Efficacy and Tolerability of Bosutinib and Imatinib in Older Versus Younger Patients with Newly Diagnosed Chronic Phase Chronic Myeloid Leukemia–BELA Trial

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4442-4442 ◽  
Author(s):  
Carlo Gambacorti-Passerini ◽  
Tim H Brümmendorf ◽  
Dong-Wook Kim ◽  
Irina Dyagil ◽  
Hagop M Kantarjian ◽  
...  

Abstract Abstract 4442 Bosutinib (BOS) is an orally active, dual Src/Abl kinase inhibitor with activity and manageable toxicity in the phase 3 BELA trial of patients (pts) with newly diagnosed (≤6 mo) chronic phase (CP) chronic myeloid leukemia (CML). The current analysis of the BELA trial summarizes the activity and tolerability of BOS 500 mg/d and imatinib (IM) 400 mg/d among older (≥65 y; BOS n = 30; IM n = 27) versus younger pts (<65 y; BOS n = 220; IM n = 225). Sokal risk scores were balanced between treatment arms but, as expected, higher among older pts (4% low; 72% intermediate; 25% high) versus younger pts (39% low; 44% intermediate; 17% high). Minimum follow-up duration was 24 mo. BOS was discontinued by 37% of pts (57% older vs 35% younger; P = 0.023); difference between age groups was primarily due to adverse events (AEs; 39% vs 22%; most commonly increased alanine aminotransferase [ALT]). IM was discontinued by 27% of pts (35% older vs 28% younger; P= 0.496); disease progression was the primary reason. In the intent-to-treat population, cumulative rate of complete cytogenetic response (CCyR) by 24 mo in older/younger pts was 70%/80% on BOS and 78%/80% on IM. Median time to CCyR was 24.0 wk for older versus 12.7 wk for younger pts on BOS and 24.4 wk versus 24.7 wk on IM; in younger pts CCyR was achieved significantly faster on BOS versus IM (P<0.001). Among older/younger pts with a CCyR, 57%/79% on BOS and 76%/85% on IM were still on treatment and retained their CCyR as of the data cutoff. Cumulative rates of major molecular response (MMR) by 24 mo in older/younger pts were 53%/60% on BOS and 48%/49% on IM. Median time to MMR was 48.1 wk for older versus 48.0 wk for younger pts on BOS and 60.6 wk versus 84.1 wks on IM; for younger pts MMR was achieved significantly faster on BOS versus IM (P<0.001). Among older/younger pts with a MMR, 63%/84% on BOS and 92%/89% on IM were still on treatment and retained their MMR as of the data cutoff. Kaplan-Meier event-free survival in older/younger pts at 2 y was 100%/91% on BOS and 81%/88% on IM. Kaplan-Meier on-treatment transformation to accelerated/blast phase CML by 2 y was 0% for older and 2% (4 transformations) for younger pts on BOS (4 total), and 9% (2 transformations) for older and 5% (11 transformations) for younger pts on IM (13 total). Kaplan-Meier overall survival in older/younger pts at 2 y was 100%/97% on BOS and 92%/95% on IM. The majority of deaths were due to disease progression (BOS, n = 6; IM, n = 10); few deaths due to AEs on BOS (n = 1) or IM (n = 2) were reported, none treatment related. BOS was associated with higher rates of gastrointestinal TEAEs, elevated ALT and aspartate aminotransferase (AST), and pyrexia; IM was associated with higher rates of musculoskeletal TEAEs and edema (Table). Rates of common TEAEs were generally similar or higher among older pts. Pleural/pericardial effusion occurred in 6 (21%) older pts (3/6 with treatment-related events; median event duration, 36.5 d) versus 5 (2%) younger pts (all with treatment-related events) on BOS, and in no IM pts. Overall grade 3/4 TEAEs were more frequent among older pts on both BOS and IM, as was dose modification (Table). Grade 3/4 lab abnormalities of elevated ALT (BOS, 18% older/24% younger; IM, 4% each) and AST (BOS, 7%/12%; IM, 4% each) were more frequent with BOS versus IM, but similar between age groups. Grade 3/4 lab abnormalities of neutropenia were more frequent with IM (23% older/22% younger) versus BOS (11% each) regardless of age; grade 3/4 anemia (6%-14%) and thrombocytopenia (14%-23%) were generally similar regardless of age or treatment arm. In conclusion, BOS demonstrated activity in both older and younger pts with newly diagnosed CP CML. Although the frequency of certain toxicities as well as treatment discontinuations due to TEAEs was higher among older pts, the toxicity profile of BOS remained manageable and distinct from that of IM regardless of age. Event, % BOS IM ≥65 y (n = 28) <65 y (n = 220) ≥65 y (n = 26) <65 y (n = 225) Non-hematologic TEAEsa     Diarrhea 86 68 46 22     Rash 36 22 27 18     Nausea 36 32 31 37     Vomiting 32 32 19 15     Dyspnea 32 5 12 3     Pyrexia 29 17 4 13     Elevated ALT 29 32 15 8     Elevated AST 25 27 15 8     Elevated lipase 25 12 19 10     Headache 21 12 8 12     Asthenia 21 5 4 7     Dyspepsia 14 6 23 5     Muscle spasms 14 3 35 21     Periorbital edema 7 <1 35 12 Any grade 3/4 TEAE 89 65 73 56 Dose reduction due to AE 64 40 42 18 Dose interruption due to AE 89 63 69 42 Treatment discontinuation due to AE 39 22 8 9 All treated pts were included in the safety analyses. a Includes TEAEs reported for ≥20% of older or younger pts. Disclosures: Gambacorti-Passerini: Pfizer Inc: Consultancy, Research Funding; Novartis, Bristol Myer Squibb: Consultancy. Brümmendorf:Bristol Myer Squibb: Consultancy, Honoraria; Novartis: Consultancy, Honoraria, Research Funding; Pfizer: Consultancy; Patent on the use of imatinib and hypusination: Patents & Royalties. Kim:BMS, Novartis, Pfizer: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Kantarjian:Pfizer Inc: Research Funding. Pavlov:Pfizer Inc: Employment, Equity Ownership. Gogat:Pfizer Inc: Employment, Equity Ownership. Duvillie:Pfizer Inc: Employment. Shapiro:Pfizer Inc: Employment, Equity Ownership. Cortes:Novartis, Bristol Myers Squibb, Pfizer, Ariad, Chemgenex: Consultancy, Research Funding.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3768-3768 ◽  
Author(s):  
Richard A. Larson ◽  
Udomsak Bunworasate ◽  
Anna G. Turkina ◽  
Stuart L. Goldberg ◽  
Pedro Dorlhiac-Llacer ◽  
...  

