Effect of Rituximab On the Activity of T Cells Expressing CD20-Specific Chimeric Antigen Receptors

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4222-4222
Author(s):  
Gregory A. Rufener ◽  
Michael C. Jensen ◽  
Shaunda Brouns ◽  
Lihua E. Budde ◽  
David G. Maloney ◽  
...  

Abstract Abstract 4222 BACKGROUND: Adoptive cellular therapy using autologous T cells that have been genetically modified to express a chimeric antigen receptor (CAR) has emerged as a promising therapy for lymphoma. Clinical trials for lymphoid malignancies to date have primarily targeted either the CD19 or CD20 antigens. While CD20 has a more established track record as an immunotherapy target, one potential drawback of targeting CD20 with CAR+ T cells is the theoretical possibility that residual levels of circulating anti-CD20 antibodies (Ab) from prior chemoimmunotherapy regimens could partially or completely block CAR-antigen interactions. This could negatively impact the efficacy of CD20-targeted CAR+ T cells. However, previous data from our group and others indicate that CD20 CAR+T cell function is only partially blocked by anti-CD20 Ab, and T cell function in the setting of anti-CD3 × anti-CD20 bispecific Ab is not blocked by rituximab (R) levels of up to 100 μg/ml. Collectively, these data suggest that a very low number of available CD20 binding sites may be sufficient to trigger CAR signaling and T cell activation. METHODS: We tested the effect of different levels of R on in vitro function of polyclonal T cells from healthy donors negatively selected by MACS, activated with anti-CD3/CD28 beads, and transduced with epHIV7 lentiviral vectors encoding 1st or 3rdgeneration (αCD20-ζ or αCD20-CD28–41BB-ζ) anti-CD20 CARs. T cells were re-stimulated 1 week after initial activation by co-culture with antigen presenting cells (APCs) that had been pre-incubated for 30 minutes with varying concentrations of R (ranging from 0 to 800 μg/ml). APCs were K562 cells transduced to express CD80 with or without CD20 (denoted “K80” and “K80-20”), or Ramos lymphoma cells. Proliferation, cytokine secretion, and cytotoxicity were then assessed as discussed below. RESULTS: We first used flow cytometry to test whether varying concentrations of R blocked binding of the Leu16 Ab and, as expected, found a dose-dependent blockade of CD20 on each cell line, with 50 μg/ml and 200 μg/ml causing near-complete blockade of K80-20 and Ramos cells, respectively. However, despite this apparent blockade, proliferation was largely unimpaired in CFSE-labeled 1st or 3rd generation CAR+ T cells cultured with K80-20 or Ramos cells pre-incubated with R concentrations of up to 400 μg/ml. We concurrently measured cytokine secretion of these T cells using Luminex assays and found that IL-2 and IFN-γ secretion decreased with increasing R levels, but 50–85% of baseline levels were still achieved at R concentrations of up to 100 μg/ml. Cytotoxicity against K80-20 and Ramos target cells in standard 51Cr-release assays by 1st and 3rd generation CAR+ T cells was largely preserved at low R concentrations, and 50–75% of cytolytic activity was retained at 100 μg/ml. Nonspecific proliferation, cytokine secretion, and cytotoxicity were excluded in these experiments by using CAR+ T cells incubated with K80 cells lacking CD20 expression, or T cells transduced with an empty vector as negative controls. Mouse xenograft experiments are currently ongoing to test the effect of serum R levels on the in vivo anti-tumor efficacy of CD20-CAR T cells. CONCLUSIONS: These in vitro results suggest that despite apparent blockade of the CD20 antigen, CAR+ T cells targeting CD20 retain significant activity in the presence of R concentrations of up to 100 ug/ml. Patients receiving 2–3 cycles of R-chemotherapy have serum R trough levels in the range of 30–70 μg/ml. We therefore predict that residual serum R levels will not present a significant impediment to CD20-targeted adoptive T cell therapy given after salvage R-chemotherapy. Disclosures: Jensen: ZetaRx: Equity Ownership, Patents & Royalties. Maloney:Roche: Consultancy; Genentech: Consultancy. Off Label Use: Lentiviral vector encoding a CD20-specific chimeric antigen receptor, used to re-direct autologous T cells to recognize B cell lymphoma cells.

