Novel Assay for the Identification of NOTCH1 PEST Domain Mutations Using Fragment Analysis and Allele Specific PCR

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 5127-5127
Author(s):  
Paulo Vidal Campregher ◽  
Roberta Cardoso Petroni ◽  
Nair Muto ◽  
Rubia Santana ◽  
Roberta Sitnik ◽  
...  

Abstract Abstract 5127 NOTCH1 is a proto-oncogene with activating mutations described in a variety of malignancies, including acute lymphoblastic leukemia (ALL), mantle cell lymphoma (MCL) and chronic lymphocytic leukemia (CLL). While the prognostic significance of NOTCH1 mutations remains controversial in ALL, recent data suggest that NOTCH1 PEST domain mutations are associated with adverse prognosis in patients with CLL. NOTCH1 mutations are found in around 8% of CLL patients at diagnosis and more than 30% of patients with advanced disease. Since this disease has a heterogeneous clinical course and few prognostic markers, we aimed at designing a fast, cost effective and robust assay to detect NOTCH1 PEST domain mutations in patients with CLL for the clinical laboratory. While 92% of the mutations in NOTCH1 PEST domain found in CLL are insertions or deletions, only 8% are represented by point mutations. Therefore we decided to use a fragment analysis approach in our assay. Given that a single mutation (c. 7544_7545delCT), represents roughly 75% of all PEST domain mutations in CLL we designed a test that can, at the same time, detect the presence of this mutation specifically and also any insertion or deletion in exon 34. We designed a PCR reaction using one FAM-labeled forward primer anchored at codon 2407 and two reverse primers. One specific for the c. 7544_7545delCT mutation anchored at codon 2414 yielding a product of 356 base pairs (bp) and one anchored at codon 2425, yielding a product of 391 bp, comprising the hot spot for mutations in the NOTCH1 PEST domain. Primers were designed with Primer3 software (http://frodo.wi.mit.edu/) and the specificity of the reaction evaluated using the tool “PCR in silico” (http://genome.ucsc.edu/cgi-bin/hgPcr?command=start). The test yields three possible outputs: A single 391 bp peak: wild type samplesThree peaks (391 bp, 389 bp and 356 bp): heterozygous for c. 7544_7545delCTTwo peaks (391 bp and another bigger or smaller, depending on the size of insertion/deletion): another insertion or deletion, but not c. 7544_7545delCT. We have studied 46 de-identified blood samples from patients with CLL, in several diverse stages, using our assay. In 40 patients, there was no NOTCH1 mutation detected. Six patients had a pattern compatible with c. 7544_7545delCT NOTCH1 mutation (see figure 1), and no patients presented with another mutation. Overall the frequency of NOTCH1 mutations in our series was 13 %. Selected mutated samples were confirmed through amplicon sequencing. In conclusion, we have designed a robust, fast and cost effective assay for routine identification of NOTCH1 PEST domain mutations using fragment analysis and allele specific pcr that is suitable for implementation in the clinical setting for CLL patients evaluation. We will continue testing more CLL patients in order to identify another, rarer, NOTCH1 mutations. Figure 1. Assay Results for NOTCH1 PEST Domain Mutations A – Wild Type NOTCH1 revealed by the presence of a single 391 bp peak. B – Presence of heterozygous c. 7544_7545delCT mutation evidenced by the presence of a 356 bp peak, corresponding to the allele specific pcr peak; and a double peak at 391 bp and 389 bp positions, corresponding to the wild type product (391 bp) and to the mutated product (389 bp) detected with the wild type primers. Figure 1. Assay Results for NOTCH1 PEST Domain Mutations . / A – Wild Type NOTCH1 revealed by the presence of a single 391 bp peak. . / B – Presence of heterozygous c. 7544_7545delCT mutation evidenced by the presence of a 356 bp peak, corresponding to the allele specific pcr peak; and a double peak at 391 bp and 389 bp positions, corresponding to the wild type product (391 bp) and to the mutated product (389 bp) detected with the wild type primers. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5291-5291
Author(s):  
Paulo Vidal Campregher ◽  
Roberta Cardoso Petroni ◽  
Nair Muto ◽  
Juliana Nogueira M. Rodrigues ◽  
Roberta Sitnik ◽  
...  

