antileukemic effect
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 17)

H-INDEX

22
(FIVE YEARS 3)

Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 7037
Author(s):  
Kuan-Chih Wang ◽  
Mei-Chin Lu ◽  
Kai-Cheng Hsu ◽  
Mohamed El-Shazly ◽  
Shou-Ping Shih ◽  
...  

Xestoquinone is a polycyclic quinone-type metabolite with a reported antitumor effect. We tested the cytotoxic activity of xestoquinone on a series of hematological cancer cell lines. The antileukemic effect of xestoquinone was evaluated in vitro and in vivo. This marine metabolite suppressed the proliferation of Molt-4, K562, and Sup-T1 cells with IC50 values of 2.95 ± 0.21, 6.22 ± 0.21, and 8.58 ± 0.60 µM, respectively, as demonstrated by MTT assay. In the cell-free system, it inhibited the activity of topoisomerase I (Topo I) and II (Topo II) by 50% after treatment with 0.235 and 0.094 μM, respectively. The flow cytometric analysis indicated that the cytotoxic effect of xestoquinone was mediated through the induction of multiple apoptotic pathways in Molt-4 cells. The pretreatment of Molt-4 cells with N-acetyl cysteine (NAC) diminished the disruption of the mitochondrial membrane potential (MMP) and apoptosis, as well as retaining the expression of both Topo I and II. In the nude mice xenograft model, the administration of xestoquinone (1 μg/g) significantly attenuated tumor growth by 31.2% compared with the solvent control. Molecular docking, Western blotting, and thermal shift assay verified the catalytic inhibitory activity of xestoquinone by high binding affinity to HSP-90 and Topo I/II. Our findings indicated that xestoquinone targeted leukemia cancer cells through multiple pathways, suggesting its potential application as an antileukemic drug lead.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4340-4340
Author(s):  
Mayte Medrano ◽  
Miriam Guadalupe Contreras-Mostazo ◽  
Teresa Caballero ◽  
Jose Antonio Bejarano-García ◽  
Iván V. Rosado ◽  
...  

Abstract BACKGROUND: We have previously described the antitumor effect of the cannabinoid WIN-55,212-2 (WIN-55) and a set of cannabinoid derivatives (CNB) specific for CB2 in multiple myeloma (Barbado et al, 2018). In AML, we also observed a potent and selective antileukemic effect, affecting signaling and metabolic pathways essential for the viability of tumor cells. Among them, we found an increased stress on the endoplasmic reticulum, mitochondrial damage, and alteration of the metabolism of ceramides, although none of these events turned out to be the main trigger of cell death, since the inhibition of each of them did not prevent the antileukemic effect of CNB. On the other hand, disruption of the mecanisms of DNA repair have been identified as a key oncogeneic event in different solid tumors, and some studies have also suggested that it might be involved in leukemogenesis. More specifically, PARP1 is involved in DNA damage repair. Other functions include the regulation of glycolysis enzymes through the addition of Poly ADP-Ribose (PAR) and the execution of Parthanatos, that occurs whenever PARP-1 becomes over-activated in response to extreme damage inducing nuclear translocation of AIF and depletion of NAD +. OBJECTIVES: In this study we set out to identify the ultimate mechanism that justifies the aforementioned pleiotropic effect of CNB on the metabolism of leukemic cells and their viability. METHODS: Cell viability was determined by MTT and flow cytometry. The mRNA and / or protein expression profile of AML samples or healthy progenitor cells were studied by qPCR and / or Western blot. Glycolytic flux was studied with the XF Glycolytic Rate Assay (Seahorse Biosciences). NAD + levels and glycolytic enzyme activity were measured using quantification kits. Parylation of different enzymes were confirmed by Co-IP using the corresponding antibodies. Finally, NOD/scid/IL-2R gammae null (NSG) mice were xenotransplanted with HL60-Luciferase cell line. Once the presence of leukemic cells was confirmed, treatment with vehicle, WIN-55 cannabinoid at a dose of 5 mg/kg/day or citarabine (ARA-C) at 50 mg/kg during 5 days was administered. Also we tested the effect of these compounds on normal hematopoiesis by treating healthy BALB-C mice. RESULTS: Pretreatment of leukemic cells with Olaparib, a PARP1 inhibitor, reversed WIN-55 induced apoptosis by almost 100%. WIN-55 affected the activity of most glycolysis enzymes, with a marked drop of the activity of GAPDH and pyruvate kinase which was reversed by Olaparib pretreatment. Also G6PDH activity was markedly affected upon culture with WIN-55. Co-IP confirmed parylation of these enzymes which was reversed with Olaparib. ECAR data detected by Seahorse also confirmed the drop in glycolytic capacity produced by WIN-55 in leukemic cells which again was reversed upon culture with Olaparib. In addition, the addition of nicotinamide mononucleotide (NAM), a precursor of NAD +, reversed the loss of viability produced by WIN-55. Next, we confirmed that PARP1 levels were significantly higher in leukemic cell lines and in a series of 40 AML patients as compared to healthy hematopoietic stem cells (HSC). Finally, we observed a translocation of AIF to the nucleus, confirming that WIN-55 produces PARTHANATOS. In a murine model we confirmed treatment with WIN-55,212-2 significantly prolonged survival in AML xenograft mice, with disappearance of the leukemic clone in a significant proportion of cases. By contrast, cannabinoids did not affect the viability of hematopoietic stem cells (HSC) in vivo, resulting in a lack of myeloid toxicity in healthy treated mice. CONCLUSIONS: WIN-55 exerts a selective antileukemic effect through the overactivation of PARP1, affecting the levels of parylation in enzymes involved in glycolysis and pentose phosphate pathways, leading to the translocation of AIF to the nucleus and to depletion of NAD +, which were reversed through PARP1 inhibition. These effects are not observed in normal HSC. These data are confirmed in murine models in which we confirmed the antileukemic effect of WIN-55 withouth hampering normal hematopoiesis. Figure 1 Figure 1. Disclosures Pérez-Simón: Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau.