2021 ◽  
Vol 9 (Suppl 1) ◽  
pp. A26.2-A27
Author(s):  
M Seifert ◽  
M Benmebarek ◽  
B Cadilha ◽  
J Jobst ◽  
J Dörr ◽  
...  

BackgroundDespite remarkable response rates mediated by anti-CD19 chimeric antigen receptor (CAR) T cells in selected B cell malignancies, CAR T cell therapy still lacks efficacy in the vast majority of tumors. A substantial limiting factor of CAR T cell function is the immunosuppressive tumor microenvironment. Among other mechanisms, the accumulation of adenosine within the tumor can contribute to disease progression by suppressing anti-tumor immune responses. Adenosine 2a- and 2b-receptor (A2A and A2B)-mediated cAMP build-up suppresses T cell effector functions. In the present study we hypothesize, that combination therapy with the selective A2A/A2B dual antagonist AB928 (etrumadenant) enhances CAR T cell efficacy.Materials and MethodsSecond generation murine (anti-EPCAM) and human (anti-MSLN) CAR constructs, containing intracellular CD28 and CD3ζ domains, were fused via overlap extension PCR cloning. Murine or human T cells were retrovirally transduced to stably express the CAR constructs. A2A/A2B signaling in CAR T cells was analyzed by phospho-specific flow cytometry of CREB (pS133)/ATF-1 (pS63). CAR T cell activation was quantified by flow cytometry and enzyme-linked immunosorbent assay (ELISA) of IFN-γ, IL-2 and TNF-α. CAR T cell proliferation was assessed by flow cytometry. CAR T cell cytotoxicity was assessed by impedance based real-time cell analysis.ResultsAB928 protected murine CAR T cells from cAMP response element-binding protein (CREB) phosphorylation in the presence of stable adenosine analogue 5′-N-ethylcarboxamidoadenosine (NECA). NECA inhibited antigen-dependent CAR T cell cytokine secretion in response to four murine tumor cell lines. CAR T cell-mediated tumor cell lysis as well as proliferation were decreased in the presence of NECA or adenosine. Importantly, AB928 fully restored CAR T cell cytotoxicity, proliferation, and cytokine secretion in a dose dependent manner. Further, AB928 also restored antigen dependent cytokine secretion of human CAR T cells in the presence of NECA.ConclusionsHere we used the A2A/A2B dual antagonist AB928 to overcome adenosine-mediated suppression of CAR T cells. We found that AB928 enhanced important CAR T cell effector functions in the presence of the adenosine analogue, suggesting that combination therapy with AB928 may improve CAR T cell efficacy. This study was limited to in vitro experiments. To confirm the relevance of our findings, this combination therapy must be further investigated in an in vivo setting.Disclosure InformationM. Seifert: None. M. Benmebarek : None. B. Cadilha : None. J. Jobst: None. J. Dörr: None. T. Lorenzini: None. D. Dhoqina: None. J. Zhang: None. J. Zhang: None. U. Schindler: E. Ownership Interest (stock, stock options, patent or other intellectual property); Modest; Amgen Inc., Arcus Biosciences. Other; Significant; Arcus Biosciences. S. Endres: None. S. Kobold: B. Research Grant (principal investigator, collaborator or consultant and pending grants as well as grants already received); Significant; Arcus Biosciences.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248973
Author(s):  
Nami Iwamoto ◽  
Bhavik Patel ◽  
Kaimei Song ◽  
Rosemarie Mason ◽  
Sara Bolivar-Wagers ◽  
...  

