SDF-1 Inhibition Using Spiegelmer® Nox-A12 As a Novel Strategy For Targeting AML Cells Within Their BM Microenvironment

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2454-2454 ◽  
Author(s):  
Rodrigo Jacamo ◽  
Zhihong Zeng ◽  
Ye Chen ◽  
Yuexi Shi ◽  
Teresa McQueen ◽  
...  

Abstract Bone marrow (BM) mesenchymal stromal cells (MSC) protect leukemia cells from chemotherapy-induced apoptosis. CXCR4, the receptor for the stromal-derived factor 1 (SDF-1/CXCL12), is involved in modulating leukemic progenitor cell homing and it is essential for the migration of these cells to the BM niche. As the BM niche imparts favorable survival advantage to leukemia cells, a strategy to disrupt leukemic cell homing to the BM microenvironment may represent a novel way to effectively kill these malignant cells. Strategies to disrupt the SDF-1/CXCR4 axis have relied on inhibition of the CXCR4 receptor using various drugs including plerixafor, which is potent at mobilizing normal progenitor cells. We previously found that plerixafor antagonized SDF-1 and MSC-induced migration of leukemic cells, inhibited SDF-1-induced AKT and ERK activation, and decreased stroma-mediated protection from AraC-induced apoptosis in 11 out of 18 primary AML samples (Zeng et al Blood 2009; 113: 6215). We also found that the inhibition of CXCR4 induces miRNA let-7a expression via the transcription factor Yin Yang1 (Chen et al, JCI, 2013; 123:2395), and induces chemosensitization irrespective of cell mobilization. While inhibition of CXCR4 has shown promise for use in AML therapy (Andreeff, et al ASH, Blood 120(21) (#142), 11/2012), a more effective strategy might be to target the SDF-1 ligand itself since SDF-1 can bind to other receptors (i.e. CXCR7) that are likely not recognized by CXCR4 antibodies. NOXXON (Berlin, Germany) has recently identified a potent inhibitor to SDF-1 that is based on a so-called Spiegelmer®. The Spiegelmer NOX-A12 is a structured l-RNA oligonucleotide, PEGylated at the 5'-end to improve the pharmacokinetics. In healthy volunteers, NOX-A12 displays a half-life of∼38 hours and has demonstrated a long-term and dose-dependent mobilization of WBCs and CD34+ cells. The drug is currently tested in clinical trials in multiple myeloma and chronic lymphocytic leukemia patients (Gobbi et al., ASH 2012 120: 4593). In the current study, the ability of NOX-A12 to suppress survival signaling in leukemic and MSC cells was examined. In addition, we tested the ability of the Spiegelmer to mobilize leukemia cells in a murine xenograft model. NOX-A12 was found to suppress the phosphorylation of ERK in AML cells, and suppress the phosphorylation of ERK, FAK, and STAT3 in MSC. These results suggested that SDF-1 affected diverse survival signaling pathways in the leukemic cells and the critical supporting stromal niche. In vivo activity was examined in NOD/SCID/-g- mice injected intravenously with murine leukemia Baf/ITDluc/GFP cells and monitored by a non-invasive bioluminescent imaging. The in vivo mobilization assay was assessed when the majority of mice had approximately 10% tumor burden. Plerixafor, NOX-A12, or a combination of both agents was subcutaneously administrated and leukemic GFP+ cells were detected by analytical flow cytometry. Plerixafor and NOX-A12 administered separately increased total WBC count by 2- to 3-fold and concomitantly increased the percentage of circulating GFP+ cells in all mice (to 14.2% and 18.5%, respectively). Importantly, the combination of both targeted agents further increased the percentage of circulating GFP+ cells in an approximately additive fashion (to 26.4%). Conclusion we demonstrate that the novel SDF-1 Spiegelmer NOX-A12 can suppress survival signaling in both leukemia and supportive MSC cells. Furthermore, increased mobilization of leukemic cells in vivo was observed when NOX-A12 and plerixafor were used in combination. These findings suggest the possibility that targeted disruption of leukemia/stroma interactions by optimized blockade of the pro-survival SDF-1/CXCR4 axis will not only increase leukemia cell mobilization, but also enhance the sensitivity to chemotherapy of both mobilized and non-mobilized the leukemic cells and leukemic stem cells. Experiments are ongoing to further validate this hypothesis. Disclosures: Kruschinski: Noxxon: Employment.

