FXII Promotes Coagulation in a FXI and FIX Independent Manner

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3362-3362 ◽  
Author(s):  
Cristina Puy ◽  
Zoë C Wong ◽  
Erik I Tucker ◽  
Andras Gruber ◽  
David Gailani ◽  
...  

Abstract Abstract 3362 Activation of coagulation factors (F) XII and XI support thrombogenesis through multiple pathways. FXII-deficient mice are more resistant to FeCl3-induced arterial occlusion than either FIX or FXI deficient mice, suggesting that the resistance of FXII-deficient mice to experimental thrombosis is not completely explained by the FXII-FXI-FIX pathway, suggesting the existence of a pathological FXII by-pass, in vivo. The APTT of FXII deficient plasma is longer than the APTT of FXI, FIX, or FX deficient plasmas. We found that addition of 150 nM activated FXII (FXIIa) decreased the recalcification time of FXI or FIX-deficient plasma by up to 85%. In a purified system FXIIa could activate prothrombin but not FX. Addition of rivaroxaban, a FXa inhibitor, to FXI or FIX-deficient plasma blocked the observed procoagulant effect of FXIIa, suggesting that FXIIa promotes the activation of FX independent of FXI or FIX, but the ability of FXIIa alone to induce coagulation is insufficient in plasma, in vitro. Addition of long polyphosphate (polyP), typically found in bacteria, but not short polyP, which is secreted by activated platelets, decreased the recalcification time of FXI or FIX-deficient plasma. The presence of either corn trypsin inhibitor (CTI), that inhibits FXIIa, or rivaroxaban blocked the procoagulant effect of long polyP, suggesting that the activation of FXII by long polyP promotes coagulation in an FXI- and FIX-independent manner. Addition of CTI or an antibody that inhibits FIX activation by FXIa, but not addition of an antibody that inhibits activation of FXI by FXIIa, increased the time of occlusive thrombus formation in recalcified human blood that was driven through collagen and tissue factor (TF)-coated capillary tubes, consistent with the thrombogenic roles of FXIIa and feedback activation of FXI. Only CTI inhibited the prothrombotic effect of long polyP, also suggesting that FXIIa could be thrombogenic independent of FXI and FIX. In summary, we propose that pathological FXII activation, e.g., by foreign surfaces or long polyP, is thrombogenic both in FXI/FIX-dependent and -independent manners. Provided that FXII has no significant physiological function in humans, our data support the hypothesis that inhibition of FXII activity or activation may have safe antithrombotic effects. Disclosures: Morrissey: No organization, but the speaker is co-inventor on pending patent applications on the medical uses of polyphosphate: Patents & Royalties.

2017 ◽  
Vol 37 (5) ◽  
pp. 823-835 ◽  
Author(s):  
Christopher W. Smith ◽  
Steven G. Thomas ◽  
Zaher Raslan ◽  
Pushpa Patel ◽  
Maxwell Byrne ◽  
...  

Objective— Leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) is a collagen receptor that belongs to the inhibitory immunoreceptor tyrosine-based inhibition motif–containing receptor family. It is an inhibitor of signaling via the immunoreceptor tyrosine-based activation motif–containing collagen receptor complex, glycoprotein VI-FcRγ-chain. It is expressed on hematopoietic cells, including immature megakaryocytes, but is not detectable on platelets. Although the inhibitory function of LAIR-1 has been described in leukocytes, its physiological role in megakaryocytes and in particular in platelet formation has not been explored. In this study, we investigate the role of LAIR-1 in megakaryocyte development and platelet production by generating LAIR-1–deficient mice. Approach and Results— Mice lacking LAIR-1 exhibit a significant increase in platelet counts, a prolonged platelet half-life in vivo, and increased proplatelet formation in vitro. Interestingly, platelets from LAIR-1–deficient mice exhibit an enhanced reactivity to collagen and the glycoprotein VI–specific agonist collagen-related peptide despite not expressing LAIR-1, and mice showed enhanced thrombus formation in the carotid artery after ferric chloride injury. Targeted deletion of LAIR-1 in mice results in an increase in signaling downstream of the glycoprotein VI–FcRγ-chain and integrin αIIbβ3 in megakaryocytes because of enhanced Src family kinase activity. Conclusions— Findings from this study demonstrate that ablation of LAIR-1 in megakaryocytes leads to increased Src family kinase activity and downstream signaling in response to collagen that is transmitted to platelets, rendering them hyper-reactive specifically to agonists that signal through Syk tyrosine kinases, but not to G-protein–coupled receptors.