Achieving a functional cure is an important goal in the development of HIV therapy. Eliciting HIV-specific cellular immune responses has not been sufficient to achieve durable removal of HIV-infected cells due to the restriction on effective immune responses by mutation and establishment of latent reservoirs. Chimeric antigen receptor (CAR) T cells are an avenue to potentially develop more potent redirected cellular responses against infected T cells. We developed and tested a range of HIV- and SIV-specific chimeric antigen receptor (CAR) T cell reagents based on Env-binding proteins. In general, SHIV/SIV CAR T cells showed potent viral suppression in vitro, and adding additional CAR molecules in the same transduction resulted in more potent viral suppression than single CAR transduction. Importantly, the primary determinant of virus suppression potency by CAR was the accessibility to the Env epitope, and not the neutralization potency of the binding moiety. However, upon transduction of autologous T cells followed by infusion in vivo, none of these CAR T cells impacted either acquisition as a test of prevention, or viremia as a test of treatment. Our study illustrates limitations of the CAR T cells as possible antiviral therapeutics.


2020 ◽  
Vol 8 (Suppl 2) ◽  
pp. A18.2-A19
Author(s):  
B Kotter ◽  
N Werchau ◽  
W Krueger ◽  
A Roy ◽  
J Mittelstaet ◽  
...  

BackgroundAdoptive transfer of chimeric antigen receptor (CAR)-modified T cells has emerged as a promising treatment modality for a broad range of cancers highlighted by the approval of Kymriah™ and Yescarta™ for the treatment of B cell malignancies. However, lack of control of CAR T cell function and consequent excessive inflammation in patients can result in severe side effects especially when targeting tumor-associated rather than tumor-specific antigens. Thus, temporal and tunable control of CAR activity is of major importance for the clinical translation of innovative CAR designs. While the activation of suicide switches results in the apoptotic elimination of the transferred cells, other strategies, e.g. anti-tag CARs or small molecule-gated CARs, enable the reversible control of CAR-mediated function at the protein level but are restricted to a particular CAR design. Focusing on the control of expression rather than CAR signaling, transcriptional regulators represent a versatile tool facilitating a wide range of CAR T cell applications.Materials and MethodsTo maintain control over the infused CAR T cell product and mitigate risks for the patient, we describe here the development of an inducible switch system for the transcriptional regulation of transgene expression in primary, human T cells. Chemically regulated synthetic transcription factors composed of a zinc finger DNA-binding domain, an inducible control domain and a transcription activation domain were designed, screened for functionality, and evaluated in T cells regarding their potential to control CAR expression both in vitro and in vivo.ResultsBy screening, we identified a synthetic transcription factor, which shows high transcriptional output in T cells in the presence of a clinically relevant inducer drug and absence of background activity in the non-induced state. Using this system we were able to control the expression of a CAR recognizing the CD20 antigen present on B cells and B cell leukemic blasts. The addition of the inducer drug resulted in rapid expression of the anti-CD20 CAR on the T cell surface. Moreover, inducible anti-CD20 CAR T cells executed cytolytic activity against CD20 positive target cells and secreted cytokines upon stimulation in vitro. Effectivity in co-cultures was thereby comparable to T cells expressing the anti-CD20 CAR under a conventional constitutive promoter. Furthermore, we could fine-tune CAR activity by titrating the inducer concentration. By defining the time-point of induction, modulation of the onset of therapy was achieved. Upon inducer drug discontinuation, inducible CD20 CAR T cells lost CAR expression and concurrently all CAR-related functions, indicating that the ‘on’ and ‘off’ status can be tightly controlled by the administration of the drug. After pausing of CAR T cell-mediated activity, we could re-induce CAR expression suggesting complete reversibility of effector function. Finally, we were able to show that inducible CD20 CAR T cells mediate a significant, strictly inducer-dependent antitumor activity in a well-established mouse model of B cell lymphoma.ConclusionsThe zinc-finger-based transcriptional control system investigated in this study provides small molecule-inducible control over a therapeutically relevant anti-CD20 CAR in primary T cells in a time- and dose-dependent manner. The tight regulation of CAR expression will pave the way for safer cellular therapies.Disclosure InformationB. Kotter: A. Employment (full or part-time); Significant; Miltenyi Biotec B.V. & Co. KG. N. Werchau: A. Employment (full or part-time); Significant; Miltenyi Biotec B.V. & Co. KG. W. Krueger: A. Employment (full or part-time); Significant; Lentigen Technology Inc. A. Roy: A. Employment (full or part-time); Significant; Lentigen Technology Inc. J. Mittelstaet: A. Employment (full or part-time); Significant; Miltenyi Biotec B.V. & Co. KG. A. Kaiser: A. Employment (full or part-time); Significant; Miltenyi Biotec B.V. & Co. KG.