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
L. I. Nagy ◽  
L. Z. Fehér ◽  
G. J. Szebeni ◽  
M. Gyuris ◽  
P. Sipos ◽  
...  

Combination therapy of bortezomib with other chemotherapeutics is an emerging treatment strategy. Since both curcumin and bortezomib inhibit NF-κB, we tested the effects of their combination on leukemia cells. To improve potency, a novel Mannich-type curcumin derivative, C-150, was synthesized. Curcumin and its analogue showed potent antiproliferative and apoptotic effects on the human leukemia cell line, HL60, with different potency but similar additive properties with bortezomib. Additive antiproliferative effects were correlated well with LPS-induced NF-κB inhibition results. Gene expression data on cell cycle and apoptosis related genes, obtained by high-throughput QPCR, showed that curcumin and its analogue act through similar signaling pathways. In correlation with in vitro results similar additive effect could be obsereved in SCID mice inoculated systemically with HL60 cells. C-150 in a liposomal formulation given intravenously in combination with bortezomib was more efficient than either of the drugs alone. As our novel curcumin analogue exerted anticancer effects in leukemic cells at submicromolar concentration in vitro and at 3 mg/kg dose in vivo, which was potentiated by bortezomib, it holds a great promise as a future therapeutic agent in the treatment of leukemia alone or in combination.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4370-4370
Author(s):  
Guo Kunyuan ◽  
Miaorong She ◽  
Haiyan Hu ◽  
Xinqing Niu ◽  
Sanfang Tu ◽  
...  

Abstract 2-Methoxyestradiol (2-ME) is a new anticancer agent currently under investigation for treatment of leukemia. We evaluated the effects of 2-ME-induced apoptosis in two myeloid leukemia cell lines (U937 and HL-60) in association with reactive oxygen species (ROS) generation. We found that 2-ME resulted in viability decrease in a dose-dependent manner, generated ROS: nitric oxide and superoxide anions, and mitochondria damage. 2-ME-induced apoptosis correlated with increase in ROS. Quenching of ROS with N-acetyl-L-cysteine protected leukemia cells from the cytotoxicity of 2-ME and prevented apoptosis induction by 2-ME. Furthermore, addition of manumycin, a farnesyltransferase inhibitor, demonstrated by our previous studies that induced apoptosis of leukemic cells and induced ROS, significantly enhanced the apoptosis-induced by 2-ME. In conclusion, cellular ROS generation play an important role in the cytotoxic effect of 2-ME. It is possible to use ROS-generation agents such as manumycin to enhance the antileukemic effect. Such a combination strategy need the further in vivo justify and may have potential clinical application.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 893-893
Author(s):  
Po Yee Mak ◽  
Duncan H Mak ◽  
Yuexi Shi ◽  
Vivian Ruvolo ◽  
Rodrigo Jacamo ◽  
...  

