A Wharton's Jelly Mesenchymal Stromal Cell Derived 3D Osteogenic Niche Allows for Cord Blood Stem Cell Attachment

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4813-4813
Author(s):  
Omar S. Aljitawi ◽  
Peggy Keefe ◽  
Lindsey Ott ◽  
Dandan Li ◽  
Da Zhang ◽  
...  

Abstract Abstract 4813 Background: Most of umbilical cord blood (UCB) stem cell ex vivo expansion methods have led to UCB stem cell differentiation instead of their self-renewal. Evidence suggests that bone osteoblastic cells are responsible, through physical contact with hematopoietic stem cells (HSCs), for the maintenance of long-term HSCs. Aims: To develop a 3 dimensional (3D) osteogenic structure that provides a niche for UCB stem cells and secondarily, assess the ability of this structure, in addition, to a cocktail of cytokines to expand UCB stem cells.> Methods: Mesenchymal stromal cells (MSCs) isolated form Wharton's Jelly (WJ) were seeded into biodegradable scaffolds followed by osteogenic differentiation induction using osteogenic differentiation media for up to 4 and 6 weeks to develop a 4-week and a 6-week osteogenic scaffolds, respectively. CD34+ selected UCB stem cells were expanded on a monolayer of WJMSCs using a cocktail of cytokines for one week, following which the monolayer and expanded CD34+ UCB stem cells were trypsinized and added to the 4-week and 6-week 3D osteogenic scaffolds (3D conditions), or plated again in culture flask (2D conditions). Pre- and post-expansion total nucleated cell counts were determined and flow cytometry was used to assess the phenotype of the expanded population. Results: Osteogenic differentiation was successfully induced in 3D scaffolds as evident by Alizarin-red staining, scanning electron microscopy (SEM) and molecular testing. UCB stem cell attachment to the osteogenic scaffold was verified by SEM. TNCs were expanded 10X in 2D and 200X in 3D conditions. However, the percentage of CD34+ cells was 5.31% and 4.91% in 2D, and 2.98% and 1.14% in 4-week and 6-week 3D conditions, respectively. Conclusion: Attachment of CD34+ UCB stem cells to 3D osteogenic scaffold allowed for their expansion, though the majority of the expanded cells lost their CD34 expression possibly secondary to their differentiation. Disclosures: No relevant conflicts of interest to declare.

2021 ◽  
Vol 50 (1) ◽  
pp. 239-251
Author(s):  
Kim Shyong Siow ◽  
Arifah Rahman ◽  
Amnani Aminuddin ◽  
Pei Yuen Ng

The role of sulfur and its synergistic effects with nitrogen moieties in mediating stem cell proliferation and differentiation has become of interest to the tissue engineering community due to chemical similarities with the glycosaminoglycans found in human tissues and cells. Glycosaminoglycans are biomolecules known to influence stem cell differentiation, but the roles of sulfur with different oxidation states on nitrogen-containing polymers have not been fully understood nor investigated. In this study, we used the plasma polymerization of 1,7-octadiene (ppOD), n-heptylamine (ppHA), ppHA grafted with vinyl-sulfonate via Michael-type addition (ppHA-SO3), thiophene (ppT), and ppT with air plasma treatment (ppT-air) to produce controlled amounts of nitrogen and sulfur moieties having different oxidation states, as confirmed by x-ray photoelectron spectroscopy. Assays of the proliferation and osteogenic activities of Wharton’s jelly mesenchymal stem cells (WJ-MSCs) showed the highest activities for ppHA, followed by ppHA-SO3, due to high percentages of amines/amides and the absence of SO3 moieties in ppHA. Other plasma polymers showed less proliferation and osteogenic differentiation than the positive control (glass substrate); however, WJ-MSCs grown on ppT-air with its high percentages of SO4 displayed cytoskeletons intensified with actin stress fiber, unlike the thiol-dominated ppT. Finally, the presence of methyl groups in ppOD severely limited WJ-MSCs proliferation and differentiation. Overall, these results confirm the beneficial effects of amine/amide groups on WJ-MSCs proliferation and osteogenic differentiation, but the combination of these groups with sulfur of various oxidation states failed to further enhance such cellular activities.