Abstract Abstract 3768 Background: Data from the phase 3, randomized multicenter ENESTnd trial have demonstrated the superiority of nilotinib over imatinib after 24 months (mo) of follow-up, with significantly higher rates of complete cytogenetic response (CCyR) and major molecular response (MMR), and significantly lower rates of progression to accelerated phase/blast crisis (AP/BC). The current subanalysis evaluated the efficacy and safety of nilotinib 300 mg twice daily (Nil300) and nilotinib 400 mg twice daily (Nil400) in older (≥ 65 years [yrs] at study entry) patients (pts) with newly diagnosed chronic myeloid leukemia (CML) in chronic phase (CP) with a minimum follow-up of 24 mo. Methods: In ENESTnd, 846 pts stratified by Sokal risk score were randomized 1:1:1 to Nil300 (n = 282), Nil400 (n = 281), or imatinib 400 mg once daily (n = 283). Pts with impaired cardiac function or ECOG performance status > 2 were excluded. Rates of CCyR and MMR by 24 mo, progression to AP/BC on treatment, and safety were evaluated according to age group (< 65 vs ≥ 65 yrs) in the 2 nilotinib arms. Safety data are reported for any pt who received ≥ 1 dose of nilotinib (n = 279, Nil300; n = 277, Nil400). Results: 36 pts (13%) and 28 pts (10%) were ≥ 65 yrs old in the Nil300 and Nil400 arms, respectively. Of the pts aged ≥ 65 yrs, 51/64 (80%) had an ECOG performance status of 0 at baseline and 60/64 (94%) had intermediate or high Sokal risk scores. Of the older pts, 8 (22%) on Nil300 and 6 (21%) on Nil400 had type 2 diabetes at baseline. CCyR rates by 24 mo were 83% and 68% among older pts treated with Nil300 and Nil400, respectively, and 87% for pts aged < 65 yrs in each nilotinib arm. By 24 mo, MMR was achieved by 72% and 61% of older pts on Nil300 and Nil400, respectively; in pts aged < 65 yrs, the respective rates were 71% and 67%. All 5 pts who progressed to AP/BC on treatment (2 on Nil300 and 3 on Nil400) were aged < 65 yrs. The frequency of grade 3/4 hematologic adverse events (AEs) was low in older pts; no pts had grade 3/4 neutropenia and only 1 older pt reported grade 3/4 thrombocytopenia in each nilotinib arm (Table). Transient, asymptomatic lipase elevations were reported in 11% and 16% of older pts treated with Nil300 and Nil400, and 7% of younger pts in each arm. Hyperglycemia occurred in 23% and 16% of older pts on Nil300 and Nil400, respectively, and 4% of younger pts in each arm; regardless of age, no pt discontinued study due to hyperglycemia. Among the 12 older pts with grade 3/4 hyperglycemia (8 on Nil300; 4 on Nil400), 9 pts had type 2 diabetes at baseline. There were no QTcF increases of > 60 msec from baseline in older pts and 3 in nilotinib-treated pts < 65 yrs old (1 on Nil300; 2 on Nil400). QTcF prolongation of > 500 msec did not occur in any pt treated with nilotinib on study. Periodic echocardiograms were done, and there were no decreases of > 15% in left ventricular ejection fraction from baseline in any pt treated with nilotinib on study. There were 4 cases of ischemic heart disease reported in older pts (1/35 [3%] on Nil300; 3/25 [12%] on Nil400) and 7 cases in pts < 65 yrs of age (4/244 [2%] on Nil300; 3/252 [1%] on Nil400). No sudden deaths occurred on study. Discontinuation occurred in approximately 25% of older and younger pts with Nil300, of which, 6% and 9%, respectively, were due to AEs/lab abnormalities. Discontinuation from study with Nil400 was 46% in older pts and 19% in younger pts; of which, 36% and 10% were due to AEs/lab abnormalities. Conclusions: Older pts treated with nilotinib demonstrated high rates of cytogenetic and molecular responses and low rates of progression. Nilotinib was generally well tolerated by older pts. In older pts, Nil300 had numerically higher rates of CCyR and MMR and was generally better tolerated (as evidenced by fewer AEs and discontinuations) vs Nil400. These data support the use of Nil300 in older pts with newly diagnosed CML-CP. Disclosures: Larson: Novartis Pharmaceuticals: Consultancy, Honoraria, Research Funding. Bunworasate:Novartis Pharmaceutical: Research Funding. Turkina:Novartis: Consultancy, Honoraria; BMS: Honoraria. Goldberg:Bristol Myers Squibb: Honoraria, Research Funding, Speakers Bureau; Novartis Pharmaceutical: Honoraria, Research Funding, Speakers Bureau; Ariad: Research Funding. Dorlhiac-Llacer:Bristol Myers Squibb: Research Funding; Novartis: Research Funding. Kantarjian:Novartis: Consultancy; Novartis: Research Funding; Pfizer: Research Funding; BMS: Research Funding. Saglio:Bristol-Myers Squibb: Consultancy, Speakers Bureau; Novartis Pharmaceutical: Consultancy, Speakers Bureau; Pfizer: Consultancy. Hochhaus:Ariad: Consultancy, Honoraria, Research Funding; Bristol Myers Squibb: Consultancy, Honoraria, Research Funding; Novartis Pharmaceutical: Consultancy, Honoraria, Research Funding; Merck: Consultancy, Honoraria, Research Funding. Hoenekopp:Novartis Pharmaceutical: Employment, Equity Ownership. Blakesley:Novartis Pharmaceutical: Employment. Yu:Novartis: Employment, Equity Ownership. Gallagher:Novartis: Employment, Equity Ownership. Clark:Bristol Myers Squibb: Honoraria, Research Funding; Novartis Pharmaceutical: Honoraria, Research Funding, Speakers Bureau. Hughes:Bristol Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Ariad: Honoraria, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 455-455 ◽  
Author(s):  
Jorge E Cortes ◽  
Anish Maru ◽  
Carmino Antonio Antonio De Souza ◽  
François Guilhot ◽  
Ladan Duvillie ◽  
...  