Abstract Abstract 893 ARC (Apoptosis repressor with caspase recruitment domain) is a unique antiapoptotic protein that has been shown to suppress the activation of both intrinsic and extrinsic apoptosis. We previously reported that ARC is one of the most potent adverse prognostic factors in AML and that high ARC protein expression predicted shorter survival and poor clinical outcome in patients with AML (Carter BZ et al., Blood 2011). Here we report how ARC is regulated and its role in inhibition of AML apoptosis and in cell survival. We provide evidence that ARC expression is regulated by MAPK and PI3K signaling. Inhibition of MAPK and PI3K pathways decreased ARC mRNA and protein levels in AML cells. ARC expression in AML cells is upregulated in co-cultures with bone marrow-derived mesenchymal stromal cells (MSCs) and the upregulation is suppressed in the presence of MAPK or PI3K inhibitors. To investigate the role of ARC in apoptosis resistance in AML, we generated stable ARC overexpressing (O/E) KG-1 and stable ARC knock down (K/D) OCI-AML3 and Molm13 cells and treated them with Ara-C and agents selectively inducing intrinsic (ABT-737) or extrinsic (TRAIL) apoptosis. We found that ARC O/E cells are more resistant and ARC K/D cells more sensitive to Ara-C, ABT-737, and TRAIL-induced apoptosis: EC50s of Ara-C, ABT-737, or TRAIL treatment at 48 hours for ARC O/E KG-1 and control cells were 1.5 ± 0.1 μM vs. 83.5 ± 4.6 nM, 2.2 ± 0.2 μM vs. 60.2 ± 3.1 nM, or 0.97 ± 0.03 μg/mL vs. 0.17 ± 0.08 μg/mL, respectively and for ARC K/D OCI-AML3 and control cells were 0.33 ± 0.02 μM vs. 3.4 ± 0.2 μM, 0.24 ± 0.01 μM vs. 1.3 ± 0.1 μM, or 0.13 ± 0.09 μg/mL vs. 0.36 ± 0.03 μg/mL, respectively. Bone marrow microenvironment is known to play critical roles in AML disease progression and in protecting leukemia cells from various therapeutic agent-induced apoptosis. Leukemia cells were co-cultured with MSCs in vitro study to mimic the in vivo condition. ARC was found to be highly expressed in MSCs and stable ARC K/D MSCs were generated. AML cell lines and primary patient samples were co-cultured with ARC K/D or control MSCs and treated with Ara-C, ABT-737, or TRAIL. Interestingly, ARC K/D MSCs lost their protective activity for leukemia cells treated with these agents. EC50s for OCI-AML3 cells co-cultured with ARC K/D or control MSCs for 48 hours treated with Ara-C, ABT-737, or TRAIL were 1.0 ± 0.04 μM vs. 4.5 ± 0.2 μM, 0.15 ± 0.06 μM vs. 0.53 ± 0.02 μM, or 1.4 ± 0.8 μg/mL vs. 8.1 ± 0.3 μg/mL, respectively. In addition, ARC O/E KG-1 cells grew faster and ARC K/D OCI-AML3 and Molm13 cells and ARC K/D MSCs grew slower than their respective controls. We then injected KG-1 cells into mice and found that NOD-SCID mice harboring ARC O/E KG-1 had significantly shorter survival than mice injected with the vector control KG-1 (median 84 vs. 111 days) as shown in the figure. Collectively, results demonstrate that ARC plays critical roles in AML. ARC is regulated by MSCs through various signaling pathways in AML cells, protects leukemia cells from apoptosis induced by chemotherapy and by agents selectively inducing intrinsic and extrinsic apoptosis. ARC regulates leukemia cell growth in vitro and in vivo. The results suggest that ARC is a potential target for AML therapy. In addition, targeting ARC in MSCs suppresses microenvironmental protection of AML cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1984 ◽  
Vol 63 (5) ◽  
pp. 1015-1022 ◽  
Author(s):  
EA Machado ◽  
DA Gerard ◽  
CB Lozzio ◽  
BB Lozzio ◽  
JR Mitchell ◽  
...  

Abstract To study the influence of a biologic environment on cultured human leukemia cells, KG-1, KG-1a, and HL-60 cells were inoculated subcutaneously into newborn nude mice. The cells developed myelosarcomas at the site of inoculation and in lungs and kidneys. KG-1 and HL-60 myelosarcomas were successfully passaged through adult nude mice, whereas KG-1a tumors proliferated only after transplantation into newborn hosts. The human nature of the cells forming myelosarcomas in mice was assessed by chromosomal analyses and detection of cross- reactivity with an antibody to the human leukemia cell line K562. We undertook electron microscopic and cytochemical examinations of the cells proliferating in vitro and in the mice. The granules of KG-1 cells in vivo did not react for acid phosphatase, as observed in vitro, and the HL-60 cells proliferating in mice lost the perinuclear myeloperoxidase (MPO) demonstrated in cultured cells. Although the influence of an in vivo selection of cell subpopulations cannot be ruled out, the enzymatic changes are compatible with induced cell differentiation. Conclusive evidence of differentiation in vivo was observed in the KG-1a cell subline. The undifferentiated KG-1a blasts developed cytoplasmic granules and synthesized MPO during proliferation in vivo. These observations indicate that human leukemia cells from established cell lines proliferate in nude mice and may acquire new differentiated properties in response to the in vivo environment.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 926-926
Author(s):  
Yoko Tabe ◽  
Yuexi Shi ◽  
Zhihong Zeng ◽  
Linhua Jin ◽  
Yixin Zhou ◽  
...  