2020 ◽  
Vol 94 (10) ◽  
Author(s):  
Matthew T. Ollerton ◽  
Edward A. Berger ◽  
Elizabeth Connick ◽  
Gregory F. Burton

ABSTRACT The major obstacle to a cure for HIV infection is the persistence of replication-competent viral reservoirs during antiretroviral therapy. HIV-specific chimeric antigen receptor (CAR) T cells have been developed to target latently infected CD4+ T cells that express virus either spontaneously or after intentional latency reversal. Whether HIV-specific CAR-T cells can recognize and eliminate the follicular dendritic cell (FDC) reservoir of HIV-bound immune complexes (ICs) is unknown. We created HIV-specific CAR-T cells using human peripheral blood mononuclear cells (PBMCs) and a CAR construct that enables the expression of CD4 (domains 1 and 2) and the carbohydrate recognition domain of mannose binding lectin (MBL) to target native HIV Env (CD4-MBL CAR). We assessed CAR-T cell cytotoxicity using a carboxyfluorescein succinimidyl ester (CFSE) release assay and evaluated CAR-T cell activation through interferon gamma (IFN-γ) production and CD107a membrane accumulation by flow cytometry. CD4-MBL CAR-T cells displayed potent lytic and functional responses to Env-expressing cell lines and HIV-infected CD4+ T cells but were ineffective at targeting FDC bearing HIV-ICs. CD4-MBL CAR-T cells were unresponsive to cell-free HIV or concentrated, immobilized HIV-ICs in cell-free experiments. Blocking intercellular adhesion molecule-1 (ICAM-1) inhibited the cytolytic response of CD4-MBL CAR-T cells to Env-expressing cell lines and HIV-infected CD4+ T cells, suggesting that factors such as adhesion molecules are necessary for the stabilization of the CAR-Env interaction to elicit a cytotoxic response. Thus, CD4-MBL CAR-T cells are unable to eliminate the FDC-associated HIV reservoir, and alternative strategies to eradicate this reservoir must be sought. IMPORTANCE Efforts to cure HIV infection have focused primarily on the elimination of latently infected CD4+ T cells. Few studies have addressed the unique reservoir of infectious HIV that exists on follicular dendritic cells (FDCs), persists in vivo during antiretroviral therapy, and likely contributes to viral rebound upon cessation of antiretroviral therapy. We assessed the efficacy of a novel HIV-specific chimeric antigen receptor (CAR) T cell to target both HIV-infected CD4+ T cells and the FDC reservoir in vitro. Although CAR-T cells eliminated CD4+ T cells that express HIV, they did not respond to or eliminate FDC bound to HIV. These findings reveal a fundamental limitation to CAR-T cell therapy to eradicate HIV.


2021 ◽  
Author(s):  
Taylor L Hickman ◽  
Eugene Choi ◽  
Kathleen R Whiteman ◽  
Sujatha Muralidharan ◽  
Tapasya Pai ◽  
...  