Abstract Abstract 455 Introduction: Bosutinib (SKI-606) is an orally active, dual competitive inhibitor of the Src and Abl tyrosine kinases. The phase 3 BELA study compared bosutinib with imatinib in patients (pts) with newly diagnosed chronic phase (CP) chronic myeloid leukemia (CML). Methods: Pts were randomized 1:1 to open-label oral bosutinib 500 mg/d (n = 250) or imatinib 400 mg/d (n = 252) and stratified by Sokal score risk group (low, medium, high) and geographical region. The primary efficacy endpoint was complete cytogenetic response (CCyR) at 12 mo in the intent-to-treat population. Key secondary and exploratory efficacy endpoints included major molecular response (MMR) at 12 mo, time to CCyR and MMR, duration of CCyR and MMR, time to and incidence of transformation to accelerated/blast phase (AP/BP) CML, event-free survival (EFS), and overall survival. Safety analyses included all treated pts. Results: The median treatment duration was 19.3 mo for bosutinib and 19.5 mo for imatinib; 67% and 74% of pts, respectively, are still receiving therapy. The primary reason for discontinuation of bosutinib was toxicity (23%), while the primary reason for discontinuation of imatinib was disease progression (13%). Rates of CCyR and MMR are shown in the table. The rate of cumulative CCyR by 18 mo was 79% in both arms, and the cumulative rate of MMR by 18 mo was 55% in the bosutinib arm versus 45% in the imatinib arm. Median time to CCyR was faster for bosutinib versus imatinib (12.7 vs 24.6 wk); median time to MMR was also faster for bosutinib versus imatinib (36.9 vs 72.3 wk). Transformation to AP/BP CML while on treatment occurred in 4 (2%) pts on bosutinib and 13 (5%) pts on imatinib. On-study deaths from any cause occurred in 6 (2%) pts receiving bosutinib versus 13 (5%) pts receiving imatinib, and included 5 (2%) and 9 (4%) pts, respectively, who died due to CML progression. Median on-treatment EFS and overall survival were not yet reached for either arm. At 18 mo, the Kaplan-Meier estimates of EFS were 95% for bosutinib versus 91% for imatinib, and the estimates of overall survival were 99% versus 95%, respectively. Bosutinib was associated with higher incidences compared with imatinib of gastrointestinal events (diarrhea [69% vs 22%, respectively], vomiting [32% vs 14%], pyrexia [18% vs 10%], and abdominal pain [13% vs 7%]). In contrast, bosutinib was associated with lower incidences of edema (peripheral edema [4% vs 11%] and periorbital edema [1% vs 14%]) and musculoskeletal events (myalgia [5% vs 11%], muscle cramps [4% vs 22%], and bone pain [4% vs 10%]). Fewer pts on bosutinib experienced grade 3/4 laboratory abnormalities of neutropenia (11% vs 24% with imatinib), while the incidences of grade 3/4 anemia and thrombocytopenia were similar between treatment arms (8% with anemia and 14% with thrombocytopenia). Grade 3/4 liver function test abnormalities occurred more frequently with bosutinib versus imatinib (increased alanine aminotransferase [23% vs 4%] and aspartate aminotransferase [12% vs 3%]). Although common with bosutinib, gastrointestinal events and liver function test abnormalities were typically transient, managed with dose modifications, and not life threatening. Conclusions: The study did not meet the primary endpoint (CCyR at 12 mo); early discontinuation of bosutinib due to adverse events may have contributed to this observed lack of difference. However, bosutinib did result in a higher rate of MMR at 12 mo, faster times to MMR and CCyR, fewer events of transformation to AP/BP CML, and fewer overall and CML-related deaths compared with imatinib, suggesting superiority of bosutinib in pts with newly diagnosed CP CML. In addition, the 18-mo estimates for both EFS and OS currently favor bosutinib. Bosutinib and imatinib were each associated with acceptable but distinct toxicity profiles. Based on these results, bosutinib may offer a new therapeutic option for pts with newly diagnosed CP CML. Minimum of 24 mo of follow-up will be presented for all pts. Disclosures: Cortes: Pfizer Inc: Consultancy, Research Funding; BMS: Consultancy, Research Funding; Novartis: Consultancy, Research Funding. Guilhot:CHU de Poitiers: Employment; Pfizer Inc: Consultancy; BMS: Consultancy, Honoraria; Novartis: Consultancy, Honoraria, Research Funding; Celgene: Honoraria. Duvillie:Pfizer Inc: Employment. Powell:Pfizer Inc: Employment, Equity Ownership. Countouriotis:Pfizer Inc: Employment. Gambacorti-Passerini:Pfizer Inc: Honoraria, Research Funding; BMS: Research Funding; Novartis: Honoraria; Biodiversity: Honoraria.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1685-1685 ◽  
Author(s):  
Carlo Gambacorti-Passerini ◽  
Jorge E Cortes ◽  
Patricia Harris ◽  
Christine Powell ◽  
Athena Countouriotis ◽  
...  

Abstract Abstract 1685 Bosutinib (BOS) is an orally active, dual competitive Src/Abl kinase inhibitor. The phase 3 BELA study compared the safety and activity of BOS 500 mg/d with imatinib (IM) 400 mg/d in patients (pts) with newly diagnosed chronic phase chronic myeloid leukemia (CP CML). This analysis summarizes the safety profile of each agent, addressing management of gastrointestinal toxicities and liver function test changes. The median age was 48 y (range, 19–91 y) in the BOS arm and 47 y (range, 18–89 y) in the IM arm. Median treatment durations were 19.3 mo for BOS and 19.5 mo for IM; 67% and 74% of pts are still receiving therapy. The primary reason for BOS discontinuation was adverse events (AEs; 23% BOS [15/55 without prior dose adjustment] vs 6% IM). The primary reason for IM discontinuation was disease progression (4% BOS vs 13% IM). Deaths occurred in 6 (2%) BOS pts versus 13 (5%) IM pts; the majority occurred after treatment discontinuation. Non–CML-related deaths (1 pt each) included mesenteric embolia/intestinal necrosis (BOS), cardiovascular disease (IM), fatal septicemia (IM), lung embolism (IM), and pneumonia (IM). BOS was associated with higher incidences versus IM of all grades of gastrointestinal toxicities (diarrhea [69% vs 22%], vomiting [32% vs 14%], and abdominal pain [13% vs 6%]) and pyrexia (18% vs 10%). In contrast, BOS was associated with lower incidences of edema (peripheral edema [4% vs 11%] and periorbital edema [1% vs 14%]) and musculoskeletal events (myalgia [5% vs 11%], muscle cramps [4% vs 22%], and bone pain [4% vs 10%]). Diarrhea (11% vs 1%, respectively) and vomiting (3% vs 0%) were the most common grade 3/4 AEs. Elevation of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were reported as grade 3/4 AEs for 18% and 8% of pts on BOS, respectively, versus 2% and 2% of pts on IM. Diarrhea typically occurred during the initial month of treatment, with the median time to first event of 3 d (range, 1–589 d) on BOS (n = 172) and 26 d (range, 1–829 d) on IM (n = 56) and median duration of a diarrhea event of 3 d (range, 1–836 d) and 5 d (range, 1–771 d), respectively. Diarrhea was managed with antidiarrheal medication in 68% of BOS pts and 43% of IM pts; 22% and 9% of pts with diarrhea required temporary dose interruption, while 8% and 0% had a reduction of their dose. Of the pts who had a temporary dose interruption due to diarrhea, 34/38 pts on BOS and 5/5 pts on IM were rechallenged without recurrence of diarrhea or permanent discontinuation due to diarrhea. Grade 3/4 liver function test laboratory abnormalities were more common among pts receiving BOS versus IM, including elevation of ALT (23% vs 4%) and AST (12% vs 3%); the majority experienced grade 3 events. The median times to first ALT elevation were 28 d for BOS (n = 78) and 114 d for IM (n = 18); median times to first AST elevation were 28 d for BOS (n = 65) and 107 d for IM (n = 19). For BOS and IM, respectively, median durations for a grade 3/4 event to grade ≤1 severity were 21.0 versus 25.0 d for ALT elevation and 21.5 versus 25.0 d for AST elevation. Of the pts with ALT elevations, 35% versus 56% had a dose reduction and 56% versus 28% had a temporary dose interruption. Of the 40 pts who were rechallenged with BOS after dose interruption due to ALT elevation, 32 (80%) were successfully rechallenged without reoccurrence of their event or did not discontinue due to ALT elevation; all 4 pts who were rechallenged after IM interruption were successfully rechallenged. Of the pts with AST elevations, 17% versus 5% had a dose reduction and 43% versus 16% had a temporary dose interruption. All of the 26 pts who were rechallenged with BOS after dose interruption due to AST elevation were successfully rechallenged without reoccurrence of their event or discontinuation due to AST elevation; all 3 pts who were rechallenged after IM interruption were successfully rechallenged. No cases met the Hy's Law criteria. Ten pts discontinued BOS due to ALT elevation; no other discontinuations due to liver function test abnormalities were reported. In conclusion, BOS and IM were associated with acceptable but distinct safety profiles in pts with newly diagnosed CP CML. BOS was mainly associated with gastrointestinal AEs and transient liver function test elevations, both of which were managed with dose modifications and were not life threatening. Additional experience in managing the toxicities associated with BOS treatment may reduce the overall number of pts discontinuing BOS due to toxicity. Disclosures: Gambacorti-Passerini: Pfizer Inc: Honoraria, Research Funding; BMS: Research Funding; Novartis: Honoraria; Biodiversity: Honoraria. Cortes:Pfizer Inc: Consultancy, Research Funding; BMS: Consultancy, Research Funding; Novartis: Consultancy, Research Funding. Harris:Pfizer Inc: Employment. Powell:Pfizer Inc: Employment, Equity Ownership. Countouriotis:Pfizer Inc: Employment. Kantarjian:Novartis: Consultancy, Research Funding; BMS: Research Funding; Pfizer Inc: Research Funding; Ariad: Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1734-1734 ◽  
Author(s):  
Michael W. Deininger ◽  
Vamsi Kota ◽  
Jeff H. Lipton ◽  
Dragana Milojkovic ◽  
Valentín García Gutiérrez ◽  
...  

