain or acquired drug resistance than their counterparts, exposure to hypoxia or lactic acid (but not cobalt chloride) resulted in marked KDM4A up-regulation, accompanied by NF-κB and HIF pathway activation. However, while NF-κB inhibition and to a lesser extent ARNT/HIF-1β knockdown led to a robust increase in hypoxia-induced KDM4A expression, shRNA knockdown or pharmacological inhibition of KDM4A triggered NF-κB activation and HIF expression, as well as up-regulated anti-apoptotic proteins (e.g., Mcl-1, TNFAIP3/A20, CKS1B), in association with increased H3K36me3 rather than H3K9me3. Furthermore, KDM4A knockdown or inhibition sharply diminished Btz lethality and overrode hypoxia-mediated cytoprotection. Interestingly, KDM4A knockdown also increased MM cell proliferation, promoted S phase entry, and attenuated Btz-induced DSB. Last, IHC of sequential bone marrow biopsies revealed that while KDM4A protein was relatively low at diagnosis, its level was markedly increased when patients achieved CR and then fell to the baseline low level at relapse. Conclusion: KDM4A/JMJD2A, a lysine demethylase that has been recognized as an pro-oncogenic protein via its epigenetic and/or non-epigenetic properties, is identified for the first time as a potential tumor suppressor in MM, particularly in a high risk subtype carrying 1q21 gain. Whereas KDM4A is expressed in MM and can be further induced by hypoxia that naturally exists in bone marrow niche, it seems to play multiple inhibitory roles in cell growth, cell cycle, DNA repair, and drug resistance by suppressing expression of oncogenic and anti-apoptotic genes (especially 1q21 genes), likely via H3K36me3 demethylation, and antagonizing NF-κB and HIF activation. These findings suggest that in contrast to its pro-oncogenic role in certain solid tumors, KDM4A might instead act as a tumor suppressor in MM. This work was supported by NNSFC (81471165, 81670189, and 81670190). Disclosures Kumar: AbbVie: Membership on an entity's Board of Directors or advisory committees, Research Funding; KITE: Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1943-1943 ◽  
Author(s):  
Irene Ghobrial ◽  
Abdel Kareem A. Azab ◽  
Jacob P. Laubach ◽  
Ranjit Banwait ◽  
Meghan Rourke ◽  
...  

Abstract Abstract 1943 Introduction: Plerixafor (Mozobil®), a potent CXCR4 inhibitor, is approved in combination with G-CSF to mobilize hematopoietic stem cells (HSCs) for autologous transplantation in multiple myeloma (MM) and non Hodgkin's lymphoma (NHL). Another area of investigation consists of exploring whether disruption of the CXCR4 pathway by plerixafor could potentiate the effect of chemotherapy in active disease. This study aimed to establish the maximum tolerated dose (MTD) of plerixafor in combination with bortezomib in patients who have active relapse/refractory MM. This was informed by preclinical studies showing that plerixafor induces de-adhesion of MM cells with sensitization to combination therapy with bortezomib in pre-clinical animal models. Methods: Eligibility criteria include: 1) patients with relapsed or relapsed/refractory MM with any prior lines of therapy including bortezomib, 2) measurable disease, 3) not receiving chemotherapy> 3weeks, or biological/novel therapy for MM > 2 weeks. Patients with active disease received plerixafor at the recommended dose sc on days 1–6 of every cycle. Dose levels include 0.16, 0.24, 0.32, 0.40, and 0.48 mg/kg. Bortezomib was given at the recommended dose twice a week on days 3, 6, 10, and 13 every 21 days. Dose levels include 1.0 and 1.3 mg/m2. Bortezomib was given 60–90 minutes after plerixafor. Patients were assessed after every cycle. Patients who had response or stable disease went on to receive a total of 8 cycles without planned maintenance therapy. 