Deletion of Atm in the Hematopoetic Stem Cell As a Mouse Model for Human T Cell Acute Lymphoblastic Leukemia/Lymphoma.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2418-2418
Author(s):  
Lori A. Ehrlich ◽  
Katherine S. Yang-Iott ◽  
Amy DeMicco ◽  
Craig H. Bassing

Abstract Abstract 2418 Acute lymphoblastic leukemia (ALL) is diagnosed in approximately 2500 children per year. Although high cure rates have been achieved for ALL, these cancers account for the highest number of non-brain tumor cancer-related deaths in children. T cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of immature TCRβ−CD4+/CD8+ T-cells that represents ∼15% of pediatric ALL diagnoses, comprises most of the therapy-resistant ALL tumors, and exhibits a high frequency of relapse. The Ataxia Telangiectasia mutated (ATM) protein kinase activates the cellular response to DNA double strand breaks (DSBs) to coordinate DNA repair with cell survival, proliferation, and differentiation. Somatic inactivating ATM mutations occur in 10–20% of T-ALL and T cell lymphoblastic lymphoma (T-LL) tumors and are associated with resistance to genotoxic chemotherapy drugs and therapy relapse, likely driven by increased genomic instability in cells lacking functional ATM. The impaired DSB response of ATM-deficient cells can be exploited to design combinations of genotoxic drugs that specifically kill these cells in vitro. However, the in vivo potential of such drug combinations to treat T-ALL have not been reported. We sought to develop a pre-clinical mouse model that could be used to test effectiveness of such drug combinations to treat T-ALLs and T-LLs with somatic ATM inactivation. Although germline ATM-deficient (Atm−/−) mice succumb by six months of age to immature CD4+/CD8+ T-cell lymphomas containing genomic instability analogous to human T-ALL tumors, we sought a more physiologic model that would avoid potential complications due to ATM-deficiency in thymic epithelial cells. Thus, we generated and characterized VavCre:Atmflox/flox mice with conditional Atm inactivation restricted to hematopoietic cell lineages. These mice contain reduced numbers of TCRβ−CD4+/CD8+, TCRβ+CD4+/CD8−, and TCRβ+CD4−/CD8+ thymocytes and of TCRβ+CD4+ and TCRb+CD8+ splenic T-cells, mirroring the phenotype of Atm−/− mice. We have found that VavCre:Atmflox/flox mice succumb at an average of 95 days (range 53–183 days) to clonal TCRβ−CD4+/CD8+ or TCRβ+CD4−/CD8+ thymic lymphomas. Evaluation of the bone marrow in a subset of these mice indicates that the lymphoma has disseminated and are classified as leukemia. Our initial cytogenetic analyses of these tumors indicate that they contain both clonal translocations involving chromosome 12 and/or chromosome 14 and deletion of one allelic copy of the haploinsufficient Bcl11b tumor suppressor gene. Hemizygous BCL11B inactivation occurs in ∼20% of human T-ALL tumors, indicating the clinical relevance of VavCre:Atmflox/flox mice as a model for human T-ALL. Our ongoing studies include complete cytogenetic and molecular characterization of VavCre:Atmflox/flox tumors and in vivo testing of chemotherapeutics targeting the Atm pathway in this mouse model of T-ALL/T-LL. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2019 ◽  
Vol 133 (21) ◽  
pp. 2291-2304 ◽  
Author(s):  
Diego Sánchez-Martínez ◽  
Matteo L. Baroni ◽  
Francisco Gutierrez-Agüera ◽  
Heleia Roca-Ho ◽  
Oscar Blanch-Lombarte ◽  
...  

Abstract Relapsed/refractory T-cell acute lymphoblastic leukemia (T-ALL) has a dismal outcome, and no effective targeted immunotherapies for T-ALL exist. The extension of chimeric antigen receptor (CAR) T cells (CARTs) to T-ALL remains challenging because the shared expression of target antigens between CARTs and T-ALL blasts leads to CART fratricide. CD1a is exclusively expressed in cortical T-ALL (coT-ALL), a major subset of T-ALL, and retained at relapse. This article reports that the expression of CD1a is mainly restricted to developing cortical thymocytes, and neither CD34+ progenitors nor T cells express CD1a during ontogeny, confining the risk of on-target/off-tumor toxicity. We thus developed and preclinically validated a CD1a-specific CAR with robust and specific cytotoxicity in vitro and antileukemic activity in vivo in xenograft models of coT-ALL, using both cell lines and coT-ALL patient–derived primary blasts. CD1a-CARTs are fratricide resistant, persist long term in vivo (retaining antileukemic activity in re-challenge experiments), and respond to viral antigens. Our data support the therapeutic and safe use of fratricide-resistant CD1a-CARTs for relapsed/refractory coT-ALL.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3156-3156
Author(s):  
James D. Phelan ◽  
Cyrus Khandanpour ◽  
Shane Horman ◽  
Marie-Claude Gaudreau ◽  
Jinfang Zhu ◽  
...  