Abstract Abstract 926 We have previously reported pro-survival effects of TGF-β1 in myelo-monocytic leukemia cells (Xu et al.,Br J Haematol.2008). Hypoxia and interactions with bone marrow (BM) stromal cells have emerged as essential components of leukemic BM microenvironment that promote leukemia cell survival and chemoresistance. Our preliminary data indicate that TGF-β neutralizing antibody 1D11 (Genzyme) prevents accumulation of AML cells in a quiescent G0 state under co-culture condition with BM-derived mesenchymal stromal cells (MSC) (Jin et al., ASH abstract 2010). In turn, the chemokine CXCL12 and its receptor CXCR4 play crucial roles in cell migration and stroma/leukemia cell interactions. In this study, we investigated the anti-leukemic effects and molecular mechanisms of action of TGF-β neutralizing antibody 1D11 under hypoxic conditions. We further investigated the anti-leukemic efficacy of 1D11 combined with CXCR4 antagonist plerixafor in the in vivo leukemia models. AML cells (MV4;11 and U937) were propagated under 1% O2 for at least 14 days to assure their sustained proliferation and survival. Isotype control antibody 13C4 combined with ara-C induced no significant change in apoptosis or cell cycle progression. In MV4;11 cells cultured with 2ng/mL rhTGF-β1, 1D11 (10 μg/mL) induced only minimal apoptosis by itself, yet enhanced low-dose cytarabine (AraC, 0.5 μM) induced apoptosis. This effect was more prominent under hypoxia compared to normoxia (% of subG1 fraction, 21% O2: ara-C, 2.6 ± 0.2%, ara-C + 1D11, 10.8 ± 2.5%, p=0.03; 1% O2: ara-C, 11.3 ± 2.7%, AraC + 1D11, 21.4 ± 0.5%, p=0.001). 1D11 with ara-C abrogated rhTGFβ1-induced accumulation of cells in G0/G1 phase (21% O2; cont, 73.8 ± 4.1, rhTGFβ, 82.2 ± 3.2, rhTGFβ + AraC, 65.4 ± 2.5, rhTGFβ + AraC + 1D11, 50.3 ± 1.9, p=0.001: in 1% O2; cont, 71.8 ± 1.3, rhTGFβ, 85.4 ± 1.4, rhTGFβ + AraC, 79.3 ± 5.1, rhTGFβ + AraC + 1D11, 67.1 ± 4.0, p = 0.03). The anti-leukemic efficacy of 1D11 was next examined in an in vivo leukemia model. 1D11 administered at 5 mg/kg IP every other day in combination with ara-C (50 mg/kg IP weekly) decreased leukemia burden of nude mice injected with Baf3/ITD-luciferase leukemia cells (p=0.002). Administration of small molecule CXCR4 inhibitor plerixafor, which successfully diminished cell migration to CXCL12 in vitro, in combination with 1D11 decreased leukemia burden in vivo (p=0.05), and co-administration of ara-C, plerixafor and 1D11 was most effective (bioluminescence intensity, ×107 photons/sec) control, 1.2 ± 0.2; ara-C, 0.94 ± 0.3; plerixafor + 1D11, 0.56 ± 0.1; plerixafor + 1D11 + ara-C, 0.23 ± 0.09, p=0.003). We next examined the molecular mechanisms responsible for chemosensitization through blockade of TGFβ with 1D11. Treatment with rhTGF-β1 induced upregulation of p21 expression as well as pro-survival phosphorylation of Stat3 in MV4;11 and U937 cells, and these effects were abrogated by 1D11. Knock-down of Stat3 by siRNA increased apoptosis induction in U937 cells cultured in the presence of rhTGFβ1. Notably, 4-fold upregulation of the established TGFβ target, leukemia inhibitory factor (LIF) gene mRNA, was observed after rhTGF-β1 treatment and this was reversed by 1D11. These results indicate that 1D11 inhibits rhTGF-β1-induced autocrine stimulation of pro-survival LIF-JAK-Stat3 signal transduction pathway in AML cells. In summary, blockade of TGF-β by 1D11, and abrogation of CXCL12/CXCR4 signaling may enhance the efficacy of chemotherapy against AML cells in the hypoxic BM microenvironment. These findings warrant further investigations in human clinical trials. Disclosures: Konopleva: Genzyme: Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2396-2396 ◽  
Author(s):  
Karine G. Harutyunyan ◽  
Felix Nwajei ◽  
M. Anna Zal ◽  
David A Fruman ◽  
Saradhi Mallampati ◽  
...  