4 dose levels were initially planned at a maximum of 0.24 mg/kg plerixafor. The protocol was then modified to include 3 higher doses of plerixafor, to further evaluate the hypothesis that higher doses may induce better chemosensitization. To examine the in vivo effect of plerixafor and bortezomib on de-adhesion of MM cells and other accessory cells of bone marrow, blood samples were obtained from patients at 0, 2, 4 and 24 hours post-plerixafor injection on days 1 and 3, and time points 0, 2, and 4 hours on days 6, 10 and 13 of cycle 1 and examined for the presence of plasma cells or CD34+ cells using flow cytometry. Results: Thirteen patients have been treated to date, three in each cohort with cohort 5 currently enrolling. The median age is 60, the median lines of prior therapy is 2. All of the patients received prior bortezomib. Three patients were assessed by light chain, two patients had extramedullary disease. The median number of cycles on therapy was 5 (1-8). None of the patients came off study due to toxicity. To date, there have been no dose-limiting toxicities. Overall, the combination is very well tolerated. Grade 3 possibly related toxicities include lymphopenia (30%), hypophosphatemia (15%), anemia (8%), and hyponatremia (8%). No grade 2 or higher neuropathy has been noted in these patients. Twelve patients are evaluable for response, including 1 (8%) complete remission (CR) and 1 (8%) minimal response (MR), with an overall response rate including MR of 2 (16%) in this relapsed/refractory population. In addition, 8 (66%) patients had stable disease (SD), and 2 (18%) had progressive disease (PD). We also examined the number of plasma cells, CD34+ HSCs, and other accessory bone marrow cells (including endothelial progenitor cells and plasmacytoid dendritic cells) in the peripheral blood. Analysis of these samples is ongoing, but preliminary data indicate de-adhesion of plasma cells. Conclusions: : The combination of plerixafor and bortezomib is very well tolerated with minimal neuropathy or other toxicities. The responses observed are encouraging in this relapsed/refractory population. The ability to demonstrate transient de-adhesion of MM cells and accessory cells in vivo indicates that these cells can be separated from their protective stromal environment which may make them more sensitive to chemotherapy. This study was supported by R01CA133799-01, and by Genzyme. Disclosures: Ghobrial: Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees. Munshi:Millennium Pharmaceuticals: Honoraria, Speakers Bureau. Anderson:Millennium Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Richardson:Celgene: Membership on an entity's Board of Directors or advisory committees; Millenium: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2999-2999 ◽  
Author(s):  
Samantha Pozzi ◽  
Diana Cirstea ◽  
Loredana Santo ◽  
Doris M Nabikejje ◽  
Kishan Patel ◽  
...  

Abstract Abstract 2999 Multiple myeloma (MM) is a treatable but incurable hematological malignancy and novel targeted therapies are under investigation. MM is characterized by dysregulation of the cell cycle, consequent to the overexpression of cyclins and their related kinases, the cyclins dependent kinases (CDK), a group of Ser/Thr proteine kinases. CDKs represent a promising therapeutic target, and inhibitors have been developed for anticancer treatment. We have previously studied seliciclib in the context of MM. CYC065, a second generation CDK inhibitor is the more potent derivative of seliciclib. It is mainly active on CDK 2, 5 and 9, involved in progression of the cell cycle and protein transcription. It has already shown promising results in preclinical studies in breast cancer and acute leukemia. We tested CYC065 in in vitro experiments in MM. Our preliminary data in 7 MM cell lines showed cytotoxicity of