Author(s):  
Dina Vara ◽  
Reiner K. Mailer ◽  
Anuradha Tarafdar ◽  
Nina Wolska ◽  
Marco Heestermans ◽  
...  

Objective: Using 3KO (triple NOX [NADPH oxidase] knockout) mice (ie, NOX1 −/− /NOX2 −/− /NOX4 −/− ), we aimed to clarify the role of this family of enzymes in the regulation of platelets in vitro and hemostasis in vivo. Approach and Results: 3KO mice displayed significantly reduced platelet superoxide radical generation, which was associated with impaired platelet aggregation, adhesion, and thrombus formation in response to the key agonists collagen and thrombin. A comparison with single-gene knockouts suggested that the phenotype of 3KO platelets is the combination of the effects of the genetic deletion of NOX1 and NOX2, while NOX4 does not show any significant function in platelet regulation. 3KO platelets displayed significantly higher levels of cGMP—a negative platelet regulator that activates PKG (protein kinase G). The inhibition of PKG substantially but only partially rescued the defective phenotype of 3KO platelets, which are responsive to both collagen and thrombin in the presence of the PKG inhibitors KT5823 or Rp-8-pCPT-cGMPs, but not in the presence of the NOS (NO synthase) inhibitor L-NG-monomethyl arginine. In vivo, triple NOX deficiency protected against ferric chloride–driven carotid artery thrombosis and experimental pulmonary embolism, while hemostasis tested in a tail-tip transection assay was not affected. Procoagulatory activity of platelets (ie, phosphatidylserine surface exposure) and the coagulation cascade in platelet-free plasma were normal. Conclusions: This study indicates that inhibiting NOXs has strong antithrombotic effects partially caused by increased intracellular cGMP but spares hemostasis. NOXs are, therefore, pharmacotherapeutic targets to develop new antithrombotic drugs without bleeding side effects.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1874-1874 ◽  
Author(s):  
Toshio Fukuda ◽  
Yuko Honda ◽  
Chikako Matsumoto ◽  
Nobutoshi Sugiyama ◽  
Tadashi Matsushita ◽  
...  