Author(s):  
Riitta Niinimäki ◽  
Henri Aarnivala ◽  
Joanna Banerjee ◽  
Tytti Pokka ◽  
Kaisa Vepsäläinen ◽  
...  

Abstract Purpose Low doses of folinic acid (FA) rescue after high-dose methotrexate (HD-MTX) have been associated with increased toxicity, whereas high doses may be related to a decreased antileukemic effect. The optimal dosage and duration of FA rescue remain controversial. This study was designed to investigate, whether a shorter duration of FA rescue in the setting of rapid HD-MTX clearance is associated with increased toxicity. Methods We reviewed the files of 44 children receiving a total of 350 HD-MTX courses during treatment for acute lymphoblastic leukemia according to the NOPHO ALL-2000 protocol. Following a 5 g/m2 HD-MTX infusion, pharmacokinetically guided FA rescue commenced at hour 42. As per local guidelines, the patients received only one or two 15 mg/m2 doses of FA in the case of rapid MTX clearance (serum MTX ≤ 0.2 μmol/L at hour 42 or hour 48, respectively). Data on MTX clearance, FA dosing, inpatient time, and toxicities were collected. Results Rapid MTX clearance was observed in 181 courses (51.7%). There was no difference in the steady-state MTX concentration, nephrotoxicity, hepatotoxicity, neutropenic fever, or neurotoxicity between courses followed by rapid MTX clearance and those without. One or two doses of FA after rapid MTX clearance resulted in a 7.8-h shorter inpatient time than if a minimum of three doses of FA would have been given. Conclusion A pharmacokinetically guided FA rescue of one or two 15 mg/m2 doses of FA following HD-MTX courses with rapid MTX clearance results in a shorter hospitalization without an increase in toxic effects.


2021 ◽  
Vol 22 (8) ◽  
pp. 4265
Author(s):  
Jang Mi Han ◽  
Hong Lae Kim ◽  
Hye Jin Jung

Leukemia is a type of blood cancer caused by the rapid proliferation of abnormal white blood cells. Currently, several treatment options, including chemotherapy, radiation therapy, and bone marrow transplantation, are used to treat leukemia, but the morbidity and mortality rates of patients with leukemia are still high. Therefore, there is still a need to develop more selective and less toxic drugs for the effective treatment of leukemia. Ampelopsin, also known as dihydromyricetin, is a plant-derived flavonoid that possesses multiple pharmacological functions, including antibacterial, anti-inflammatory, antioxidative, antiangiogenic, and anticancer activities. However, the anticancer effect and mechanism of action of ampelopsin in leukemia remain unclear. In this study, we evaluated the antileukemic effect of ampelopsin against acute promyelocytic HL60 and chronic myelogenous K562 leukemia cells. Ampelopsin significantly inhibited the proliferation of both leukemia cell lines at concentrations that did not affect normal cell viability. Ampelopsin induced cell cycle arrest at the sub-G1 phase in HL60 cells but the S phase in K562 cells. In addition, ampelopsin regulated the expression of cyclins, cyclin-dependent kinases (CDKs), and CDK inhibitors differently in each leukemia cell. Ampelopsin also induced apoptosis in both leukemia cell lines through nuclear condensation, loss of mitochondrial membrane potential, increase in reactive oxygen species (ROS) generation, activation of caspase-9, caspase-3, and poly ADP-ribose polymerase (PARP), and regulation of Bcl-2 family members. Furthermore, the antileukemic effect of ampelopsin was associated with the downregulation of AKT and NF-κB signaling pathways. Moreover, ampelopsin suppressed the expression levels of leukemia stemness markers, such as Oct4, Sox2, CD44, and CD133. Taken together, our findings suggest that ampelopsin may be an attractive chemotherapeutic agent against leukemia.