Abstract Abstract 3156 T cell acute lymphoblastic leukemia (T-ALL) is one of the most common childhood cancers associated with mutations in NOTCH1. The Growth factor independent-1 (Gfi1) transcriptional repressor gene was originally discovered as a common target of Moloney murine leukemia virus (MMLV) proviral insertion in murine T-ALL. In fact, the Gfi1 locus is the most frequently activated gene in MMLV-induced T cell leukemia. Therefore, we investigated whether the most commonly activated gene in MMLV-induced murine T-ALL, Gfi1, could collaborate with the most commonly activated gene in human T-ALL, NOTCH1. Here, we show that GFI1 expression is associated with Notch signaling in human T-ALL (p'0.0003). Functionally, Gfi1 collaborates with Notch-induced murine T-ALL by accelerating an already rapid disease model (p=0.03) without altering the lymphoblastic nature of the disease. Furthermore, inducible deletion of Gfi1 is counter-selected in both Notch-driven retroviral and transgenic mouse models of T-ALL; whereas, constitutive absence of Gfi1 completely prevents transgenic Notch-induced T-ALL (p≤0.04). However, T-ALL tumors can form in Gfi1-/- animals using either ENU-mutagenesis or MMLV-infection, yet tumor formation is delayed (p≤0.02, p≤0.03 respectively). This suggests that Gfi1 deletion does not prevent the formation of the T-ALL initiating cell and that Gfi1 might be absolutely required for Notch-induced T-ALL. Most striking is that Gfi1 is required for T-ALL maintenance in vitro and in vivo. Using three separate Tal1-initiated murine T-ALL cell lines, the overexpression of the Gfi1 dominant-negative, Gfi1N382S, was quickly and completely counter-selected. As Gfi1 has previously been found to regulate pro-apoptotic genes in T cells, we attempted to rescue the above loss of function phenotype by overexpressing the anti-apoptotic factor Bcl2. Notably, counter-selection of Gfi1N382 is not observed or is significantly delayed in all three cell lines. In vivo, inducible deletion of Gfi1 leads to both mutagen- or Notch-induced tumor regression as measured by ultrasound. In fact, levels of Gfi1 expression directly correlate to tumor regression and disease free survival of T-ALL. Finally, targeting Gfi1 enhances the efficacy of radiation therapy and bone marrow transplantation. Deletion of Gfi1 sensitizes T-ALL tumors and T cells to p53-dependent apoptosis after exposure to DNA-damaging agents such as radiation, Etoposide or Daunorubicin by de-repression of the pro-apoptotic Gfi1 target gene Bax. These data extend the role of Gfi1 to human T-ALL and suggest that T-ALL is dependent upon Gfi1 to repress pro-apoptotic genes for tumor survival, ultimately highlighting a new therapeutic target in the fight against lymphoid malignancies. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 125 (1) ◽  
pp. 13-21 ◽  
Author(s):  
Joni Van der Meulen ◽  
Viraj Sanghvi ◽  
Konstantinos Mavrakis ◽  
Kaat Durinck ◽  
Fang Fang ◽  
...  

Key Points The H3K27me3 demethylase UTX is recurrently mutated in male T-ALL and escapes X-inactivation in female T-ALL blasts and normal T cells. The loss of Utx contributes to T-ALL formation in vivo and UTX inactivation confers sensitivity to H3K27me3 inhibition.


2002 ◽  
Vol 195 (1) ◽  
pp. 85-98 ◽  
Author(s):  
Rodrig Marculescu ◽  
Trang Le ◽  
Paul Simon ◽  
Ulrich Jaeger ◽  
Bertrand Nadel

Most lymphoid malignancies are initiated by specific chromosomal translocations between immunoglobulin (Ig)/T cell receptor (TCR) gene segments and cellular proto-oncogenes. In many cases, illegitimate V(D)J recombination has been proposed to be involved in the translocation process, but this has never been functionally established. Using extra-chromosomal recombination assays, we determined the ability of several proto-oncogenes to target V(D)J recombination, and assessed the impact of their recombinogenic potential on translocation rates in vivo. Our data support the involvement of 2 distinct mechanisms: translocations involving LMO2, TAL2, and TAL1 in T cell acute lymphoblastic leukemia (T-ALL), are compatible with illegitimate V(D)J recombination between a TCR locus and a proto-oncogene locus bearing a fortuitous but functional recombination site (type 1); in contrast, translocations involving BCL1 and BCL2 in B cell non-Hodgkin’s lymphomas (B-NHL), are compatible with a process in which only the IgH locus breaks are mediated by V(D)J recombination (type 2). Most importantly, we show that the t(11;14)(p13;q32) translocation involving LMO2 is present at strikingly high frequency in normal human thymus, and that the recombinogenic potential conferred by the LMO2 cryptic site is directly predictive of the in vivo level of translocation at that locus. These findings provide new insights into the regulation forces acting upon genomic instability in B and T cell tumorigenesis.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A613-A613
Author(s):  
Todd Triplett ◽  
Joshua Rios ◽  
Alexander Somma ◽  
Sarah Church ◽  
Khrystyna North ◽  
...  