Purpose: The solid tumor microenvironment (TME) drives T cell dysfunction and inhibits the effectiveness of immunotherapies such as chimeric antigen receptor-based T cell (CAR T) cells. Early data has shown that modulation of T cell metabolism can improve intratumoral T cell function in preclinical models. Experimental Design: We evaluated GPC3 expression in human normal and tumor tissue specimens. We developed and evaluated BOXR1030, a novel CAR T therapeutic co-expressing glypican-3 (GPC3)-targeted CAR and exogenous glutamic-oxaloacetic transaminase 2 (GOT2) in terms of CAR T cell function both in vitro and in vivo. Results: Expression of tumor antigen GPC3 was observed by immunohistochemical staining in tumor biopsies from hepatocellular carcinoma, liposarcoma, squamous lung cancer, and Merkel cell carcinoma patients. Compared to control GPC3 CAR alone, BOXR1030 (GPC3-targeted CAR T cell that co-expressed GOT2) demonstrated superior in vivo efficacy in aggressive solid tumor xenograft models, and showed favorable attributes in vitro including an enhanced cytokine production profile, a less-differentiated T cell phenotype with lower expression of stress and exhaustion markers, an enhanced metabolic profile and increased proliferation in TME-like conditions. Conclusions: Together, these results demonstrated that co-expression of GOT2 can substantially improve the overall antitumor activity of CAR T cells by inducing broad changes in cellular function and phenotype. These data show that BOXR1030 is an attractive approach to targeting select solid tumors. To this end, BOXR1030 will be explored in the clinic to assess safety, dose-finding, and preliminary efficacy (NCT05120271).


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi122-vi122
Author(s):  
Linchun Jin ◽  
Alicia Hou ◽  
Haipeng Tao ◽  
Aida Karachi ◽  
Meng Na ◽  
...  

Abstract BACKGROUND Glioblastoma (GBM) is a refractory brain tumor that desperately needs new therapeutic interventions. Our group identified CD70 as a novel target of CAR-T therapy for this malignancy. We demonstrate that CD70 is overexpressed by low-/high-grade gliomas and associated with poor survival for patients; CD70 promotes CD8 specific cell death and tumor-associated macrophage infiltration in gliomas. The CD70 CAR (using CD27, a natural costimulatory receptor of T cells as an antigen-binding region) T cells can efficiently eradicate CD70 positive tumors in syngeneic and xenograft mouse models. OBJECTIVE To evaluate the properties of CD70 CAR-transduced T cells in GBM treatment. METHODS CD70 CAR or IL13Rα2 CAR was linked with fluorescent reporter gene EGFP, and cloned into a retroviral vector (pMSGV8). In vitro T cell culture and flow cytometry were used to evaluate the self-enrichment property and susceptibility to TCR stimulation of the CAR T cells. KI67, Bcl-2, CD70 gene expression was tested by qPCR to measure the proliferation/apoptosis properties of the CAR T cells. Cytokine profile was analyzed by ELISA. The anti-tumor response was evaluated using Xenograft mouse models. RESULTS Compared with IL13Rα2 CAR T cells, the frequency of CD70 CAR T cells was significantly increased 3 weeks post transduction, and approximately 100 to 150-fold CD70 CAR T cell expansion without additional stimuli was achieved in vitro. The expanded CD70 CAR T cells were mostly (up to 85%) CD8+ T cells three weeks post CAR transduction. Enhanced proliferative capacity and production of IL-2, IFN-γ, and TNF-α of the CD70 CAR-transduced T cells upon anti-CD3/CD28 stimulation were also revealed. Results from animal models show that the CD70 CAR T cells present superior in vivo persistence and antitumor efficacy. CONCLUSION We show the auto-stimulative property, as well as superior T cell function and antitumor efficacy of CD70 CAR T cells in GBM models.


Author(s):  
Liqing Kang ◽  
Xiaowen Tang ◽  
Jian Zhang ◽  
Minghao Li ◽  
Nan Xu ◽  
...  