Abstract Introduction: Bosutinib is approved for newly diagnosed chronic phase (CP) chronic myeloid leukemia (CML) and CML resistant or intolerant to prior therapy. Efficacy and safety of first-line bosutinib and imatinib were assessed in older vs younger patients in the ongoing phase 3 BFORE trial (NCT02130557). Methods: In all, 536 patients were randomized 1:1 to receive bosutinib or imatinib (400 mg once daily). We compared outcomes in patients aged ≥65 years (older group) vs <65 years (younger group) after 24 months of follow-up. Efficacy (excluding complete cytogenetic response [CCyR]) was assessed in the intent-to-treat (ITT) population (Philadelphia chromosome-positive [Ph+] and negative patients) of both age groups and safety in patients who received ≥1 dose of study drug. CCyR was assessed in the modified ITT population (Ph+ patients with e13a2/e14a2 transcripts [N=487]). Results: In the bosutinib arm (n=268), 53 were older and 215 were younger patients. In the imatinib arm (n=268; 3 untreated), 48 (2 untreated) were older and 220 (1 untreated) were younger patients. Sokal risk scores were balanced between treatment arms but higher in the overall older (8.9% low, 70.3% intermediate, 20.8% high) vs younger (44.1% low, 34.7% intermediate, 21.1% high) populations, reflecting that age is part of the score. Bosutinib was discontinued in 32.1% of older and 28.4% of younger patients; the most common primary reason was treatment-related adverse events (AEs; 18.9% and 15.3%, respectively). Imatinib was discontinued in 32.6% of older and 33.8% of younger patients, most frequently due to suboptimal response or treatment failure (13.0% and 13.2%, respectively). The percentage of patients who discontinued treatment due to treatment-emergent AEs (TEAEs) was similar in the older vs younger group in both arms (bosutinib: 22.6% vs 19.1%; imatinib: 8.7% vs 12.3%). In older vs younger patients, median (range) duration of treatment was similar: 24.8 months (0.3-33.3) vs 24.9 months (0.3-33.5) for bosutinib and 25.6 months (2.9-33.1) vs 24.5 months (0.7-33.4) for imatinib. Median relative dose intensity was slightly lower in older vs younger patients in the bosutinib arm (92.8% vs 99.3%) but was 100% in both age groups in the imatinib arm. The difference in rates of major molecular response (MMR) at 12 months (primary endpoint) with bosutinib vs imatinib was consistent across age groups (older: 43.4% vs 35.4%; younger: 47.4% vs 36.4%; P=0.7879 for test of interaction), as was the difference in rates of CCyR by 12 months (older: 68.8% vs 69.0%; younger: 79.3% vs 65.8%; P=0.1689). MR rates at 24 months (and MR1 at 3 months) were generally similar in older vs younger patients within each arm and higher with bosutinib than with imatinib (Table 1). Time to achieve MMR on bosutinib was not different in older vs younger patients (hazard ratio: 1.227; P=0.2380, after adjustment for baseline and time-dependent covariates in a multivariable proportional subdistribution hazards model). Rates of common TEAEs in each treatment arm were similar (<10% difference) between age groups, except for higher rates of anemia, rash, and decreased appetite in older patients in the bosutinib arm; higher rate of pruritus in older patients in both arms; and higher rate of peripheral edema and lower rate of neutropenia in older patients in the imatinib arm (Table 2). In older vs younger patients in the bosutinib arm, there were higher rates of grade 3/4 TEAEs (75.5% vs 61.4%), serious TEAEs (39.6% vs 23.3%), and dose delays (69.8% vs 58.1%) and reductions (52.8% vs 37.2%) due to TEAEs. In older vs younger patients in the imatinib arm, rates of grade 3/4 TEAEs (43.5% vs 47.9%), and dose delays (39.1% vs 38.8%) and reductions (23.9% vs 21.5%) due to TEAEs were similar, but the rate of serious TEAEs was higher (28.3% vs 16.9%). Conclusions: In the phase 3 BFORE trial, bosutinib showed clinical activity in older and younger patients with newly diagnosed CP CML. Difference in rates of MMR at 12 months for bosutinib vs imatinib was consistent in older and younger patients. MR rates at 24 months were similar in older and younger patients and higher with bosutinib than with imatinib. Although the incidence of grade 3/4 TEAEs, serious TEAEs, and dose modifications due to TEAEs were higher in older vs younger bosutinib-treated patients, treatment discontinuation rates were similar between age groups, suggesting that, regardless of patient age, TEAEs were manageable with bosutinib. Disclosures Deininger: Pfizer: Consultancy, Membership on an entity's Board of Directors or advisory committees; Blueprint: Consultancy. Kota:Pfizer: Honoraria; Xcenda: Honoraria; Novartis: Honoraria; Incyte: Honoraria; BMS: Honoraria. Lipton:Pfizer: Consultancy, Honoraria, Research Funding; Novartis: Consultancy, Honoraria, Research Funding; Takeda: Consultancy, Honoraria, Research Funding; BMS: Consultancy, Honoraria, Research Funding. Milojkovic:Incyte: Honoraria, Speakers Bureau; Novartis: Honoraria, Speakers Bureau; BMS: Honoraria, Speakers Bureau; Pfizer: Honoraria, Speakers Bureau. García Gutiérrez:Incyte: Honoraria, Research Funding; Pfizer: Honoraria, Research Funding; BMS: Honoraria, Research Funding; Novartis: Honoraria, Research Funding. Leip:Pfizer: Employment, Equity Ownership. Nick:Pfizer: Employment, Equity Ownership. Hochhaus:Takeda: Research Funding; Bristol-Myers Squibb: Research Funding; Novartis: Research Funding; Pfizer: Research Funding; Incyte: Research Funding. Gambacorti-Passerini:BMS: Consultancy; Pfizer: Consultancy, Honoraria, Research Funding. Cortes:Astellas Pharma: Consultancy, Research Funding; Novartis: Consultancy, Research Funding; Pfizer: Consultancy, Research Funding; Daiichi Sankyo: Consultancy, Research Funding; Arog: Research Funding. Brummendorf:Merck: Consultancy; Pfizer: Consultancy, Research Funding; Janssen: Consultancy; Takeda: Consultancy; Novartis: Consultancy, Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3129-3129
Author(s):  
Hans C. Lee ◽  
Sikander Ailawadhi ◽  
Cristina Gasparetto ◽  
Sundar Jagannath ◽  
Robert M. Rifkin ◽  
...  