CYC065, both in MM cell lines sensitive as well as resistant to conventional chemotherapy, with an IC50 ranging between 0.06 and 2μ M, at 24 and 48h. Tritiated thymidine uptake assay confirmed the antiproliferative effects of CYC065 in MM, and its ability to overcome the growth advantage conferred by co-culture with bone marrow stromal cells derived from MM patients, and cytokines like interleukin 6 (10ng/ml) and insulin like growth factor-1 (50ng/ml). The anti-proliferative effect was evident both at 24 and 48h, starting at concentrations as low as 0.015μ M. The AnnexinV/PI assay in the MM1.s cell line confirmed CYC065's ability to induce apoptosis in a time dependent manner starting at 9 hours of treatment, at a concentration of 0.125 μ M, inducing 82% of apoptosis after 48h of exposure. Cell cycle analysis in the same MM1.s cell line showed an increase of subG1 phase, starting at 9 hours of treatment, at 0.125 μ M of CYC065. Preliminary results of western blot analysis confirmed the apoptotic effect of CYC065 in the MM1s cell line, highlighted by the cleavage of caspase 3, 8, 9 and PARP. The compound was tested in primary CD138+ cells isolated from three refractory MM patients, confirming its efficacy at 0.125 μ M, both at 24 and 48h. Comparative analysis in PBMCs from normal donors, for the evaluation of the drug toxicity is ongoing and will be presented. In conclusion our preliminary data confirm the efficacy of CYC065 in MM cell lines and primary MM cells, at nanomolar concentrations. Ongoing mechanistic and in vivo studies will delineate its role in the now increasing spectrum of CDK inhibitors in MM and better define its potential for clinical development in MM. Disclosures: Green: Cyclacel: Employment. Anderson:Millennium Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Scadden:Fate Therapeutics: Consultancy, Equity Ownership, Patents & Royalties. Raje:Celgene: Membership on an entity's Board of Directors or advisory committees; Astra Zeneca: Research Funding; Acetylon: Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4035-4035
Author(s):  
Abdel Kareem A. Azab ◽  
Phong Quang ◽  
Feda Azab ◽  
Brian Thompson ◽  
Patricia Maiso ◽  
...  

Abstract Abstract 4035 INTRODUCTION: The interaction of multiple myeloma (MM) cells with the bone marrow (BM) microenvironment plays a crucial role in MM pathogenesis, implying that progression of MM occurs through continuous interaction between the BM and MM cells, which controls the ability of MM cells to egress out of the BM and home into new BM niches. We have previously shown that the CXCR4/SDF1 axis as well as Rho GTPases downstream of the receptor was important for chemotaxis, adhesion, homing and egress of MM cells. However, the driving force for MM cells to leave the BM and metastasize to other BM sites is not well understood. Regions of severe oxygen deprivation (hypoxia) arise in tumors due to rapid cell division and are associated with poor patient prognosis, cell motility, associated angiogenesis and metastasis. In this study, we tested the role of hypoxia in the dissemination of MM cells in vivo, as well as regulation of the retention/egress of MM cells in and out of the BM. METHODS: To test the effect of hypoxia on induction of MM egress, MM1s-GFP+/Luc+ cells were injected into 12 SCID mice, and then mice with different stages of tumor development (based on the tumor size detected by bioluminescence) were treated with the hypoxia marker pimonidazole. Blood was drawn and BM was obtained from the femur. Mononuclear cells were then fixed, permeabilized, and stained with antibodies against pimonidazole, followed with an APC- secondary antibody, PE-mouse-anti-human CXCR4, and anti-cadherin antibody followed by an Alexa-Fluor-594 secondary antibody. MM cells in BM and peripheral blood were