Abstract Antithrombin (AT) is a major physiological inhibitor of coagulation factors, primarily inhibiting thrombin and factor Xa (FXa). Binding of heparin and its related pentasaccharides, fondaparinux, to AT dramatically accelerates inhibition of thrombin and FXa. Entire AT-dependency of heparins may result in decreased anticoagulant effects in patients with inherited or acquired AT deficiencies. Objectives: We have developed an orally active direct (i.e. AT-independent) FXa inhibitor, DU-176b. The objectives of this study were to examine the anticoagulant and antithrombotic effects of DU-176b, fondaparinux, and heparin in heterozygous AT deficient (AT+/−) mice (Refs 1, 2), and to determine the impact of AT deficiency on the efficacies of these anticoagulants. Methods: [In vitro study] Plasma obtained from wild type (AT+/+, C57BL/6J) and AT+/− mice were subjected to measurement of levels of AT antigen and activity. The anticoagulant effects on prothrombin time (PT) and activated partial thromboplastin time (APTT) was measured and the drug concentrations were calculated required to double the clotting time (CT2). [In vivo study] Male AT+/+ and AT+/− mice were fasted over night. Thrombosis was induced in the inferior vena cava by applying filter paper (1 x 5 mm) presoaked in 15% FeCl3 for 10 min. Thrombus was removed 60 min after FeCl3 treatment and its protein content was assessed by Bradford method. DU-176b was orally administered 60 min before, fondaparinux was given s.c. 30 min before, and heparin was injected into the jugular vein 3 min before thrombus induction. Relative potencies of antithrombotic effects in AT+/− mice to those in AT+/+ mice were analyzed by parallel line assay. Results: [In vitro study] Plasma levels of AT antigen and activity in AT+/− mice were deceased to 40% compared with AT+/+ plasma. PT-CT2 of DU-176b was 0.72 μM in AT+/+ plasma and 0.74 μM in AT+/− plasma, respectively, indicating that anticoagulant activity of the direct FXa inhibitor was not affected by heterozygous AT deficiency. APTT-CT2 of fondaparinux and heparin in AT+/+ plasma was 3.8 μM and 14 mU/mL, respectively, whereas APTT-CT2 in AT+/− plasma was 9.2 μM and 20 mU/mL, respectively. Therefore, anticoagulant activities of such AT-dependent inhibitors were attenuated in AT+/− plasma. [In vivo study] All three anticoagulants inhibited venous thrombus formation of AT+/+ mice in dose-dependent manners. In AT+/− mice, the antithrombotic effects of fondaparinux and heparin were less potent than those in AT+/+ mice. In contrast, DU-176b prevented thrombus formation equipotently in both mice. Relative potencies of DU-176b, fondaparinux and heparin were 0.84, 0.40, and 0.70, respectively. Conclusion: DU-176b exerts a comparable antithrombotic effect even in individuals with low plasma AT antigens and activities. Thus, DU-176b may be prioritized over AT-dependent agents for use at the fixed dose in patients with lower plasma AT concentrations.


Blood ◽  
2010 ◽  
Vol 115 (1) ◽  
pp. 97-106 ◽  
Author(s):  
Yacine Boulaftali ◽  
Frédéric Adam ◽  
Laurence Venisse ◽  
Véronique Ollivier ◽  
Benjamin Richard ◽  
...  

AbstractProtease nexin–1 (PN-1) is a serpin that inhibits plasminogen activators, plasmin, and thrombin. PN-1 is barely detectable in plasma but is expressed by platelets. Here, we studied platelet PN-1 in resting and activated conditions and its function in thrombosis. Studies on human platelets from healthy donors and from patients with a Gray platelet syndrome demonstrate that PN-1 is present both at the platelet surface and in α-granules. The role of PN-1 was investigated in vitro using human platelets incubated with a blocking antibody and using platelets from PN-1–deficient mice. Both approaches indicate that platelet PN-1 is active on thrombin and urokinase-type plasminogen activator. Blockade and deficiency of platelet PN-1 result in accelerated and increased tissue factor-induced thrombin generation as indicated by calibrated automated thrombography. Moreover, platelets from PN-1–deficient mice respond to subthreshold doses of thrombin, as assessed by P-selectin expression and platelet aggregation. Thrombus formation, induced ex vivo by collagen in blood flow conditions and in vivo by FeCl3-induced injury, is significantly increased in PN-1–deficient mice, demonstrating the antithrombotic properties of platelet PN-1. Platelet PN-1 is thus a key player in the thrombotic process, whose negative regulatory role has been, up to now, markedly underestimated.


Blood ◽  
2004 ◽  
Vol 103 (2) ◽  
pp. 594-600 ◽  
Author(s):  
Catherine Leon ◽  
Meike Alex ◽  
Antje Klocke ◽  
Eberhard Morgenstern ◽  
Christine Moosbauer ◽  
...  