Abstract Background T cells expressing a chimeric antigen receptor (CAR) engineered to target CD19 can treat leukemia effectively but also increase the risk of complications such as cytokine release syndrome (CRS) and CAR T cell related encephalopathy (CRES) driven by interleukin-6 (IL-6). Here, we investigated whether IL-6 knockdown in CART-19 cells can reduce IL-6 secretion from monocytes, which may reduce the risk of adverse events. Methods Supernatants from cocultures of regular CART-19 cells and B lymphoma cells were added to monocytes in vitro, and the IL-6 levels in monocyte supernatants were measured 24 h later. IL-6 expression was knocked down in regular CART-19 cells by adding a short hairpin RNA (shRNA) (termed ssCART-19) expression cassette specific for IL-6 to the conventional CAR vector. Transduction efficiency and cell proliferation were measured by flow cytometry, and cytotoxicity was measured by evaluating the release of lactate dehydrogenase into the medium. Gene expression was assessed by qRT-PCR and RNA sequencing. A xenograft leukemia mouse model was established by injecting NOD/SCID/γc-/- mice with luciferase-expressing B lymphoma cells, and then the animals were treated with regular CART-19 cells or ssCART-19. Tumor growth was assessed by bioluminescence imaging. Results Both recombinant IL-6 and CART-19 derived IL-6 significantly triggered IL-6 release by monocytes. IL-6 knockdown in ssCART-19 cells dramatically reduced IL-6 release from monocytes in vitro stduy. In vivo study further demonstrated that the mice bearing Raji cells treated with ssCART-19 cells showed significant lower IL-6 levels in serum than those treated with regular CART-19 cells, but comparable anti-tumor efficacy between the animal groups. Conclusion CAR T-derived IL-6 is one of the most important initiators to amplify release of IL-6 from monocytes that further drive sCRS development. IL-6 knockdown in ssCART-19 cells by shRNA technology provide a promising strategy to improve the safety of CAR T cell therapy.


Author(s):  
Zhixiong Wang ◽  
Qian Liu ◽  
Na Risu ◽  
Jiayu Fu ◽  
Yan Zou ◽  
...  

Chimeric antigen receptor (CAR) T cell therapy still faces the challenge of immunosuppression when treating solid tumors. TGF-β is one of the critical factors in the tumor microenvironment to help tumors escape surveillance by the immune system. Here we tried using the combination of a small molecule inhibitor of TGF-β receptor I, Galunisertib, and CAR T cells to explore whether Galunisertib could enhance CAR T cell function against solid tumor cells. In vitro experiments showed Galunisertib could significantly enhance the specific cytotoxicity of both CD133- and HER2-specific CAR T cells. However, Galunisertib had no direct killing effect on target cells. Galunisertib significantly increased the cytokine secretion of CAR T cells and T cells that do not express CAR (Nontransfected T cells). Galunisertib did not affect the proliferation of T cells, the antigen expression on target cells and CD69 on CAR T cells. We found that TGF-β was secreted by T cells themselves upon activation, and Galunisertib could reduce TGF-β signaling in CAR T cells. Our findings can provide the basis for further preclinical and clinical studies of the combination of Galunisertib and CAR T cells in the treatment of solid tumors.


2020 ◽  
Author(s):  
Liqing Kang ◽  
Xiaowen Tang ◽  
Jian Zhang ◽  
Minghao Li ◽  
Nan Xu ◽  
...  