identified by gating on cells with high GFP signal. To confirm the effects of severe hypoxia found in vivo compared to physiologic mild hypoxia found in the BM, we tested the effect of mild hypoxic conditions (6% O2) and severe hypoxic conditions (0.5% O2) on MM expression of cadherins and CXCR4, as well on functional adhesion of MM cells to stromal cells and chemotaxis. RESULTS: Twelve mice with different stages of MM tumor progression were used. A bi-phasic correlation between tumor progression and the percent of hypoxic cells in BM was found, showing that severe hypoxic conditions in the BM correlated with tumor burden. The correlation between the tumor burden and the number of circulating cells was not linear; however, a direct linear correlation was observed between the number of circulating MM cells and hypoxia in the BM. Moreover, hypoxia in BM correlated directly with the expression of CXCR4 and negatively correlated with the expression of cadherins in MM cells isolated from the BM. To test the effect of the severe hypoxic conditions induced by tumor progression compared to mild hypoxic conditions found physiologically in the BM, we tested the effect of 0.5% O2 (severe hypoxia) and 6% O2 (mild hypoxia) compared to normoxia (21%) on MM cell adhesion to BMSCs, as well as on chemotaxis in response to SDF1, as well as expression of CXCR4 and cadherins. We found that severe hypoxic conditions decreased MM expression of cadherins and adhesion to BMSCs, as well as increased expression of CXCR4 and chemotaxis to SDF1 compared to cells in normoxia. In contrast, mild hypoxic conditions did not alter the expression of CXCR4 and cadherins, adhesion of MM cells to BMSCs, or chemotaxis of MM to SDF1 compared to normoxic cells. CONCLUSION: Hypoxia in the BM directly correlates with the number of circulating MM cells, and with changes in expression of cadherins and CXCR4 in vivo. Severe hypoxic conditions, but not mild hypoxic conditions, induce hypoxic responses in MM cells. Based on these findings, further studies to manipulate hypoxia in order to regulate tumor dissemination as a therapeutic strategy in MM are warranted. Disclosures: Anderson: Millennium Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Ghobrial:Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1841-1841
Author(s):  
Dharminder Chauhan ◽  
Ajita V. Singh ◽  
Arghya Ray ◽  
Teru Hideshima ◽  
Paul G. Richardson ◽  
...  

Abstract Abstract 1841 Introduction: The dimeric Nuclear Factor-kappa B (NF-κB) transcription factor plays a key role during multiple myeloma (MM) cell adhesion-induced cytokine secretion in bone marrow stromal cells, which in turn triggers MM cell growth in a paracrine manner. NF-κB signaling pathway is mediated via canonical (IKK-α/IKK-β/NEMO-P50/65 or NF-κB1) and non-canonical (IKK-α/IKK-α/NIK-p52/RelB or NF-κB2) components. Prior studies have also linked constitutive activation of non-canonical NF-κB pathway to genetic abnormalities/mutation, allowing for an autocrine growth of MM cells. Other recent studies showed that constitutive NF-κB activity in tumor cells from MM patients renders these cells refractory to inhibition by bortezomib; and in fact, that bortezomib induces canonical NF-κB activity. These reports provided the impetus for the development of an agent with ability to modulate canonical and/or non-canonical NF-κB axis, allowing for a more robust and specific inhibition of NF-κB. Recent research and development efforts at Nereus Pharmaceuticals, Inc., have identified a novel small molecule acanthoic acid analog NPI-1342 as a potent NF-κB inhibitor. Here, we examined the effects of NPI-1342 on canonical versus non-canonical NF-κB signaling pathways, as well as its anti-tumor activity against MM cells using both in vitro and in vivo model systems. Methods: We utilized MM.1S, MM.1R, RPMI-8226, U266, KMS12PE, NCI-H929, OCI-MY5, LR5, Dox-40, OPM1, and OPM2 human MM cell lines, as well as purified tumor cells from patients with MM. Cell viability assays were performed using MTT and Trypan blue exclusion assays. Signal transduction pathways were evaluated using immunoblot analysis, ELISA, and enzymology assays. Animal model studies were performed using the SCID-hu model, which recapitulates the human BM milieu in vivo. Results: We first examined the effects of NPI-1342 on lipopolysaccharides (LPS)-induced NF-κB activity. Results showed that NPI-1342 inhibits LPS-stimulated NF-κB activity in vitro, as measured by phosphorylation of IkBa. To determine whether NPI-1342 triggers a differential inhibitory effect on IKKβ versus IKKα, MM.1S MM cells were treated with NPI-1342 for 48 hours, and protein lysates were subjected to kinase activity assays. NPI-1342 blocked IKKα, but not IKKβ or IKKγ phosphorylation. We next assessed whether the inhibitory effect of NPI-1342 on NF-κB activity is associated with cytotoxicity in MM cells. We utilized a panel of MM cell lines: at least five of these have mutations of TRAF3 (MM.1S, MM.1R, DOX40 and U266); one has no known NF-κB mutations (OPM2), and one has amplification of NF-κB1 (OCI-MY5). Treatment of MM cell lines and primary patient (CD138 positive) MM cells for 48 hours significantly decreased their viability (IC50 range 15–20 μM) (P < 0.001; n=3) without affecting the viability of normal peripheral blood mononuclear cells, suggesting selective anti-MM activity and a favorable therapeutic index for NPI-1342. NPI-1342-induced a marked increase in Annexin V+ and PI- apoptotic cell population (P < 0.001, n=3). Mechanistic studies showed that NPI-1342-triggered apoptosis in MM cells is associated with activation of caspase-8, caspase-9, caspase-3, and PARP cleavage. We next examined the in vivo effects of NPI-1342 in human MM xenograft models. For these studies, we utilized the SCID-hu MM model, which recapitulates the human BM milieu in vivo. In this model, MM cells are injected directly into human bone chips implanted subcutaneously in SCID mice, and MM cell growth is assessed by serial measurements of circulating levels of soluble human IL-6R in mouse serum. Treatment of tumor-bearing mice with NPI-1342 (20 mg/kg intraperitoneally, QD1-5 for 2 weeks), but not vehicle alone, significantly inhibits MM tumor growth in these mice (10 mice each group; P = 0.004). The doses of NPI-1342 were well tolerated by the mice, without significant weight loss. Finally, immunostaining of implanted human bone showed robust apoptosis and blockade of NF-κB in mice treated with NPI-1342 versus vehicle alone. Conclusions: We demonstrate the efficacy of a novel small molecule inhibitor of NF-κB NPI-1342 in MM using both in vitro and in vivo models. NPI-1342 blocks NF-κB activity with a preferential inhibitory activity against IKK-α component of NF-κB signaling. Our preclinical studies support evaluation of NPI-1342 as a potential MM therapy. Disclosures: Hideshima: Acetylon: Consultancy. Richardson:Millennium: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Johnson & Johnson: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees. Palladino:Nereus Pharmaceuticals, Inc: Employment, Equity Ownership. Anderson:Celgene: Consultancy; Millennium: Consultancy; Onyx: Consultancy; Merck: Consultancy; Bristol Myers Squibb: Consultancy; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; Acetylon:; Nereus Pharmaceuticals, Inc: Consultancy.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2056-2056 ◽  
Author(s):  
Chantiya Chanswangphuwana ◽  
Michael P. Rettig ◽  
Walter Akers ◽  
Deep Hathi ◽  
Matthew Holt ◽  
...  