Background: Multiple myeloma (MM) is common among the elderly, with 35% of patients (pts) diagnosed being aged ≥75 years (y). With increasing overall life expectancy, the incidence and prevalence of newly diagnosed and previously treated MM patients ≥80 y is expected to increase over time. Because elderly pts are often excluded from clinical trials, data focused on their treatment patterns and clinical outcomes are lacking. The Connect® MM Registry (NCT01081028) is a large, US, multicenter, prospective observational cohort study of pts with newly diagnosed MM (NDMM) designed to examine real-world diagnostic patterns, treatment patterns, clinical outcomes, and health-related quality of life patient-reported outcomes. This analysis reviews treatment patterns and outcomes in elderly pts from the Connect MM Registry. Methods: Pts enrolled in the Connect MM registry at 250 community, academic, and government sites were included in this analysis. Eligible pts were adults aged ≥18 y with symptomatic MM diagnosed ≤2 months before enrollment, as defined by International Myeloma Working Group criteria; no exclusion criteria were applied. For this analysis, pts were categorized into 4 age groups: <65, 65 to 74, 75 to 84, and ≥85 y. Pts were followed from time of enrollment to the earliest of disease progression (or death), loss to follow-up, or data cutoff date of February 7, 2019. Descriptive statistics were used for baseline characteristics and treatment regimens. Survival outcomes were analyzed using Cox regression. Time to progression (TTP) analysis excluded causes of death not related to MM. Results: Of 3011 pts enrolled (median age 67 y), 132 (4%) were aged ≥85 y, and 615 (20%) were aged 75-84 y at baseline. More pts aged ≥85 y had poor prognostic factors such as ISS stage III disease and reduced hemoglobin (<10 g/dL or >2 g/dL <LLN) compared with other age groups, although no notable differences between creatinine and calcium levels were observed across age groups (Table). A lower proportion of elderly pts (75-84 and ≥85 y) received triplet regimens as frontline therapy. More elderly pts received a single novel agent, whereas use of 2 novel agents was more common in younger pts (Table). The most common frontline regimens among elderly pts were bortezomib (V) + dexamethasone (D), followed by lenalidomide (R) + D, whereas those among younger pts included RVD, followed by VD and CyBorD (Table). No pt aged ≥85 y, and 4% of pts aged 75-84 y received high-dose chemotherapy and autologous stem cell transplant (vs 61% in the <65 y and 37% in the 65-74 y age group). The most common maintenance therapy was RD in pts ≥85 y (although the use was low) and R alone in other age groups (Table). In the ≥85 y group, 27%, 10%, and 4% of pts entered 2L, 3L, and 4L treatments respectively, vs 43%, 23%, and 13% in the <65 y group. Progression-free survival was significantly shorter in the ≥85 y age group vs the 75-84 y age group (P=0.003), 65-74 y age group (P<0.001), and <65 y age group (P<0.001; Fig.1). TTP was significantly shorter in the ≥85 y group vs the <65 y group (P=0.020); however, TTP was similar among the 65-74 y, 75-84 y, and ≥85 y cohorts (Fig. 2). Overall survival was significantly shorter in the ≥85 y group vs the 75-84 y, 65-74 y, and <65 y groups (all P<0.001; Fig. 3). The mortality rate was lowest (46%) during first-line treatment (1L) in pts aged ≥85 y (mainly attributed to MM progression) and increased in 2L and 3L (47% and 54%, respectively); a similar trend was observed in the younger age groups. The main cause of death was MM progression (29% in the ≥85 y vs 16% in the <65 y group). Other notable causes of death in the ≥85 y group included cardiac failure (5% vs 2% in <65 y group) and pneumonia (5% vs 1% in <65 y group). Conclusions: In this analysis, elderly pts received similar types of frontline and maintenance regimens as younger pts, although proportions varied with decreased use of triplet regimens with age. Considering similarities in TTP across the 65-74 y, 75-84 y, and ≥85 y cohorts, these real-world data support active treatment and aggressive supportive care of elderly symptomatic pts, including with novel agents. Additionally, further clinical studies specific to elderly patients with MM should be explored. Disclosures Lee: Amgen: Consultancy, Research Funding; GlaxoSmithKline plc: Research Funding; Sanofi: Consultancy; Daiichi Sankyo: Research Funding; Celgene: Consultancy, Research Funding; Takeda: Consultancy, Research Funding; Janssen: Consultancy, Research Funding. Ailawadhi:Janssen: Consultancy, Research Funding; Takeda: Consultancy; Pharmacyclics: Research Funding; Amgen: Consultancy, Research Funding; Celgene: Consultancy; Cellectar: Research Funding. Gasparetto:Celgene: Consultancy, Honoraria, Other: Travel, accommodations, or other expenses paid or reimbursed ; Janssen: Consultancy, Honoraria, Other: Travel, accommodations, or other expenses paid or reimbursed ; BMS: Consultancy, Honoraria, Other: Travel, accommodations, or other expenses paid or reimbursed . Jagannath:AbbVie: Consultancy; Merck & Co.: Consultancy; Bristol-Myers Squibb: Consultancy; Karyopharm Therapeutics: Consultancy; Celgene Corporation: Consultancy; Janssen Pharmaceuticals: Consultancy. Rifkin:Celgene: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees. Durie:Amgen, Celgene, Johnson & Johnson, and Takeda: Consultancy. Narang:Celgene: Speakers Bureau. Terebelo:Celgene: Honoraria; Jannsen: Speakers Bureau; Newland Medical Asociates: Employment. Toomey:Celgene: Consultancy. Hardin:Celgene: Membership on an entity's Board of Directors or advisory committees. Wagner:Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees; American Cancer Society: Other: Section editor, Cancer journal. Omel:Celgene, Takeda, Janssen: Other: Patient Advisory Committees. Srinivasan:Celgene: Employment, Equity Ownership. Liu:TechData: Consultancy. Dhalla:Celgene: Employment. Agarwal:Celgene Corporation: Employment, Equity Ownership. Abonour:BMS: Consultancy; Celgene: Consultancy, Research Funding; Takeda: Consultancy, Research Funding; Janssen: Consultancy, Research Funding.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3785-3785 ◽  
Author(s):  
H. Jean Khoury ◽  
Carlo Gambacorti-Passerini ◽  
Hagop M. Kantarjian ◽  
Dong-Wook Kim ◽  
David Marin ◽  
...  