Abstract Background T cells expressing a chimeric antigen receptor (CAR) engineered to target CD19 can treat leukemia effectively but also increase the risk of complications such as cytokine release syndrome (CRS) and CAR T cell related encephalopathy (CRES) driven by interleukin-6 (IL-6). Here, we investigated whether IL-6 knockdown in CART-19 cells can reduce IL-6 secretion from monocytes, which may reduce the risk of adverse events. Methods Supernatants from cocultures of regular CART-19 cells and B lymphoma cells were added to monocytes in vitro, and the IL-6 levels in monocyte supernatants were measured 24 h later. IL-6 expression was knocked down in regular CART-19 cells by adding a short hairpin RNA (shRNA) (termed ssCART-19) expression cassette specific for IL-6 to the conventional CAR vector. Transduction efficiency and cell proliferation were measured by flow cytometry, and cytotoxicity was measured by evaluating the release of lactate dehydrogenase into the medium. Gene expression was assessed by qRT-PCR and RNA sequencing. A xenograft leukemia mouse model was established by injecting NOD/SCID/γc-/- mice with luciferase-expressing B lymphoma cells, and then the animals were treated with regular CART-19 cells or ssCART-19. Tumor growth was assessed by bioluminescence imaging. Results Both recombinant IL-6 and activated regular CART-19 cells expressing IL-6 triggered IL-6 release by monocytes. IL-6 knockdown in ssCART-19 cells dramatically reduced IL-6 release from monocytes without reducing cytotoxic activity. Mice treated with ssCART-19 cells showed lower IL-6 levels in the serum than mice treated with regular CART-19 cells, but tumor growth and survival were similar between the animal groups. Conclusion IL-6 released from activated CAR T cells may be one of the main initiators of the release of IL-6 from monocytes that can drive CRS. IL-6 knockdown in ssCART-19 cells reduces monocyte release of IL-6 both in vitro and in vivo without affecting antitumor efficacy. The IL-6 knockdown strategy may provide a useful and promising way to improve the safety of CAR T cell therapy.


2021 ◽  
Vol 9 (10) ◽  
pp. e003354
Author(s):  
Emiliano Roselli ◽  
Justin C Boucher ◽  
Gongbo Li ◽  
Hiroshi Kotani ◽  
Kristen Spitler ◽  
...  

BackgroundCo-stimulatory signals regulate the expansion, persistence, and function of chimeric antigen receptor (CAR) T cells. Most studies have focused on the co-stimulatory domains CD28 or 4-1BB. CAR T cell persistence is enhanced by 4-1BB co-stimulation leading to nuclear factor kappa B (NF-κB) signaling, while resistance to exhaustion is enhanced by mutations of the CD28 co-stimulatory domain.MethodsWe hypothesized that a third-generation CAR containing 4-1BB and CD28 with only PYAP signaling motif (mut06) would provide beneficial aspects of both. We designed CD19-specific CAR T cells with either 4-1BB or mut06 together with the combination of both and evaluated their immune-phenotype, cytokine secretion, real-time cytotoxic ability and polyfunctionality against CD19-expressing cells. We analyzed lymphocyte-specific protein tyrosine kinase (LCK) recruitment by the different constructs by immunoblotting. We further determined their ability to control growth of Raji cells in NOD scid gamma (NSG) mice. We also engineered bi-specific CARs against CD20/CD19 combining 4-1BB and mut06 and performed repeated in vitro antigenic stimulation experiments to evaluate their expansion, memory phenotype and phenotypic (PD1+CD39+) and functional exhaustion. Bi-specific CAR T cells were transferred into Raji or Nalm6-bearing mice to study their ability to eradicate CD20/CD19-expressing tumors.ResultsCo-stimulatory domains combining 4-1BB and mut06 confers CAR T cells with an increased central memory phenotype, expansion, and LCK recruitment to the CAR. This enhanced function was dependent on the positioning of the two co-stimulatory domains. A bi-specific CAR targeting CD20/CD19, incorporating 4-1BB and mut06 co-stimulation, showed enhanced antigen-dependent in vitro expansion with lower exhaustion-associated markers. Bi-specific CAR T cells exhibited improved in vivo antitumor activity with increased persistence and decreased exhaustion.ConclusionThese results demonstrate that co-stimulation combining 4-1BB with an optimized form of CD28 is a valid approach to optimize CAR T cell function. Cells with both mono-specific and bi-specific versions of this design showed enhanced in vitro and in vivo features such as expansion, persistence and resistance to exhaustion. Our observations validate the approach and justify clinical studies to test the efficacy and safety of this CAR in patients.


Sign in / Sign up

Export Citation Format

Share Document