Abstract Background: The interaction of multiple myeloma (MM) cells with their microenvironment in the bone marrow (BM) affects disease progression and provides resistance to therapeutic agents. Very-late-antigen 4 (VLA-4, α4β1 integrin, CD49d/CD29) is a noncovalent, heterodimeric transmembrane receptor that is strongly implicated in the pathogenesis of MM via altering cell trafficking, proliferation and drug resistance. LLP2A is a high-affinity peptidomimetic ligand for activated VLA-4. We recently reported (Soodgupta et al. J. Nucl. Med 2016) the sensitive and specific molecular imaging of activated VLA-4 in mouse MM tumors using 64Cu-LLP2A and LLP2A-Cy5. Here we extended these studies by further characterizing VLA-4 expression in primary human MM samples and malignant plasma cells in mouse models of MM. Methods: We evaluated VLA-4 expression in 5 human MM cell lines (U266, OPM2, H929, RPMI-8226 and MM1.S), one mouse MM cell line (5TGM1) and seventeen primary human MM bone marrow samples by flow cytometry using LLP2A-Cy5, soluble VCAM-1/Fc recombinant protein and CD49d (α4) and CD29 (β1) antibodies. The relative mean fluorescence intensity (RMFI) of LLP2A-Cy5 binding was calculated by dividing the MFI of LLP2A-Cy5 binding in the absence of BIO5192 (small molecule VLA-4 inhibitor) by the MFI of LLP2A-Cy5 binding in the presence of excess BIO5192. The 5TGM1/KaLwRij immunocompetent mouse model of MM was used for in vivo study. Results: The expression of activated VLA-4 on MM cell lines as measured by LLP2A-Cy5+ mean fluorescent intensity (MFI) varied 10-fold as follows (LLP2A-Cy5 MFI in parentheses): 5TGM1 (23.7) > U266 (16.1) > OPM2 (4.6) > H929 (3.4) > RPMI-8226 (3.2) > MM1.S (2.1). We observed similar variable expression of LLP2A-Cy5 binding to primary human CD138+CD38+ MM plasma cells (PCs), with 76.47% (13/17) of MM patients exhibiting greater than 20% LLP2A-Cy5+ PCs. expressing VLA-4 on CD138+CD38+ cells. Overall, the mean percentage of positive cells and LLP2A-Cy5 relative MFI (RMFI) on malignant CD138+ PCs from these 13 patients were 78.2% (43.8-98.3%) and 4.3 (1.7-10.8), respectively. Other hematopoietic cells within the BM samples expressed less VLA-4 in descending order as follows; monocytes (58.2%, RMFI 3.0), T-lymphocytes (34.4%, RMFI 2.1) and B-lymphocytes (21.6%, RMFI 1.6). These levels of VLA-4 expression on normal cell subsets within MM patients were comparable to normal blood donors. In general, there was good correlation between LLP2A-Cy5 binding and expression of CD49d and CD29 on CD138+ PCs in MM patients. To our surprise, the four MM patients with <20% LLP2A-Cy5 binding demonstrated high expression of CD49d (92.1%) but very low percentages of CD29 positive cells (17.3%). Using BIO5192 (VLA-4 inhibitor), we found that the LLP2A-Cy5 reagent allowed more accurate detection of activated VLA-4 than the soluble VCAM-1 binding assay as determined by the magnitude of inhibition of binding in the presence of inhibitor. We next evaluated targeting VLA-4 molecule in murine MM model. Preliminary mouse mobilization studies demonstrated that VLA-4 inhibitors effectively and rapidly mobilized murine 5TGM1 MM cells from the bone marrow to the blood (2.49-fold increase in circulating GFP+CD138+ cells) within 1 hour of injection. Summary:This study is the first demonstration that activated VLA4 can be detected on primary human MM cells using LLP2A. These data support the continued development of LLP2A as a molecular diagnostic imaging reagent for MM and as a potential therapeutic target of VLA-4 in MM. Ongoing studies are testing whether small molecule VLA-4 inhibitors can sensitize MM cells to cytotoxic therapy in vivo. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 311-311 ◽  
Author(s):  
Laurie Herviou ◽  
Alboukadel Kassambara ◽  
Stephanie Boireau ◽  
Nicolas Robert ◽  
Guilhem Requirand ◽  
...  