Phytomedicine ◽  
2021 ◽  
Vol 80 ◽  
pp. 153383
Author(s):  
Mingmin Tang ◽  
Xin Xie ◽  
Muran Shi ◽  
Wenxiu Xin ◽  
Guowan Zheng ◽  
...  

2020 ◽  
Vol 4 (20) ◽  
pp. 5146-5156
Author(s):  
Ok-kyong Chaekal ◽  
Andromachi Scaradavou ◽  
Emeline Masson Frenet ◽  
Maria S. Albano ◽  
Melissa Cushing ◽  
...  

Abstract We conducted a prospective evaluation of cord blood (CB)–derived adoptive cell therapy, after salvage chemotherapy, for patients with advanced myeloid malignancies and poor prognosis. Previously, we reported safety, feasibility, and preliminary efficacy of this approach. We present updated results in 31 patients who received intensive chemotherapy followed by CB infusion and identify predictors of response. To enhance the antileukemic effect, we selected CB units (CBU) with shared inherited paternal antigens and/or noninherited maternal antigens with the recipients. Twenty-eight patients with acute myeloid leukemia (AML), 2 with myelodysplastic syndrome, and 1 in chronic myeloid leukemia myeloid blast crisis were enrolled; 9 had relapsed after allogeneic transplant. Response was defined as <5% blasts in hypocellular bone marrow at 2 weeks after treatment. Thirteen patients (42%) responded; a rate higher than historical data with chemotherapy only. Twelve had CBU-derived chimerism detected; chimerism was a powerful predictor of response (P < .001). CBU lymphocyte content and a prior transplant were associated with chimerism (P < .01). Safety was acceptable: 3 patients developed mild cytokine release syndrome, 2 had grade 1 and 2 had grade 4 graft-versus-host disease. Seven responders and 6 nonresponders (after additional therapy) received subsequent transplant; 5 are alive (follow-up, 5-47 months). The most common cause of death for nonresponders was disease progression, whereas for responders it was infection. CB-derived adoptive cell therapy is feasible and efficacious for refractory AML. Banked CBU are readily available for treatment. Response depends on chimerism, highlighting the graft-versus-leukemia effect of CB cell therapy. This trial was registered at www.clinicaltrials.gov as #NCT02508324.


2020 ◽  
Vol 18 ◽  
pp. 623-630
Author(s):  
Ying He ◽  
Lin Xu ◽  
Jingjing Feng ◽  
Kangni Wu ◽  
Yanmin Zhao ◽  
...  

2020 ◽  
Vol 39 (10-12) ◽  
pp. 1346-1346 ◽  
Author(s):  
Adrian C Jaramillo ◽  
Andries M Bergman ◽  
Elizabeth M Comijn ◽  
Gerrit Jansen ◽  
Gertjan J L Kaspers ◽  
...  

2020 ◽  
Author(s):  
Victoria da Silva-Diz ◽  
Bin Cao ◽  
Olga Lancho ◽  
Eric Chiles ◽  
Amer Alasadi ◽  
...  

AbstractT-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy. Despite recent advances in treatments with intensified chemotherapy regimens, relapse rates and associated morbidities remain high. In this context, metabolic dependencies have emerged as a druggable opportunity for the treatment of leukemia. Here, we tested the antileukemic effects of MB1-47, a newly developed mitochondrial uncoupling compound. MB1-47 treatment in T-ALL cells robustly inhibited cell proliferation via both cytostatic and cytotoxic effects as a result of compromised mitochondrial energy and macromolecule depletion, which severely impair nucleotide biosynthesis. Mechanistically, acute treatment with MB1-47 in primary leukemias promoted AMPK activation and downregulation of mTOR signaling, stalling anabolic pathways that support leukemic cell survival. Indeed, MB1-47 treatment in mice harboring murine NOTCH1-induced leukemias or human T-ALL PDXs led to a potent antileukemic effect with 2-fold extension in survival without overlapping toxicities. Overall, our findings demonstrate a critical role for mitochondrial oxidative phosphorylation in T-ALL and uncover MB1-47-driven mitochondrial uncoupling as a novel therapeutic strategy for the treatment of this disease.


2020 ◽  
Author(s):  
Noelia Puente‑Moncada ◽  
Maria Turos‑Cabal ◽  
Ana S�nchez‑S�nchez ◽  
Isaac Antol�n ◽  
Federico Herrera ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document