Abstract Abstract 3785 Bosutinib (BOS) is an orally active, dual Src/Abl tyrosine kinase inhibitor (TKI). This open-label, phase 1/2 study evaluated BOS in patients (pts) with chronic phase chronic myeloid leukemia (CP CML) following TKI failure. A total of 119 pts aged ≥18 y with prior imatinib (IM) failure plus dasatinib (DAS) resistance (n = 38), DAS intolerance (n = 50), nilotinib (NIL) resistance (n = 27), NIL intolerance (n = 1), or failure of DAS and NIL (n = 3) received BOS starting at 500 mg/d. Median age was 56 y (range, 20–79 y); 45% of pts were male; median time from CML diagnosis was 6.5 y (range, 0.6–18.3 y). Median BOS duration was 8.6 mo (range, 0.2–60.8 mo); 24% of pts are still on treatment. Dose escalation to BOS 600 mg/d occurred in 19% of pts. Time from last pt's first dose to data cutoff was 25 mo (median follow-up duration of 31.4 mo [range, 0.3–66.0 mo]). A confirmed complete hematologic response (CHR) was attained/maintained by 73% of evaluable pts (Table). The Kaplan-Meier (KM) probability of maintaining a CHR at 2 y was 67%. A major cytogenetic response (MCyR) was attained/maintained by 41%, including 32% with a complete cytogenetic response (CCyR). Among evaluable pts without a baseline CCyR, 36% (n = 37/102) achieved a MCyR, including 28 (28%) with a CCyR. The KM probability of maintaining a MCyR at 2 y was 71%. Of 86 pts with baseline mutation status, 40 (47%) pts had 19 unique Bcr-Abl kinase domain mutations, including 7 (8%) pts with T315I. Responses were seen across mutations (75% CHR, 43% MCyR excluding T315I), including those conferring resistance to other TKIs; responses in pts with T315I were low (29% CHR; 14% MCyR). Nine of 37 pts evaluated at baseline and treatment discontinuation had ≥1 new mutation (V299L, n = 4; L248V, n = 2; T315I, n = 2; F359C, n = 1; G250E, n = 1); 8 of 9 pts had discontinued BOS due to disease progression or lack of efficacy. On-treatment transformation to accelerated phase CML occurred in 5 (4%) pts after 16 to 428 d on study; no pt transformed to blast phase CML. KM-estimated on-treatment progression-free survival (PFS) at 2 y was 75%; KM-estimated overall survival (OS) at 2 y was 84% (Table). There were 23 (19%) deaths on study, with 6 deaths occurring ≤30 d after the last BOS dose. Most deaths were due to disease progression (n = 10 [8%]) or an adverse event (AE; n = 10 [8%]; including 1 treatment-related death due to gastrointestinal bleeding). Three deaths were due to unknown cause ≥509 d after the last BOS dose. Non-hematologic treatment-emergent AEs (TEAEs) seen in ≥20% of pts (all grades; grade 3/4) included diarrhea (82%; 8%), nausea (49%; 1%), vomiting (40%; 1%), rash (27%; 3%), headache (26%; 3%), fatigue (24%; 1%), and abdominal pain (20%; 1%). The incidence of individual TEAEs was generally similar across groups regardless of prior TKI exposure. Diarrhea TEAEs were predominantly grade 1/2, first reported early during treatment (median time to first event of 1.5 d [range, 1–210 d]), and transient (median event duration of 2 d [range, 1–524 d]). The incidence of pleural effusion was highest among DAS-intolerant pts (n = 11 [22%], including 3 pts with grade 3 events); for 9 of 11 pts pleural effusion had been indicated as a reason for intolerance to prior DAS. Grade 3/4 laboratory abnormalities reported in ≥10% of pts included thrombocytopenia (25%), neutropenia (19%), lymphopenia (17%), and hypermagnesemia (12%). Dose reductions and interruptions were used to manage AEs in 50% and 66% of pts. A total of 32 (27%) pts discontinued treatment due to an AE, most commonly hematologic events. In conclusion, BOS therapy continues to demonstrate durable efficacy and manageable toxicity after follow-up of ≥24 mo in CP CML following resistance or intolerance to multiple TKIs, with a majority of pts maintaining response at 2 y and few new transformations, deaths, TEAEs, or discontinuations due to AEs since the prior report ∼1 y earlier (Blood 2012;119:4303–12). n (%) IM + DAS-R IM + DAS-I IM + NIL-R IM + DAS ± NILa Total Evaluableb 37 49 25 4 115     CHR 23 (62) 39 (80) 19 (76) 3 (75) 84 (73) Evaluableb 36 44 26 4 110     MCyR 12 (33) 21 (48) 10 (39) 2 (50) 45 (41)     CCyR 7 (19) 19 (43) 7 (27) 2 (50) 35 (32) Treated 38 50 27 4 119     PFS at 2 yc 70% 81% 79% 38% 75%     OS at 2 yc 77% 85% 92% 75% 84% R, resistant; I, intolerant. a Includes 3 pts with prior exposure to all 3 TKIs and 1 NIL-I pt. KM rates may be unreliable due to the small number of pts in this cohort. b Received ≥1 dose of BOS and had a valid baseline response assessment. c Based on KM estimates Disclosures: Gambacorti-Passerini: Pfizer Inc: Consultancy, Research Funding; Novartis, Bristol Myer Squibb: Consultancy. Kantarjian:Pfizer: Research Funding. Kim:BMS, Novartis, Pfizer: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Marin:Novartis: Research Funding; BMS: Research Funding. Dorlhiac-Llacer:Novartis, Bristol Myer Squibb, Pfizer: Research Funding. Bullorsky:Novartis, BMS: Consultancy, Speakers Bureau. Leip:Pfizer Inc: Employment. Kelly:Pfizer Inc: Employment, Equity Ownership. Turnbull:Pfizer Inc, l3/Inventiv Clinical Solutions: Employment. Besson:Pfizer Inc: Employment. Cortes:Novartis, Bristol Myers Squibb, Pfizer, Ariad, Chemgenex: Consultancy, Research Funding.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. 7051-7051
Author(s):  
Jorge E. Cortes ◽  
Tim H. Brümmendorf ◽  
Carlo Gambacorti-Passerini ◽  
Richard E Clark ◽  
Eric Leip ◽  
...  

7051 Background: Tyrosine kinase inhibitor therapy has been linked to cardiac and vascular events. Cardiac, vascular and hypertension treatment-emergent adverse events (TEAEs) with bosutinib or imatinib for newly diagnosed chronic phase chronic myeloid leukemia were analyzed. Methods: Patients (pts) who received ≥1 dose of bosutinib (n = 268) or imatinib (n = 265) 400 mg/d in the phase 3 BFORE trial were included. Prespecified MedDRA terms comprised the clusters of investigator assessed TEAEs. Exposure-adjusted TEAE rate was defined as the number of pts with TEAEs / total pt-yr (pt-yr = sum of total time to first TEAE for pts with TEAEs and treatment duration for pts without TEAEs). Results: After ≥36 mo follow-up, 65% vs 62% of pts in the bosutinib vs imatinib arm were still on treatment. Rates of TEAEs, treatment withdrawals and drug-related TEAEs in the clusters of interest were low in both arms (Table). The most common cardiac, vascular and hypertension TEAEs, respectively, were sinus bradycardia (2%), angina pectoris (3%) and hypertension (7%) vs prolonged QT (3%), peripheral coldness (1%) and hypertension (9%) with bosutinib vs imatinib; corresponding grade 3/4/5 TEAE rates in the respective clusters were 3%, 3% and 4% vs 1%, 0.4% and 4%. Hypertension was the only grade 3/4 TEAE occurring in ≥1% of pts in either arm (4% each); 1 grade 5 TEAE each was noted for bosutinib (cardiac failure) and imatinib (cerebrovascular accident). Exposure-adjusted rates of cardiac, vascular and hypertension TEAEs, respectively, were 0.04, 0.03 and 0.04 vs 0.03, 0.01 and 0.04 (grade 3/4/5 only: 0.01, 0.01 and 0.02 vs 0.01, 0.002 and 0.02) for bosutinib vs imatinib. Conclusions: Cardiac, vascular and hypertension TEAE rates were low with bosutinib and imatinib. A majority of TEAEs were low grade and few led to treatment withdrawal. Clinical trial information: NCT02130557. [Table: see text]


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4551-4551 ◽  
Author(s):  
Jeffrey H. Lipton ◽  
Dhvani Shah ◽  
Vanita Tongbram ◽  
Manpreet K Sidhu ◽  
Hui Huang ◽  
...  