2019 ◽  
Vol 10 (4) ◽  
pp. 52 ◽  
Author(s):  
Inthanon ◽  
Janvikul ◽  
Ongchai ◽  
Chomdej

Polycaprolactone (PCL), a hydrophobic-degradable polyester, has been widely investigated and extensively developed, to increase the biocompatibility for tissue engineering. This research was the first trial to evaluate the intrinsic biological responses of human Wharton’s Jelly Mesenchymal Stem Cells (hWJMSCs) cultured on alkaline hydrolysis and low-pressure oxygen plasma modified 2D and 3D PCL scaffolds, without adding any differentiation inducers; this has not been reported before. Four types of the substrate were newly established: 2D plasma-treated PCL (2D-TP), 2D non-plasma-treated PCL (2D-NP), 3D plasma-treated PCL (3D-TP), and 3D non-plasma-treated PCL (3D-NP). Physicochemical characterization revealed that only plasma-treated PCL scaffolds significantly increased the hydrophilicity and % oxygen/carbon ratio on the surfaces. The RMS roughness of 3D was higher than 2D conformation, whilst the plasma-treated surfaces were rougher than the non-plasma treated ones. The cytocompatibility test demonstrated that the 2D PCLs enhanced the initial cell attachment in comparison to the 3Ds, indicated by a higher expression of focal adhesion kinase. Meanwhile, the 3Ds promoted cell proliferation and migration as evidence of higher cyclin-A expression and filopodial protrusion, respectively. The 3Ds potentially protected the cell from apoptosis/necrosis but also altered the pluripotency/differentiation-related gene expression. In summary, the different configuration and surface properties of PCL scaffolds displayed the significant potential and effectiveness for facilitating stem cell growth and differentiation in vitro. The cell–substrate interactions on modified surface PCL may provide some information which could be further applied in substrate architecture for stem cell accommodation in cell delivery system for tissue repair.


Reproduction ◽  
2012 ◽  
Vol 143 (4) ◽  
pp. 455-468 ◽  
Author(s):  
Eleonora Iacono ◽  
Lara Brunori ◽  
Alessandro Pirrone ◽  
Pasquale Paolo Pagliaro ◽  
Francesca Ricci ◽  
...  

Mesenchymal stem cells (MSCs) have been derived from multiple sources of the horse including umbilical cord blood (UCB) and amnion. This work aimed to identify and characterize stem cells from equine amniotic fluid (AF), CB and Wharton's Jelly (WJ). Samples were obtained from 13 mares at labour. AF and CB cells were isolated by centrifugation, while WJ was prepared by incubating with an enzymatic solution for 2 h. All cell lines were cultured in DMEM/TCM199 plus fetal bovine serum. Fibroblast-like cells were observed in 7/10 (70%) AF, 6/8 (75%) CB and 8/12 (66.7%) WJ samples. Statistically significant differences were found between cell-doubling times (DTs): cells isolated from WJ expanded more rapidly (2.0±0.6 days) than those isolated from CB (2.6±1.3 days) and AF (2.3±1.0 days) (P<0.05). Positive von Kossa and Alizarin Red S staining confirmed osteogenesis. Alcian Blue staining of matrix glycosaminoglycans illustrated chondrogenesis and positive Oil Red O lipid droplets staining suggested adipogenesis. All cell lines isolated were positive for CD90, CD44, CD105; and negative for CD34, CD14 and CD45. These findings suggest that equine MSCs from AF, UCB and WJ appeared to be a readily obtainable and highly proliferative cell lines from a uninvasive source that may represent a good model system for stem cell biology and cellular therapy applications in horses. However, to assess their use as an allogenic cell source, further studies are needed for evaluating the expression of markers related to cell immunogenicity.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4250-4250
Author(s):  
Jun Ho Jang ◽  
Hyun Woo Lee ◽  
Young-Woo Eom ◽  
Seok Yun Kang ◽  
Joon Seong Park ◽  
...  

Abstract Mesenchymal stem cells (MSCs) are a highly promising source of adult stem cells for purposes of cell therapy and tissue repair in the field of regenerative medicine. Although the most studied and accessible source of MSC is the bone marrow, the clinical use of bone marrow-derived MSCs (BMSCs) has presented problems, including pain, morbidity, and low cell number upon harvest. For those reasons, we isolated, cultured, and characterized MSCs from a number of tissues; including wharton’s jelly, cord blood, and adipose tissues that were discarded routinely in the past, and evaluated the usefulness of these MSCs compared to BMSCs. Proliferation ability of Wharton’s jelly-derived MSCs (WJ-MSCs), Cord blood-derived MSCs (CB-MSCs), or adipose tissue-derived MSCs (ASCs) was lost at passage 8–10 (22–27 population doubling), passage 7–10, or passage 7–12 (45–50 population doubling), respectively. WJ-MSCs, CB-MSCs, and ASCs expressed CD73, CD90, and CD105, CD90, CD105, and CD166, and CD44, CD73, CD90, and CD166, respectively, were absent for CD14, CD31, and CD45, and differentiated into osteoblast, adipocyte, and chondrogenic lineages under appropriate culture condition. In this study, like BMSCs, WJ-MSCs, CB-MSCs, and ASCs expressed similar cell surface antigens, were able to differentiate into mesenchymal lineages, and possessed highly proliferation potential. Therefore, MSCs isolated from wharton’s jelly, cord blood, and adipose tissue may become useful alternative sources of MSCs to cell therapy and tissue repair in the field of regenerative medicine.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4832-4832
Author(s):  
Omar S. Aljitawi ◽  
Peggy Keefe ◽  
Christianna Henderson ◽  
Salem Akel ◽  
Sunil Abhyankar ◽  
...  