Abstract We and others have previously reported that leukemia progression is associated with vast expansion of the hypoxic niches and stabilization of hypoxia-inducible factor 1 alpha (HIF-1α) in leukemic cells (Frolova et al. Cancer Biol Ther. 2012, 10:858; Benito et al. PLoS One 2011, 6(8); e23108:1). Interactions of leukemia and the bone marrow (BM) microenvironment are known to play a key role in the survival and growth of leukemic cells, and we have shown that HIF-1α stabilization in stromal cells of the microenvironment facilitates leukemia homing and progression (Chen et al. Blood 2012, 119:4971). In this study, we aimed to characterize the time-dependent progression of BM hypoxia involving both leukemia cells and components of the BM niche, using the multiphoton intravital microscopy (MP-IVM) technique. We first generated a transplantable, imageable leukemia model by retrovirally transducing C57Bl6-Ai14 murine BM cells that express red fluorescing tdTomato with the p190-Bcr/Abl oncogene. The resulting p190-Bcr/Abl tdTomato cells caused rapid development of acute lymphocytic leukemia (ALL) in un-irradiated C57Bl6 immunocompetent mice, manifested by infiltration of the spleen, liver, BM within long bones, skull, and central nervous system followed by death within 28 days. Leukemia cells collected from the BM (LBC) of these animals were transplantable into secondary recipients and triggered accelerated ALL development (14-16 days). Time-course analysis of skull and femur bones in the secondary recipients by MP-IVM demonstrated LBC lodging on day 1 after ALL cell injection, followed by rapid accumulation of leukemia cells localized predominantly within the sinusoidal spaces, which were visualized by injecting the vascular fluorescent dye BSA-647 (Fig. 1a). To detect in vivo hypoxia development, we utilized HS680 (HypoxiSense 680), a carbonic anhydrase IX (CAIX)–targeted fluorescent agent that can be used to image overexpression of CAIX, a direct HIF-1α target, in tumors in response to regional hypoxia. C57Bl6 mice were engrafted with 2 x 105 LBC , and HS680 was injected intravenously at serial intervals followed by MP-IVM. In two separate experiments, increased HS680 fluorescence was detected in bone-lining cells in the BM niches of mice harboring ALL on days 8 and 13, but not in their healthy littermates (Fig 1b). To obtain an independent confirmation of hypoxia, additional mice (n=3) at the same stage (day 14) of leukemia development were sacrificed 3 hr after injection of chemical hypoxia probe pimonidazole (Pimo), and hypoxic BM cells that bound the hypoxia probe were detected by immunohistochemistry. Pimo staining demonstrated vastly spread areas of hypoxia that enclosed both leukemia cells and BM niche cells (Fig 1c), consistent with our previously published observations in different leukemia models. In summary, these findings demonstrate rapid development of intra-BM hypoxia that parallels leukemia progression and involves not only leukemia cells, but also BM niche cells. The HS680 probe can detect hypoxia in vivo within niche cells but not in leukemia cells, likely because of differential expression of CAIX. Our ongoing studies will characterize the cellular origin of hypoxic niche cells by utilizing immunohistochemical techniques and Col2.3-GFPemd transgenic mice to visualize osteoblasts. We postulate that the tumor microenvironment altered with hypoxic niche cells will influence leukemia development or responses to therapy. To this end, we have generated mice with conditionally deleted HIF-1α within BM stromal cells and are investigating the differences in leukemia homing, progression, and chemoresistance between these mice and mice whose BM stromal cells express HIF-1a. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (2) ◽  
pp. 386-394 ◽  
Author(s):  
Michael Roth ◽  
Britta Will ◽  
Guillermo Simkin ◽  
Swathi Narayanagari ◽  
Laura Barreyro ◽  
...  