Abstract NOTCH1 is a proto-oncogene with activating mutations described in a variety of malignancies, including acute lymphoblastic leukemia (ALL), mantle cell lymphoma (MCL) and chronic lymphocytic leukemia (CLL). While the prognostic significance of NOTCH1 mutations remains controversial in ALL, recent data suggest that NOTCH1 PEST domain mutations are associated with adverse prognosis in patients with CLL. NOTCH1 mutations are found in around 8% of CLL patients at diagnosis, and since this disease has a heterogeneous clinical course and few prognostic markers, we aimed at designing a fast, cost effective and robust assay to detect NOTCH1 PEST domain mutations in patients with CLL. While 92% of the mutations in NOTCH1 PEST domain found in CLL are insertions or deletions, only 8% are represented by point mutations. Therefore we decided to use a fragment analysis approach in our assay. Given that a single mutation (c.7544_7545delCT), represents roughly 75% of all PEST domain mutations in CLL we designed a test that can, at the same time, detect the presence of this mutation specifically and also any insertion or deletion in exon 34. We designed a PCR reaction using one FAM-labeled forward primer anchored at codon 2407 and two reverse primers. One specific for the c.7544_7545delCT mutation anchored at codon 2414 yielding a product of 356 base pairs (bp) and one anchored at codon 2425, yielding a product of 391 bp, comprising the hot spot for mutations in the NOTCH1 PEST domain. Primers were designed with Primer3 software (http://frodo.wi.mit.edu/) and the specificity of the reaction evaluated using the tool “PCR in silico” (http://genome.ucsc.edu/cgi-bin/hgPcr?command=start). The test yields three possible outputs: a) A single 391 bp peak: wild type samples b) Three peaks (391 bp, 389 bp and 356 bp): heterozygous for c.7544_7545delCT c) Two peaks (391 bp and another bigger or smaller, depending on the size of insertion / deletion): another insertion or deletion, but not c.7544_7545delCT. We have studied 91 blood samples from CLL patients in diverse disease stages and found NOTCH1 mutations in 16 patients, (17.5%). When only patients with trisomy 12, isolated or with other cytogenetic abnormalities, were analyzed (N=16), we found an incidence of NOTCH1 mutations of 43% (7/16). At the same time, the frequency of NOTCH1 mutations in patients without trisomy 12 was 12% (9/75), in agreement with previous reports. All mutated cases (N=13) had the mutation c.7544_7545delCT. In conclusion, we have designed a robust, fast and cost effective assay for routine identification of NOTCH1 PEST domain mutations, suitable for implementation in the clinical setting. Additionally we have found that the incidence and distribution among cytogenetic groups of NOTCH1 mutation in Brazilian patients with CLL is similar to the incidence described in other cohorts. A – Wild Type NOTCH1 revealed by the presence of a single 391 bp peak. B – Presence of heterozygous c.7544_7545delCT mutation evidenced by the presence of a 356 bp peak,corresponding to the allele specific pcr peak; and a double peak at 391 bp and 389 bp positions, corresponding to the wild type product (391 bp) and to the mutated product (389 bp) detected with the wild type primers. Figure 1 Assay Results for NOTCH1 PEST Domain Mutations Figure 1. Assay Results for NOTCH1 PEST Domain Mutations Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 273-273
Author(s):  
Michael W. Deininger ◽  
Stephanie Willis ◽  
Thoralf Lange ◽  
Shannon McWeeney ◽  
Sandra Otto ◽  
...  