Abstract INTRODUCTION Patients with chronic myeloid leukemia (CP-CML) failing 1st line imatinib are most commonly treated with the second-generation (2G) tyrosine kinase inhibitors (TKIs) dasatinib and nilotinib. However, for patients who experience resistance or intolerance (R/I) to 2G-TKIs in 2nd line, there currently is no consensus on the optimal therapy sequence for 3rd line treatment. The comparative efficacy of using ponatinib in the 3rd line after 2G TKI failure was examined in a previous study (Lipton et al., ASH 2013). This study assesses the comparative efficacy of ponatinib versus sequential treatment of alternate 2G TKIs in 3rdline setting in two separate patient populations, post-imatinib and dasatinib patients and post-imatinib and nilotinib patients. METHODS A systematic review was conducted in MEDLINE, EMBASE and the Cochrane Libraries (2002-2014), as well as 3 conferences (ASH (2008-2014), ASCO (2008-2014), and EHA (2008-2013)). Studies evaluating any TKI were included if they enrolled 10 or more post-imatinib adult patients with CP-CML who were also R/I to dasatinib or nilotinib. All study designs were considered and no restriction was applied with respect to therapy dose, due to incomplete reporting of doses in the available studies. Analyses was run on two groups of patients, those failing imatinib and dasatinib (Group Ima/Das) and those failing imatinib and nilotinib (Group Ima/Nil). Bayesian methods were used to synthesize major cytogenetic response (MCyR) and complete cytogenetic response (CCyR) from individual studies and estimate the overall response probability with 95% credible interval (CrI) for each treatment. Bayesian analysis also was used to estimate the likelihood that each treatment offers the highest probability of CCyR/MCyR based on available evidence. RESULTS Six studies evaluating bosutinib, nilotinib and ponatinib for Group Ima/Das (n= 419) and five studies evaluating bosutinib, dasatinib and ponatinib for Group Ima/Nil (n=83) were included in the analysis. All studies reported CCyR in both groups. Five studies evaluating bosutinib, nilotinib and ponatinib reported MCyR in Group Ima/Das and three studies evaluating bosutinib and ponatinib reported MCyR in Group Ima/Nil. Synthesized treatment-specific probabilities and 95% CrI for CCyR are presented in Figure 1. Synthesized treatment-specific probabilities of CCyR for Group Ima/Das were 27% for nilotinib, 20% for bosutinib and 54% (95% CrI 43%% to 66%) for ponatinib. Treatment-specific probabilities of MCyR for Group Ima/Das were 41% for nilotinib, 28% for bosutinib and 66% (95% CrI 55%% to 77%) for ponatinib. The probability of ponatinib providing superior response to all other included treatments for group Ima/Das was estimated to be >99% for both CCyR and MCyR. Synthesized treatment-specific probabilities of CCyR for Group Ima/Nil were 25% for dasatinib, 26% for bosutinib and 67% (95% CrI 51%% to 81%) for ponatinib. Treatment-specific probabilities of MCyR for Group Ima/Nil were 33% for bosutinib and 75% (95% CrI 60%% to 87%) for ponatinib. The probability of ponatinib providing superior response to all other included treatments for group Ima/Nil was estimated to be >99% for both CCyR and MCyR. CONCLUSIONS The post imatinib and dasatinib group included more studies with larger sample sizes compared with the post imatinib and nilotinib group. Overall, response rates appear higher for TKIs in the post imatinib and nilotinib group compared with the post imatinib and dasatinib group. For both groups, patients on ponatinib had higher CCyR and MCyR rates compared with the sequential 2G TKIs included in this analysis. Based on available data, ponatinib appears to provide a higher probability of treatment response for patients failing imatinib and dasatinib/ nilotinib compared with sequential 2G TKI therapy commonly used in this indication. Figure 1 Figure 1. Disclosures Lipton: Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Bristol Myers: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Ariad: Equity Ownership, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Shah:Ariad Pharmaceuticals: Research Funding. Tongbram:Ariad Pharmaceuticals: Research Funding. Sidhu:Ariad Pharmaceuticals Inc.: Research Funding. Huang:ARIAD Pharmaceuticals, Inc.: Employment, Equity Ownership. McGarry:ARIAD Pharmaceutical, Inc.: Employment, Equity Ownership. Lustgarten:ARIAD Pharmaceuticals Inc: Employment, Equity Ownership. Hawkins:Ariad Pharmaceuticals Inc.: Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 208-208 ◽  
Author(s):  
Carlo Gambacorti-Passerini ◽  
Dong-Wook Kim ◽  
Hagop M. Kantarjian ◽  
Tim H. Brummendorf ◽  
Irina Dyagil ◽  
...  