Abstract Eltrombopag (EP) is a small-molecule, nonpeptide thrombopoietin receptor (TPO-R) agonist that has been approved recently for the treatment of thrombocytopenia in patients with chronic immune thrombocytopenic purpura. Prior studies have shown that EP stimulates megakaryopoiesis in BM cells from patients with acute myeloid leukemia and myelodysplastic syndrome, and the results also suggested that it may inhibit leukemia cell growth. In the present study, we studied the effects of EP on leukemia cell proliferation and the mechanism of its antiproliferative effects. We found that EP leads to a decreased cell division rate, a block in G1 phase of cell cycle, and increased differentiation in human and murine leukemia cells. Because EP is species specific in that it can only bind TPO-R in human and primate cells, these findings further suggested that the antileukemic effect is independent of TPO-R. We found that treatment with EP leads to a reduction in free intracellular iron in leukemic cells in a dose-dependent manner. Experimental increase of intracellular iron abrogated the antiproliferative and differentiation-inducing effects of EP, demonstrating that its antileukemic effects are mediated through modulation of intracellular iron content. Finally, determination of EP's antileukemic activity in vivo demonstrated its ability to prolong survival in 2 mouse models of leukemia.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 568-568 ◽  
Author(s):  
Michael Andreeff ◽  
Sergej Konoplev ◽  
Rui-Yu Wang ◽  
Zhihong Zeng ◽  
Teresa McQueen ◽  
...  

Abstract The chemokine receptor CXCR4 is critically involved in migration of hematopoietic cells to the stromal derived factor (SDF-1α)-producing bone marrow microenvironment. CXCR4 is regulated in part by mutant FLT3 signaling, but in a series of 122 AML samples with diploid karyotype and lack of FLT3 mutation (ITD), high CXCR4 expression negatively correlated with DFS and OS (p=0.03 and p=0.04, respectively), after multivariate analysis (Konoplev, ASH 2006). We hypothesized that inhibition of SDF-1α-/CXCR4 interactions would result in mobilization of leukemic blasts from the bone marrow into circulation. The in vivo effect of the CXCR4 antagonist AMD3100 was studied in three patients with AML, who had insufficient mobilization of CD34+ cells for autologous stem cell transplantation with G-CSF and/or cytoxan. The combination of G-CSF (10 μg/kg QD) and AMD3100 (240 μg/kg QD SC starting on d4 and repeated for 3–4 days) resulted in massive mobilization of leukemic cells into the circulation in a time-dependent fashion, as determined by flow cytometry and interphase FISH analysis of their respective cytogenetic abnormalities. Patient # Cytogenetics % (+) cells % (+) cells Apheresis FCM Day 2 Day 4/5 CD34x106/kg 1 Trisomy 21 22.6 57.0 FCM CD7/33 22.0 2 Trisomy 9 28.6 68.6 Inv 16 29.0 75.8 4.8 FCM CD13/33 74.0 3 Mono 17 40.4 53.4 5q31 37.5 49.6 8.7 FCM CD13/33 50.0 We and others have previously demonstrated that stroma/leukemia interactions mediate protection of leukemic cells from chemotherapy-induced apoptosis (Konopleva et al, Leukemia2002:1713). We then tested the hypothesis that CXCR4 inhibition would result in increased sensitivity to chemotherapy, using AMD3465, the second generation small-molecule CXCR4 inhibitor with greater potency than AMD3100. Results demonstrate inhibition of surface expression of CXCR4 and of SDF-1α-, and stroma(MS-5)-induced migration of AML cells. In vitro co-culture systems with stromal cells significantly protected leukemic cells (p < 0.01), while AMD3465 decreased stroma-mediated protection from AraC and Busulfan apoptosis and downregulated AKT signaling in AML cells. In a murine model of luciferase labeled Baf-FLT3ITD leukemias, AMD3465 induced massive dissemination of leukemia, which was abrogated by treatment with Sorafenib, a potent FLT3ITD inhibitor (Zhang, ASH 2006). Taken together, our data suggest that SDF-1α/CXCR4 interactions contribute to the resistance of leukemic cells to chemotherapy-induced apoptosis. Disruption of these interactions by CXCR4 inhibition results in leukemia dissemination and chemosensitization. Our results in leukemia patients provide first in man proof-of principle for a novel strategy of targeting the leukemia cell/bone marrow microenvironment interactions. A clinical trial testing this concept in patients with AML is under development.


Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1737
Author(s):  
Bo-Reum Kim ◽  
Seung-Hyun Jung ◽  
A-Reum Han ◽  
Gyeongsin Park ◽  
Hee-Je Kim ◽  
...  