Abstract Background: Point mutations in the kinase domain (KD) of BCR-ABL that impair drug binding are a common cause of imatinib resistance. In some cases the mutations present at relapse were detected in pretherapeutic samples, suggesting selection in the presence of imatinib and a possible association with disease progression. To test this hypothesis, we studied the presence of KD mutations in imatinib-naïve patients in various disease phases. Methods and patients: we developed fluorescent allele-specific RT-PCR assays for 8 common KD mutations (Q252H, Y253F, Y253H, E255K, E255V, T315I, M351T, F359V), comprising approximately 75% of mutations detected in patients, using universal BCR and mutation-specific ABL primers. Mutation-complementary oligonucleotides were further modified to favor amplification of mutant over wild type. Sensitivity and specificity were optimized in serial dilutions of mutant in wild type, using plasmid DNA or cDNA extracted from BaF3 cells expressing BCR-ABL constructs. The assays reproducibly detected mutations with a sensitivity of at least 10−4 – 10−5. To avoid false-positive results cDNA was prepared in a physically separate lab that never handled recombinant mutant BCR-ABL. Negative controls included “blanks”, K562 cells (positive for wild type BCR-ABL) and HL60 cells (BCR-ABL-negative). Pretherapeutic samples from 20 patients in first chronic, 24 in accelerated and 21 in blastic phase were studied. Results: Mutations were detected in 13 samples from blastic phase (5) or from accelerated phase (8) but in none from chronic phase. Mutations were: T315I (7), Y253F (2), 253H (2), Q252H (1) and F359V (1). Sequencing of the same material detected F359V in one sample (consistent with the allele specific PCR), and K247R in another (positive for T315I by allele-specific PCR) but was wild type in the remaining 10 samples with good quality readings. Multivariate analysis of baseline factors revealed significant and independent correlations between mutation detection and disease phase (P = 0.0008) and clonal cytogenetic evolution (P = 0.0004). In contrast, mutation detection was not an independent predictor of failure to achieve complete hematologic response (CHR) or major cytogenetic response (MCR) and was not correlated with overall survival. Four patients with mutations achieved CHR and 3 MCR; 4 patients failed to achieve CHR, 1 died from neutropenic sepsis and 1 discontinued because of skin toxicity. Thus far, follow-up specimens during imatinib therapy have been sequenced in 6 patients. In 2 cases (T315I and Q252H) the identical mutation was detected, one case (T315I) showed K247R (detected prior to therapy by sequencing but not included in the allele specific assays), and 3 cases were wild type BCR-ABL. Conclusion: We provide direct evidence that the presence of BCR-ABL KD mutantions is correlated with disease stage. Moreover, the strong association with clonal evolution suggests that genomic instability may be responsible for both phenomena. However, not all mutants that were detected prior to therapy were subsequently selected in the presence of imatinib, suggesting that some mutations may occur in cells without self-renewal capacity or that additional factors may be required to confer a fully resistant phenotype.


2020 ◽  
Author(s):  
Jean-Pierre ROPERCH ◽  
Claude HENNION

Abstract Background We have recently developed a highly accurate urine-based test, named Urodiag ® , associating FGFR3 mutation and DNA methylation assays for recurrence surveillance in patients with low-, intermediate-, and high-risk NMIBC. Previously, the detection of four FGFR3 mutations (G372C, R248C, S249C and Y375C) required amplification steps and PCR products were analyzed by capillary electrophoresis (Allele Specific-PCR, AS-PCR), which was expensive and time-consuming. Here, we present the development a novel ultra-sensitive multiplex PCR assay as called “Mutated Allele Specific Oligonucleotide-PCR (MASO-PCR)”, generating cost-effective, simple, fast and clinically applicable assay for the detection of FGFR3 mutations in voided urine. Methods Comparative clinical performances of MASO-PCR and AS-PCR technologies were performed from 263 urine DNA samples (87 FGFR3 mutated and 176 FGFR3 wild-type). In the development of Urodiag ® PCR Kit, we studied the stability and reproducibility of each all-in-one PCR master mix (single reaction mixture including all the necessary PCR components) for MASO-PCR and QM-MSPCR (Quantitative Multiplex Methylation-Specific PCR to co-amplify SEPTIN9 , HS3ST2 and SLIT2 methylated genes) assays. Results Complete concordance (100%) was observed between the MASO-PCR and AS-PCR results. Each PCR master mix displayed excellent reproducibility and stability after 12 months of storage at -20°C, with intra-assay standard deviations lower than 0.3 Ct and coefficient of variations (CV) lower than 1%. The limit of detection (LoD) of MASO-PCR was 5% mutant detection in a 95% of wild-type background. The limit of quantification (LoQ) of QM-MSPCR was 10 pg of bisulfite-converted DNA. Conclusions We developed and clinically validated the MASO-PCR assay, generating cost-effective, simple, fast and clinically applicable assay for the detection of FGFR3 mutations in urine. We also designed the Urodiag ® PCR Kit, which includes the MASO-PCR and QM-MSPCR assays. Adapted to routine clinical laboratory (simplicity, accuracy), the kit will be a great help to urologists for recurrence surveillance in patients at low-, intermediate- and high-risk NMIBC. Reducing the number of unnecessary cystoscopies, it will have extremely beneficial effects for patients (painless) and for the healthcare systems (low cost).