Abstract While the adenosine 5′-diphosphate (ADP) pathway is known to enhance thrombus formation by recruiting platelets and leukocytes to the primary layer of collagen-adhering platelets, its role for the initiation of coagulation has not been revealed. Ex vivo inhibition of the P2Y12 ADP receptor by clopidogrel administration diminished the rapid exposure of tissue factor (TF), the major initiator of coagulation, in conjugates of platelets with leukocytes established by the contact of whole blood with fibrillar collagen. Under in vitro conditions, the P2Y12 and P2Y1 ADP receptors were both found to be implicated in the exposure of TF in collagen-activated whole blood. Immunoelectron-microscopy revealed that collagen elicited the release of TF from its storage pools within the platelets. Functional activation of the intravascular TF was reduced by inhibition of the ADP receptors, partially due to the disruption of the platelet-neutrophil adhesions. Injection of collagen into the venous system of mice increased the number of thrombin-antithrombin complexes, indicative for the formation of thrombin in vivo. In P2Y1-deficient mice, the ability of collagen to enhance the generation of thrombin was impaired. In conclusion, the platelet ADP pathway supports the initiation of intravascular coagulation, which is likely to contribute to the concomitant formation of fibrin at the site of the growing thrombus.


1995 ◽  
Vol 73 (02) ◽  
pp. 318-323 ◽  
Author(s):  
K Azzam ◽  
L I Garfinkel ◽  
C Bal dit Sollier ◽  
M Cisse Thiam ◽  
L Drouet

SummaryTo assess the antithrombotic effectiveness of blocking the platelet glycoprotein (GP) Ib/IX receptor for von Willebrand factor (vWF), the antiaggregating and antithrombotic effects were studied in guinea pigs using a recombinant fragment of vWF, Leu 504-Lys 728 with a single intrachain disulfide bond linking residues Cys 509-Cys 695. The inhibitory effect of this peptide, named VCL, was tested in vitro on ristocetin- and botrocetin-induced platelet aggregation and compared to the ADP-induced platelet aggregation. In vivo, the antithrombotic effect of VCL was tested in a model of laser-injured mesentery small arteries and correlated to the ex vivo ristocetin-induced platelet aggregation. In this model of laser-induced thrombus formation, five mesenteric arteries were studied in each animal, and the number of recurrent thrombi during 15 min, the time to visualization and time to formation of first thrombus were recorded.In vitro, VCL totally abolished ristocetin- and botrocetin-induced platelet aggregation, but had no effect on ADP-induced platelet aggregation. Ex vivo, VCL (0.5 to 2 mg/kg) administered as a bolus i. v. injection inhibits ristocetin-induced platelet aggregation with a duration of action exceeding 1 h. The maximum inhibition was observed 5 min after injection of VCL and was dose related. The same doses of VCL had no significant effect on platelet count and bleeding time. In vivo, VCL (0.5 to 2 mg/kg) had no effect on the appearance of the thrombi formed but produced dose-dependent inhibition of the mean number of recurrent thrombi (the maximal effect was obtained at 5 min following i. v. injection of the highest dose: 0.8 ± 0.2 thrombi versus 4 ± 0.4 thrombi in controls). The three doses of VCL increased the time in which the first thrombus in a concentration-dependent manner was formed. However, the time to visualize the first thrombus was only prolonged in the higher dose-treated group.These in-vivo studies confirm that VCL induces immediate, potent, and transient antithrombotic effects. Most importantly, this inhibition was achieved without inducing thrombocytopenia nor prolongation of the bleeding time.


Blood ◽  
2006 ◽  
Vol 108 (2) ◽  
pp. 510-514 ◽  
Author(s):  
Miroslava Požgajová ◽  
Ulrich J. H. Sachs ◽  
Lutz Hein ◽  
Bernhard Nieswandt