Abstract Abstract 4832 Introduction: In prior experiments, a 3 dimensional (3D) osteogenic niche was developed using Wharton's jelly mesenchymal stromal cells (WJMSC) that allowed for successful attachment of CD34 + umbilical cord blood (UCB) stem cells. The 3D osteogenic scaffold resulted in 10 times expansion of total nucleated cells (TNCs), however, most of the expanded cells were CD34 negative possibly secondary to their differentiation attributed to the cytokine-rich media. Accordingly, it was proposed to use a cytokine-free media in expansion of CD34+UCB using the same 3D osteogenic structure. Aims: To assess the ex vivo expansion of CD34+UCB stem cells in a 3D osteogenic niche using cytokine-free culture media. The expansion in 3D conditions was compared to 2D and liquid-culture conditions. Methods: CD34+ selected UCB stem cells were expanded in 3D osteogenic scaffold using cytokine-free media for 2 weeks. In 2D conditions, CD34+ UCB stem cells were expanded over a monolayer of osteogenic differentiated WJMSCs using the same cytokine-free media. In liquid culture conditions, the CD34+ UCB stem cells were expanded in culture flask. Pre- and post-expanded TNC was determined and post expansion CD34 expression was assessed using flow cytometry. Colony forming unit (CFU) assays were used to compare the expanded population in the three culture conditions. Results: TNCs were expanded 26X in 3D, 265X in 2D, and only 2X in liquid culture conditions. CD34 expressing cells increased 2.4X in 3D, 10X in 2D, and decreased in liquid cultures. Relative to 3D, CFU expansion in 2D was increased 2.6X. In 3D, CFUs were almost exclusively CFU-GM (>93%), compared to 2D (74%). Absence of CFU-E was noticed in the expanded population that remained attached to the 3D osteogenic scaffold. On the other hand, low CFU-E percentage was noticed in the population of expanded cells that dettached from the 3D osteogenic scaffold. Conclusions: The experimental conditions lead to a modest but significant expansion of CD34+UCB stem cells in 3D as well as 2D conditions. Though the majority of the expanded population did not express CD34, they retained their colonogenic potential. Contrary to the expanded cells that detached from the 3D osteogenic scaffold, the cells that remained attached did not form CFU-E. Disclosures: No relevant conflicts of interest to declare.


2010 ◽  
Vol 21 (3) ◽  
pp. 391-401 ◽  
Author(s):  
Chui-Yee Fong ◽  
Arjunan Subramanian ◽  
Arijit Biswas ◽  
Kalamegam Gauthaman ◽  
Prarthana Srikanth ◽  
...  

2017 ◽  
Vol 64 (2) ◽  
Author(s):  
Alicja Zajdel ◽  
Magdalena Kałucka ◽  
Edyta Kokoszka-Mikołaj ◽  
Adam Wilczok

Induced osteogenesis of mesenchymal stem cells (MSCs) may provide an important tool for bone injures treatment. Human umbilical cord and adipose tissue are routinely discarded as clinical waste and may be used as uncontroversial MSCs sources. It still remains to be verified which source of MSCs is the most suitable for bone regeneration.The aim of this research was to investigate the osteogenic potential of human MSCs derived from adipose tissue (ASCs) and Wharton’s jelly of the human umbilical cord (WJ-MSCs) differentiated under the same conditions.Osteogenic differentiation of MSCs was detected and quantified by ARS staining for calcium deposition and alkaline phosphatase (ALP) activity, osteoprotegerin (OPG), and osteocalcin (OC) secretion measurements. Under osteogenic conditions the measured ALP activity and calcium deposition were significantly higher in ASCs than in WJ-MSCs, while the OPG and OC secretion were higher in WJ-MSCs vs. ASCs. Low concentrations of OPG and high levels of OC in ASCs and WJ-MSCs, prove that these cells reached an advanced stage of the osteogenic differentiation. The levels of OC secreted by ASCs were lower than by WJ-MSCs what indicates that the differentiation process of the ASCs reached the stage when the extracellular matrix is overproduced and the down-regulation of OC begins.Both cell types, ASCs and WJ-MSCs possess potential to differentiate towards the osteogenic lineage. However, the observed differences in the levels of osteogenic markers suggest that ASCs may be better candidates for cell-based osteogenesis than WJ-MSCs.


Sign in / Sign up

Export Citation Format

Share Document