2004 ◽  
Vol 50 (4) ◽  
pp. 694-701 ◽  
Author(s):  
Ourania Nasis ◽  
Shanel Thompson ◽  
Tom Hong ◽  
Margaret Sherwood ◽  
Shawn Radcliffe ◽  
...  

Abstract Background: Cell-free fetal DNA circulating in maternal blood has potential as a safer alternative to invasive methods of prenatal testing for paternally inherited genetic alterations, such as cystic fibrosis (CF) mutations. Methods: We used allele-specific PCR to detect mutated CF D1152H DNA in the presence of an excess of the corresponding wild-type sequence. Pfx buffer (Invitrogen) containing replication accessory proteins and Taq polymerase with no proofreading activity was combined with TaqMaster PCR Enhancer (Eppendorf) to suppress nonspecific amplification of the wild-type allele. The procedure was tested on DNA isolated from plasma drawn from 11 pregnant women (gestational age, 11–19.2 weeks), with mutation confirmation by chorionic villus sampling. Results: The method detected 5 copies of the CF D1152H mutant allele in the presence of up to ∼100 000 copies of wild-type allele without interference from the wild-type sequence. The D1152H mutation was correctly identified in one positive sample; the only false-positive result was seen in a mishandled sample. Conclusions: This procedure allows for reliable detection of the paternally inherited D1152H mutation and has potential application for detection of other mutations, which may help reduce the need for invasive testing.


2020 ◽  
Vol 18 (4) ◽  
pp. e0406
Author(s):  
Jorge H. Calvo ◽  
Magdalena Serrano ◽  
Flavie Tortereau ◽  
Pilar Sarto ◽  
Laura P. Iguacel ◽  
...  

Aim of study: To validate two existing single nucleotide polymorphism (SNP) panels for parentage assignment in sheep, and develop a cost effective genotyping system to use in some North-Eastern Spanish meat sheep populations for accurate pedigree assignment.Area of study: SpainMaterial and methods: Nine sheep breeds were sampled: Rasa Aragonesa (n=38), Navarra (n=39), Ansotana (n=41), Xisqueta (n=41), Churra Tensina (n=38), Maellana (39), Roya Bilbilitana (n=24), Ojinegra (n=36) and Cartera (n=39), and these animals were genotyped with the Illumina OvineSNP50 BeadChip array. Genotypes were extracted from the sets of 249 SNPs and 163 SNPs for parentage assignment designed in France and North America, respectively. Validation of a selected cost-effective genotyping panel of 158 SNPs from the French panel were performed by Kompetitive allele specific PCR (KASP). Additionally, some functional SNPs (n=15) were also genotyped.Main results: The set of 249 SNPs for parentage assignment showed better diversity, probability of identity, and exclusion probabilities than the set of 163 SNPs. The average minor allele frequency for the set of 249, 163 and 158 SNPs were 0.41 + 0.01, 0.39 + 0.01 and 0.42 + 0.01, respectively. The parentage assignment rate was highly dependent to the percentage of putative sires genotyped.Research highlights: The described method is a cost-effective genotyping system combining the genotyping of SNPs for the parentage assignment with some functional SNPs, which was successfully used in some Spanish meat sheep breeds.