BackgroundT cell Acute Lymphoblastic Leukemia (T-ALL) is a devastating malignancy found primarily in pediatric populations. Unfortunately, standard of care for T-ALL has not progressed from highly toxic, intensive regimens of chemotherapy, which fails to cure all patients. Immunotherapies designed to activate patients‘ leukemia-specific T cells may provide a new therapeutic avenue to increase complete response rates, reduce toxicity without the need to engineer (e.g. CAR) cells. However, it is unknown whether T-ALL is capable of being recognized by T cells due given its relatively low mutation-rate. These studies therefore sought to investigate whether signs of leukemia-specific T cell responses are generated by T-ALL. Because T-ALL results in systemic disease and infiltrates multiple lymphoid and non-lymphoid tissues, these studies also determined how the divergent immune contextures of these TMEs impacts T cell responses to T-ALL. From this, we aim to identify immunotherapeutic targets capable of activating T cells across tissues to eradicate leukemia systemically.MethodsPrimary leukemia cells isolated from a spontaneous murine model (LN3 mice) into immune-competent, congenic (CD45.1) recipient mice. Tissues were harvested at distinct stages of disease for analysis by flow cytometry or utilizing NanoString Technologies’ GeoMX Digital Spatial Profiling (DSP) platform.ResultsFlow cytometric analysis of T cells revealed extensive changes in response to T-ALL that included multiple features of exhaustion typically associated with anti-tumor responses as determined by upregulation of co-inhibitory receptors and TOX. This included a surprisingly high-frequency of PD1+ T cells, which was accompanied by PDL1- and PDL2-expressing myeloid cells that likely are restraining these subsets. Importantly, combination immunotherapy with OX40 agonists while inhibiting PD1 resulted in drastically reduced tumor burden and concomitant expansion of proliferating granzyme-expressing CD8 T cells. To gain better insight into T cell responses within distinct organs, we analyzed tissue sections using DSP. This technique enabled us to evaluate T cells in direct contact with leukemia infiltrates compared to T cells in regions without T-ALL, which further revealed an enrichment of activated subsets. Importantly, these studies have provided critical insight needed to better understand how T cells responding to T-ALL diverge between distinct types of tissues.ConclusionsThe results from these studies collectively suggest that T cells are activated by T-ALL and that they can be therapeutically harnessed despite relatively low mutation-rates. Future studies will continue analysis of individual organs and use these results to rationally design combinations of immunotherapies by tailoring to activate T cells in all tissue types.AcknowledgementsSpecial thanks to all the support and analysis from everyone at NanoString, along with financial support provided by a SITC-NanoString DSP Fellowship awarded to Dr. Todd Triplett used for DSP analysis of all frozen tissues in these studies. Salary support for Dr. Triplett and pilot funding was provided by departmental funds via a Cancer Prevention and Research Institute of Texas (CPRIT) Scholar Award (Grant #RR160093; awarded to Dr. Gail Eckhardt).


2016 ◽  
Vol 23 (4) ◽  
pp. 1012-1024 ◽  
Author(s):  
Yana Pikman ◽  
Gabriela Alexe ◽  
Giovanni Roti ◽  
Amy Saur Conway ◽  
Andrew Furman ◽  
...  

2017 ◽  
Vol 1 (12) ◽  
pp. 733-747 ◽  
Author(s):  
Laurent Renou ◽  
Pierre-Yves Boelle ◽  
Caroline Deswarte ◽  
Salvatore Spicuglia ◽  
Aissa Benyoucef ◽  
...  

Key Points TLX3 transactivates LINC00478, the host gene of oncogenic miR-125b-2 in T-ALL. TLX3 and miR-125b contribute to the differentiation arrest and the expansion of transformed T cells.


Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1726
Author(s):  
Valentina Saccomani ◽  
Angela Grassi ◽  
Erich Piovan ◽  
Deborah Bongiovanni ◽  
Ludovica Di Martino ◽  
...  

T-cell acute lymphoblastic leukemia (T-ALL) is a rare, aggressive disease arising from T-cell precursors. NOTCH1 plays an important role both in T-cell development and leukemia progression, and more than 60% of human T-ALLs harbor mutations in components of the NOTCH1 signaling pathway, leading to deregulated cell growth and contributing to cell transformation. Besides multiple NOTCH1 target genes, microRNAs have also been shown to regulate T-ALL initiation and progression. Using an established mouse model of T-ALL induced by NOTCH1 activation, we identified several microRNAs downstream of NOTCH1 activation. In particular, we found that NOTCH1 inhibition can induce miR-22-3p in NOTCH1-dependent tumors and that this regulation is also conserved in human samples. Importantly, miR-22-3p overexpression in T-ALL cells can inhibit colony formation in vitro and leukemia progression in vivo. In addition, miR-22-3p was found to be downregulated in T-ALL specimens, both T-ALL cell lines and primary samples, relative to immature T-cells. Our results suggest that miR-22-3p is a functionally relevant microRNA in T-ALL whose modulation can be exploited for therapeutic purposes to inhibit T-ALL progression.


Sign in / Sign up

Export Citation Format

Share Document