Abstract Multiple Myeloma is a B cell neoplasia characterized by the accumulation of clonal plasma cells within the bone marrow.Epigenetics is characterized by a wide range of changes that are reversible and orchestrate gene expression. Recent studies have shown that epigenetic modifications play a role in multiple myeloma (MM) by silencing various cancer-related genes. We investigated the epigenetic genes differentially expressed between normal bone marrow plasma cells (BMPC ; N=5) and MM plasma cells from patients (N=206). Using SAM (Significance Analysis of Microarrays) analysis, only 12 genes significantly differentially expressed between BMPC and MM cells (ratio > 2 and FDR (false discovery rate) < 5%) were identified, including the EZH2 histone methyltransferase. EZH2, the enzymatic subunit of Polycomb Repressive Complex 2, is a histone methyltransferases able to repress gene expression by catalyzing H3K27me3 histone mark. EZH2 overexpression has been associated with numerous hematological malignancies, including MM. We thus studied EZH2 role in MM physiopathology and drug resistance. EZH2 expression was analyzed in normal bone marrow plasma cells (BMPCs; N=5), primary myeloma cells from newly diagnosed patients (MMCs; N=206) and human myeloma cell lines (HMCLs; N=40) using Affymetrix microarrays. EZH2 gene is significantly overexpressed in MMCs of patients (median 574, range 105 - 4562) compared to normal BMPCs (median = 432; range: 314 - 563) (P < 0.01). The expression is even higher in HMCLs (median 4481, range 581 - 8455) compared to primary MMCs or BMPCs (P < 0.001). High EZH2 expression is associated with a poor prognosis in 3 independent cohorts of newly diagnosed patients (Heidelberg-Montpellier cohort - N=206, UAMS-TT2 cohort - N=345 and UAMS-TT3 cohort - N =158). Furthermore, GSEA analysis of patients with high EZH2 expression highlighted a significant enrichment of genes involved in cell cycle, downregulated in mature plasma cells vs plasmablasts, and EZH2 targets. Specific EZH2 inhibition by EPZ-6438 EZH2 inhibitor induced a significant decrease of global H3K27me3 in all the HMCLs tested (P < 0.01) and inhibited MM cell growth in 5 out of the 6 HMCLs tested. The inhibitory effect of EZH2 inhibitor on MM cell growth appeared at day 6 suggesting that it is mediated by epigenetic reprogramming. To confirm that EZH2 is also required for the survival of primary MMCs from patients, primary MM cells (n = 17 patients) co-cultured with their bone marrow microenvironment and recombinant IL-6 were treated with EPZ-6438. As identified in HMCLs, EZH2 inhibition significantly reduced the median number of viable myeloma cells by 35% (P = 0.004) from a subset of patients (n=9) while the other group (n=8) was resistant. Of interest, EPZ-6438 induced a significant global H3K27me3 decrease in both groups of patient. RNA sequencing of 6 HMCLs treated with EPZ-6438 combined with H3K27me3 ChIP analyses allowed us to create an EZ GEP-based score able to predict HMCLs and primary MM cells sensitivity to EZH2 inhibitors. We also observed a synergy between EPZ-6438 and Lenalidomide, a conventional drug used for MM treatment. More interestingly, pretreatment of myeloma cells with EPZ-6438 significantly re-sensitize drug-resistant MM cells to Lenalidomide. Investigating the effect of EPZ-6438/Lenalidomide combination in MMC, we identified that IKZF1, IRF4 and MYC protein levels were significantly more inhibited by the combination treatment (65.5%, 63.9% and 14.8% respectively) compared with Lenalidomide (51.5%, 43% and 2.2%) or EPZ-6438 (45.2%, 38.7% and 6.2%) alone. Clinical trials are ongoing with EZH2 inhibitors in lymphoma and could be promising for a subgroup of MM patients in combination with IMiDs. Furthermore, the EZ score enables identification of MM patients with an adverse prognosis and who could benefit from treatment with EZH2 inhibitors. Disclosures Goldschmidt: Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Onyx: Honoraria, Membership on an entity's Board of Directors or advisory committees; Bristol-Myers Squibb: Membership on an entity's Board of Directors or advisory committees, Research Funding; Millennium: Membership on an entity's Board of Directors or advisory committees, Research Funding; Chugai: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees. Hose:EngMab: Research Funding; Takeda: Other: Travel grant; Sanofi: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 364-364
Author(s):  
Tianjiao Wang ◽  
Hua Sun ◽  
Daniel Cui Zhou ◽  
Ruiyang Liu ◽  
Lijun Yao ◽  
...  