2017 ◽  
Vol 2 (1) ◽  
pp. 90-94 ◽  
Author(s):  
Jiazheng Yuan ◽  
Zixiang Wen ◽  
Cuihua Gu ◽  
Dechun Wang

We presented here the application of two in-plate SNP (single nucleotide polymorphism) genotyping platforms for soybean plants [Glycine max (L.) Merr.], KASP® (Kompetitive Allele Specific PCR genotyping, LGC Genomics) and TaqMan® (Life Technologies) respectively. These two systems offer us an ability to determine the genotypes of 384 individual samples accurately and efficiently by allele specific PCR in a single plate using typical PCR conditions. Both of the systems require small quantity of genomic DNA obtained from a simple DNA extraction. The genomic sequences containing target SNPs can easily be used as a basic blueprint to design the probes and primers of KASP® and TaqMan® assays whether the sequences are obtained from the genome sequence of soybean William 82 (Wm82.a2.v1), Illumina Soy50k SNPs, or parallel resequencing. Moreover, we listed the pros and cons of the two systems and explained the principles behind the platforms. The high call rate and clear clustering separation of the SNPs can be readily obtained from these platforms without conducting any assay optimization processes. These platforms can routinely be performed on 96/384-well plate format with or without an automation procedure. Therefore, these platforms are especially suitable for the SNP genotyping on a particular trait with a large sample size, gene fine mapping, and marker assisted selection. Further, they require little hands-on experience and achieve per-site and per-individual costs below that of current SSR, AFLP, RFLP, and SNP chip technologies. The platforms can be used for genotyping on a wide range of organisms due to their simplicity and flexibility of handling. Meanwhile, we also especially presented some of the advantages using KASP® SNP genotyping pipeline, which was cost effective in the selection of allele specific assay and therefore, efficiently facilitated the soybean genotyping across large numbers (thousands or more) of individual lines for a great range of markers (hundreds to thousands) in our laboratory.


2015 ◽  
Vol 15 (3) ◽  
pp. 13-20 ◽  
Author(s):  
K Jasek ◽  
V Buzalkova ◽  
P Szepe ◽  
L Plank ◽  
Z Lasabova

Abstract Detection of mutations in cancer is particularly important in terms of proper treatment and targeted therapy. The aim of this study was the comparison of two methods: allele-specific PCR (AS-PCR) and dideoxysequencing applied for the identification of BRAF gene mutations in wild-type gastrointestinal stromal tumors (WT GISTs). We have optimized the conditions for the detection V600E mutation representing the c.1799 T>A substitution by AS-PCR and have used dideoxysequencing to verify our results. In nine cases, we were able to detect the mutation by AS-PCR approach; however, the mutations have been confirmed by dideoxysequencing in four cases only. AS-PCR is fast and low cost method for the detection of V600E mutation which was validated as a sensitive assay for the identification of the most common BRAF mutation in DNA extracted from paraffin-embedded tissue of WT GISTs.


2018 ◽  
Vol 5 (2) ◽  
pp. e92
Author(s):  
Anuj Kumar Tyagi ◽  
Mary Boudal Khoshbeen ◽  
Patricia Huezo-Diaz Curtis ◽  
Chakradhara Rao S. Uppugunduri ◽  
Marc Ansari

DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) specifically remove the methyl/alkyl group from the O6-position of guanine and restore the guanine to its normal form without causing DNA strand breaks. Relationship between MGMT activity and resistance to alkylating therapeutic agents is well established. Non-availability of simple, cost-effective and efficient methods of genotyping may hinder investigations on genotype-phenotype associations. No simple genotyping procedures such as allele-discrimination Taqman Assays were available for two genetic variations in MGMT gene that had previously demonstrated to be affecting its function and expression.These two variants were included to genotype in a clinical study (Clinicaltrail.gov ID: NCT01257854). Hence, the present study is aimed at developing,   validating a rapid and simple allele-specific PCR method that genotypes exonic variant rs2308321 (c.520A>G) and a promoter variant rs113813075 (c.-459C>A) with standard PCR instruments.Web-based allele-specific (AS) primer design application called web-based allele-specific primer was used to design primers. Genomic DNA of lymphoblastoid cell line obtained from the Coriell repository with known genotypes were used to standardize the genotyping procedure. The PCR products were analyzed by 3% Agarose gel electrophoresis and by DNA Screen Tape assay with the Agilent 4200 TapeStation. The allele-specific PCR assay described here is a suitable strategy for efficient and reliable genotyping for difficult variants. This method offers cost-effective strategy for genotyping in clinical cohort studies provided positive controls established by Sanger sequencing are available for the variant. 


Sign in / Sign up

Export Citation Format

Share Document