Abstract Abstract 208 Bosutinib is an orally bioavailable dual Src/Abl tyrosine kinase inhibitor (TKI), with minimal inhibitory activity against PDGFR or c-kit. In a phase 2 study, bosutinib demonstrated activity in patients with Philadelphia chromosome–positive (Ph+) chronic phase (CP) chronic myeloid leukemia (CML) in the second- and third-line treatment settings (Cortes JE, et al. ASCO 2010, Abstract #6502; Khoury JH, et al. ASCO 2010, Abstract #6514), as well as in patients with advanced Ph+ leukemias (Gambacorti-Passerini C, et al. ASCO 2010, Abstract #6509) following resistance or intolerance to imatinib and other TKIs. The current randomized, open-label, phase 3 study compared the activity and safety of bosutinib with that of imatinib in newly diagnosed patients with CP CML. The study enrolled adults aged 318 years with cytogenetic diagnosis of Ph+ CP CML within 6 months, adequate hepatic and renal function, and an Eastern Cooperative Oncology Group (ECOG) performance status of 0 or 1. Patients were randomized to daily oral treatment with 500 mg bosutinib or 400 mg imatinib. Adverse events were graded using the National Cancer Institute Common Terminology Criteria, version 3.0. The primary efficacy endpoint was the rate of complete cytogenetic response (CCyR) at 1 year; the rates of hematologic response, molecular response, and progression and transformation to accelerated or blast phase were also evaluated. The study randomized 502 patients: 56.6% male, median age of 48 years (range, 18–91 years), and median time since diagnosis of 0.7 months (range, -0.3-7.9 months; the range minimum is negative due to CML diagnosis during the study screening period, and the range maximum is >6 months because of 1 patient considered a major protocol violator). The median duration of treatment was 11.1 months (range, 0.03–24.8 months). At Week 48 (approximately 11 months), 71.5% and 74.8% of patients (both treatment arms combined) were in CCyR and complete hematologic response (CHR), respectively. During the study, 81.4% of patients achieved a CCyR at or before Week 48, with a median time to CCyR of 24 weeks; 82.6% of patients achieved a CHR, with a median time to CHR of 8 weeks; and 40.6% of patients achieved a major molecular response (MMR), with a median time to MMR of 49 to 61 weeks for the 2 treatment arms. For the combined treatment arms, common treatment-emergent adverse events included diarrhea (43.7%), nausea (32.3%), vomiting (22.0%), rash (16.8%), pyrexia (11.6%), and fatigue (11.0%). The only grade 33 treatment-emergent adverse event observed in 32% of patients was diarrhea (5.2%), which was usually limited to the first weeks of treatment. Grade 33 hematologic laboratory abnormalities included neutropenia (14.2%), thrombocytopenia (12.4%), and anemia (5.8%). Other grade 33 laboratory abnormalities (35% of patients) included alanine aminotransferase elevation (11.6%), phosphatemia (7.6%), and aspartate aminotransferase elevation (6.4%). Overall, 22.2% patients discontinued therapy; adverse events led to discontinuation or death in 12.8% of patients, and 4.2% of patients discontinued due to disease progression. The high combined percentage of patients achieving MMR, CCyR, and CHR and the relatively low incidence of generally manageable grade 33 events observed suggest good efficacy and an overall favorable safety profile. Data for individual treatment arms will be unblinded by the end of August 2010, and will be presented at the meeting. Disclosures: Gambacorti-Passerini: Pfizer Inc: Research Funding. Kim:BMS, Novartis, Pfizer: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Kantarjian:Novartis: Consultancy, Research Funding; BMS, Pfizer: Research Funding. Brummendorf:Pfizer Inc: Membership on an entity's Board of Directors or advisory committees. Griskevicius:Pfizer Inc: Research Funding. Goh:Novartis and Janssen Ciliag: Research Funding. Wang:Pfizer Inc: Employment, Equity Ownership. Gogat:Pfizer Inc: Employment, Equity Ownership. Cortes:Pfizer Inc: Consultancy, Research Funding.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3708-3708
Author(s):  
Chadi Nabhan ◽  
Michelle Byrtek ◽  
Shadi Latta ◽  
Keith L Dawson ◽  
Xiaolei Zhou ◽  
...  

Abstract Abstract 3708 Background: There are few prospective studies on disease characteristics, patterns of care, response, and outcomes in elderly FL patients (pts) in the US. The NLCS is a Genentech-sponsored prospective multicenter registry study that collects this information without study-specific treatment. We utilized the NLCS database to better understand the impact of age on FL outcome. Patients and Methods: All evaluable pts with FL histology in the NLCS were included except pts with FL plus other lymphoma histology or pts who progressed before first treatment or before being assigned to watchful waiting (WW). Using Pearson Chi-Square tests, associations of age groups (≤60, 61–70, >70) with disease characteristics and overall response (ORR) were examined. Median PFS and OS by treatment regimen were estimated using Kaplan-Meier methods for each age group. Cox proportional hazards regression adjusted for baseline factors (grade, number of nodal sites, LDH, Hgb, stage, performance status (PS), bone marrow (BM) involvement, race, and treatment center type) were used to assess treatment differences in PFS and OS and the significance of age by treatment interactions. Results: Of 2,647 pts, 47% (n=1,254) were ≤60 yrs, 25% (n=666) were 61–70 yrs, and 27% (n=727) were >70 yrs (min age of 22; max of 97). Compared with pts ≤60 yrs, pts 61–70 and >70 were more likely to be white (93% >70, 92% 61–70, and 88% ≤60, P=.02 and .02 respectively), have stage I/II disease (37% >70, 36% 61–70, and 29% ≤60, P=.0008 and .0003), have <5 nodal sites (73% >70, 69% 61–70, and 61% ≤60, P=.001 and <.0001), and have poor-risk FLIPI (53% >70, 51% 61–70, and 15% ≤60, P<.0001 and <.0001). Compared with pts ≤60, elderly pts (>70) were more likely to have FL grade 3 (24% vs 18%, P=.01). While there were no differences in geographic distribution by age, elderly pts were more likely to receive therapy at community practices (86%) versus academic institutions than pts ≤60 (77%, P<.0001) or 61–70 (81%, P=.004). Treatments varied significantly by age (P<.0001). More elderly pts were observed compared to pts ≤60 (23% vs19%). When treated, elderly pts (22%) were more likely to receive rituximab (R) monotherapy compared with patients aged 61–70 (12%) or ≤60 (10%). When chemotherapy alone or plus R was given, elderly pts were less likely to receive anthracyclines (45% vs 65% (61–70) and 68% (≤60)). Among all variables, only grade 3 histology predicted anthracycline use in all age groups. Lack of BM involvement predicted anthracycline use for younger pts (≤60 and 61–70). Of those ≤60, white pts were more likely to receive anthracyclines, and of those 61–70, those with ≥5 nodal sites were more likely to receive anthracyclines. ORRs were similar across age groups receiving similar regimens with R plus chemo providing the highest ORR. Adjusting for baseline factors, treatment (WW, R, R-Chemo, or other) benefit varied for each age group in terms of PFS (P=.02), with treatment outcomes being most differentiated among younger pts (Table). PFS appeared shorter in elderly pts regardless of the treatment received. No significant interaction between age and efficacy of anthracycline in terms of PFS or OS was observed (P-values >.65), but the overall effect of anthracycline for all pts was beneficial for PFS (HR=0.80, P=.02) and OS (HR=0.67, P=.003). Median OS was 8 years for elderly and not reached for others. After adjusting for baseline factors, no significant differences in treatment impact by age on OS were seen. Elevated LDH, reduced Hgb, stage III/IV, PS ≥1, and BM involvement were all significantly associated with shortened OS. These factors were also significantly associated with treatment choice, as worse-prognosis elderly pts were more likely to receive either R or R+chemo than WW or other treatment. Conclusions: FL pts >70 yrs more commonly received R alone and less commonly received anthracyclines when treated with chemotherapy. The impact of anthracyclines on PFS did not vary by age, but differences in PFS for other treatment regimens showed a stronger association among younger pts Disclosures: Nabhan: Genentech: Research Funding, Speakers Bureau. Byrtek:Genentech, Inc., a member of the Riche Group: Employment, Equity Ownership. Dawson:Genentech, Inc., a member of the Riche Group: Employment, Equity Ownership. Link:Genentech, Inc., a member of the Riche Group: Consultancy; Celgene: Consultancy; Spectrum: Consultancy. Friedberg:Genentech: Consultancy. Cerhan:Genentech: National LymphoCare Scientific Advisory Board Other. Flowers:Celgene: Consultancy; Prescription Solutions: Consultancy; Seattle Genetics: Consultancy; Millennium: Consultancy, Research Funding; Genentech: Consultancy; GIlead: Research Funding; Spectrum: Research Funding; Janssen: Research Funding; Lymphoma Research Foundation: Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document