Multiple myeloma (MM) is a hematological malignancy, defined by aberrant monoclonal proliferation of plasma cells in the bone marrow, that to date remains an incurable disease despite advances in treatment. Key genetic and epigenetic alterations that drive MM pathogenesis have been identified, but a comprehensive profile of affected cellular pathways has yet to be fully characterized. In this study, we integrate whole-genome and whole-exome sequencing data with single-cell RNA sequencing (scRNA-seq) data from 13 patients across multiple treatment stages to 1) assess differential pathway enrichment between tumor subpopulations, 2) trace the clonal evolution of dominant disease mechanisms, and 3) investigate signaling interactions between surrounding cell types. We also analyzed bulk genomic and transcriptomic data from 662 additional Multiple Myeloma Research Foundation (MMRF) tumor samples as a large reference cohort for highly prevalent pathway disturbances. To assess whether tumor subpopulations rely on different oncogenic programs for proliferation, we analyzed the differential expression of key genes (FDR-adjusted p-value &lt;0.05) in 12 canonical oncogenic pathways. Cell cycle, Hippo, RTK/RAS, and NFkB pathways contain the highest numbers of differentially expressed genes, with certain subclusters upregulating as many as 25% of annotated cell cycle genes and over 90% of annotated Hippo genes, whereas p53, Notch, Nrf2, and DNA repair genes tend to be uniformly expressed across subpopulations. Next, we evaluated changes in pathway enrichment across different disease timepoints, with the goal of capturing the reorganization of functional profiles through successive treatment and relapse cycles. We assessed statistical enrichment of pathways containing differentially expressed genes (DEGs) unique to Smoldering Multiple Myeloma (SMM), primary, and relapse stages using the KEGG pathway database (n = 2, 17, and 7 pathways, respectively; FDR-adjusted p-value of enrichment &lt; 0.05). SMM is the only stage where hematopoietic differentiation and the PI3K-Akt pathways are variably expressed between plasma cell subpopulations, suggesting that these pathways may play a role in initiating events. Only primary tumor samples show significant intra-tumor variability of p53 regulation, which is lost in the relapsed tumor and may reflect selection due to treatment. Relative to SMM, primary and relapse samples are enriched for changes in the MAPK, NFkB, RAP1, and cell cycle pathways, indicating potential sources of tumor resistance. We then analyzed pathway enrichment within the tumor microenvironment to enhance our understanding of tumor development in the context of surrounding tissues. We see frequent changes in many immune cell types in TLR signaling as the disease progresses, driven by differential expression of NFkB1A, JUN, and FOS, all of which are key upstream regulators of the AP-1 pathway and responders to the MAPK and PI3K signaling cascades. These microenvironment changes may be complementary to the PI3K and MAPK dysregulation observed in tumor plasma cells. Proteasome and ubiquitin genes, which affect secretion, autophagy, and apoptosis pathways that may be relevant to MM pathogenesis are also frequently differentially expressed in immune cells between disease stages. Finally, we integrate bulk whole-exome and whole-genome sequencing analysis (from both the 13-patient cohort and MMRF) to obtain a more complete understanding of how pathways become dysregulated in MM. Our findings advance the understanding of how MM tumor subpopulations differentially regulate cellular pathways and interact within the tumor microenvironment. Disclosures O'Neal: Wugen: Patents & Royalties: Patent Pending; WashU: Patents & Royalties: Patent Pending. Rettig:WashU: Patents & Royalties: Patent Application 16/401,950. Oh:Incyte: Membership on an entity's Board of Directors or advisory committees; Blueprint Medicines: Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy. Vij:Bristol-Myers Squibb: Honoraria, Research Funding; Celgene: Honoraria, Research Funding; Genentech: Honoraria; Janssen: Honoraria; Karyopharm: Honoraria; Sanofi: Honoraria; Takeda: Honoraria, Research Funding. DiPersio:Amphivena Therapeutics: Consultancy, Research Funding; Magenta Therapeutics: Equity Ownership; Karyopharm Therapeutics: Consultancy; Incyte: Consultancy, Research Funding; RiverVest Venture Partners Arch Oncology: Consultancy, Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy; Bioline Rx: Research Funding, Speakers Bureau; Macrogenics: Research Funding, Speakers Bureau; WUGEN: Equity Ownership, Patents & Royalties, Research Funding; NeoImmune Tech: Research Funding; Cellworks Group, Inc.: Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document