Platelet activation plays a central role in hemostasis and thrombosis. Many platelet agonists function through G-protein–coupled receptors. Epinephrine activates the α2A-adrenergic receptor (α2A) that couples to Gz in platelets. Although α2A was originally cloned from platelets, its role in thrombosis and hemostasis is still unclear. Through analysis of α2A-deficient mice, variable tail bleeding times were observed. In vitro, epinephrine potentiated activation/aggregation responses of wild-type but not α2A-deficient platelets as determined by flow cytometry and aggregometry, whereas perfusion studies showed no differences in platelet adhesion and thrombus formation on collagen. To test the in vivo relevance of α2A deficiency, mice were subjected to 3 different thrombosis models. As expected, α2A-deficient mice were largely protected from lethal pulmonary thromboembolism induced by the infusion of collagen/epinephrine. In a model of FeCl3-induced injury in mesenteric arterioles, α2A–/– mice displayed a 2-fold increase in embolus formation, suggesting thrombus instability. In a third model, the aorta was mechanically injured, and blood flow was measured with an ultrasonic flow probe. In wild-type mice, all vessels occluded irreversibly, whereas in 24% of α2A-deficient mice, the initially formed thrombi embolized and blood flow was reestablished. These results demonstrate that α2A plays a significant role in thrombus stabilization.


Blood ◽  
2010 ◽  
Vol 116 (19) ◽  
pp. 3981-3989 ◽  
Author(s):  
Qiufang Cheng ◽  
Erik I. Tucker ◽  
Meghann S. Pine ◽  
India Sisler ◽  
Anton Matafonov ◽  
...  

AbstractMice lacking factor XII (fXII) or factor XI (fXI) are resistant to experimentally–induced thrombosis, suggesting fXIIa activation of fXI contributes to thrombus formation in vivo. It is not clear whether this reaction has relevance for thrombosis in pri mates. In 2 carotid artery injury models (FeCl3 and Rose Bengal/laser), fXII-deficient mice are more resistant to thrombosis than fXI- or factor IX (fIX)–deficient mice, raising the possibility that fXII and fXI function in distinct pathways. Antibody 14E11 binds fXI from a variety of mammals and interferes with fXI activation by fXIIa in vitro. In mice, 14E11 prevented arterial occlusion induced by FeCl3 to a similar degree to total fXI deficiency. 14E11 also had a modest beneficial effect in a tissue factor–induced pulmonary embolism model, indicating fXI and fXII contribute to thrombus formation even when factor VIIa/tissue factor initiates thrombosis. In baboons, 14E11 reduced platelet-rich thrombus growth in collagen-coated grafts inserted into an arteriovenous shunt. These data support the hypothesis that fXIIa-mediated fXI activation contributes to thrombus formation in rodents and primates. Since fXII deficiency does not impair hemostasis, targeted inhibition of fXI activation by fXIIa may be a useful antithrombotic strategy associated with a low risk of bleeding complications.


Blood ◽  
2008 ◽  
Vol 111 (3) ◽  
pp. 1295-1298 ◽  
Author(s):  
Yasuaki Shida ◽  
Kenji Nishio ◽  
Mitsuhiko Sugimoto ◽  
Tomohiro Mizuno ◽  
Masaaki Hamada ◽  
...  

Abstract The metalloprotease ADAMTS13 is assumed to regulate the functional levels of von Willebrand factor (VWF) appropriate for normal hemostasis in vivo by reducing VWF multimer size, which directly represents the thrombogenic activity of this factor. Using an in vitro perfusion chamber system, we studied the mechanisms of ADAMTS13 action during platelet thrombus formation on a collagen surface under whole blood flow conditions. Inhibition studies with a function-blocking anti-ADAMTS13 antibody, combined with immunostaining of thrombi with an anti-VWF monoclonal antibody that specifically reflects the VWF-cleaving activity of ADAMTS13, provided visual evidence for a shear rate–dependent action of ADAMTS13 that limits thrombus growth directly at the site of the ongoing thrombus generation process. Our results identify an exquisitely specific regulatory mechanism that prevents arterial occlusion under high shear rate conditions during mural thrombogenesis.


Blood ◽  
2015 ◽  
Vol 126 (15) ◽  
pp. 1823-1830 ◽  
Author(s):  
Benoit Decouture ◽  
Elise Dreano ◽  
Tiphaine Belleville-Rolland ◽  
Orjeta Kuci ◽  
Blandine Dizier ◽  
...  

Key PointsIn vivo and in vitro thrombus formation is altered in MRP4-deficient mice. MRP4 modulates the cAMP–protein kinase A platelet signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document