Given the proven importance of the CXCL12/CXCR4 axis in the stroma–acute myeloid leukemia (AML) interactions and the rapid emergence of resistance to FLT3 inhibitors, we investigated the efficacy and safety of a novel CXCR4 inhibitor, LY2510924, in combination with FLT3 inhibitors in preclinical models of AML with FLT3-ITD mutations (FLT3-ITD-AML). Quizartinib, a potent FLT3 inhibitor, induced apoptosis in FLT3-ITD-AML, while LY2510924 blocked surface CXCR4 without inducing apoptosis. LY2510924 significantly reversed stroma-mediated resistance against quizartinib mainly through the MAPK pathway. In mice with established FLT3-ITD-AML, LY2510924 induced durable mobilization and differentiation of leukemia cells, resulting in enhanced anti-leukemia effects when combined with quizartinib, whereas transient effects were seen on non-leukemic blood cells in immune-competent mice. Sequencing of the transcriptome of the leukemic cells surviving in vivo treatment with quizartinib and LY2510924 revealed that genes related to TGF-β signaling may confer resistance against the drug combination. In co-culture experiments of FLT3-ITD-AML and stromal cells, both silencing of TGF-β in stromal cells or TGF-β-receptor kinase inhibitor enhanced apoptosis by combined treatment. Disruption of the CXCL12/CXCR4 axis in FLT3-ITD-AML by LY2510924 and its negligible effects on normal immunocytes could safely enhance the potency of quizartinib, which may be further improved by blockade of TGF-β signaling.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2415-2415
Author(s):  
Hongbo Lu ◽  
Zhihong Zeng ◽  
Yuexi Shi ◽  
Sergej Konoplev ◽  
Donald Wong ◽  
...  

Abstract The chemokine receptor CXCR4 is critically involved in the migration of hematopoietic cells towards the stromal derived factor (SDF-1α)-producing bone marrow microenvironment. We and others have previously demonstrated that stroma/leukemia interactions mediate protection of leukemic cells from chemotherapy-induced apoptosis (Konopleva, Leukemia 2002). Using a peptide analog of SDF-1α designated CTCE-9908, we tested the hypothesis that CXCR4 inhibition interferes with stromal/leukemia cell interactions resulting in increased sensitivity to chemotherapy. Our results showed that CTCE-9908 significantly inhibits SDF-1α-induced migration of U937 (43% inhibition) and OCI-AML3 cells (40% inhibition) in a dose-dependent manner. In three of the four primary AML samples which expressed CXCR4 on cell surface and migrated in response to SDF-1α, 50 μg/ml CTCE-9908 reduced SDF-1α-induced migration of leukemic blasts (60%, 19% and 50% inhibition respectively). In in vitro co-culture systems, stromal cells significantly protected OCI-AML3 cells from chemotherapy induced apoptosis [no MS-5, 75.2±5.2% annexinV(+); with MS-5, 59±1.1% annexinV(+)]. Western blot analysis revealed that CTCE-9908 inhibits Akt and Erk phosphorylation in a dose-dependent manner in the OCI-AML3 cell line stimulated by SDF-1α. Blockade of CXCR4 expression with CTCE-9908 markedly abrogated the protective effects of stromal cells on OCI-AML3 [Ara-C, 59±1.1% annexinV(+); Ara-C + CTCE-9908, 76.9±1.35 annexinV(+)]. Most importantly, it decreased stroma-mediated protection from AraC-induced apoptosis in four out of five primary AML samples with surface expression of functional CXCR4 (mean increase, 25.1±9.3% compared to chemotherapy alone). In vivo, subcutaneous administration of 1.25mg CTCE-9908 induced mobilization of leukemic cells from primary AML patient transplanted into NOD/Scid-IL2Rγ-KO mice (from 15% to 27% circulating leukemic cells 1 hour post CTCE-9908 injection). Taken together, our data suggest that SDF-1α/CXCR4 interactions contribute to the resistance of leukemic cells to chemotherapy-induced apoptosis via retention of leukemic cells in the bone marrow microenvironment niches. Disruption of these interactions by the potent CXCR4 inhibitor CTCE-9908 represents a novel strategy for targeting leukemia cell/bone marrow microenvironment interaction. Based on these observations, in vivo experiments are ongoing to characterize the efficacy of chemotherapy combined with CTCE-9908.


Sign in / Sign up

Export Citation Format

Share Document