Nilotinib Exerts Direct Pro-Atherogenic and Anti-Angiogenic Effects On Vascular Endothelial Cells: A Potential Explanation For Drug-Induced Vasculopathy In CML

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 257-257 ◽  
Author(s):  
Hadzijusufovic Emir ◽  
Karin Albrecht-Schgoer ◽  
Kilian Huber ◽  
Florian Grebien ◽  
Gregor Eisenwort ◽  
...  

Abstract The BCR/ABL1 inhibitor nilotinib is increasingly used to treat patients with chronic myeloid leukemia (CML). However, nilotinib apparently induces metabolic changes, including an increase in the fasting glucose level. In addition, vascular adverse events, including progressive atherosclerosis with peripheral arterial occlusive disease (AOD) have been reported in nilotinib-treated CML patients. We reviewed and updated AOD events in our CML patients receiving nilotinib (n=34) and initiated preclinical in vitro and in vivo studies in order to dissect potential targets and mechanisms. After a median observation time (MOT) of 24 months, the frequency of AOD (26.5%) and severe AOD requiring surgical intervention and/or prolonged hospitalization (17.6%) was higher in nilotinib-treated patients compared to risk factor-, observation time-, and age-matched controls (34 imatinib-treated patients with CML, 34 with myelodysplastic syndromes, 34 with JAK2-mutated MPN and 34 with lymphoid neoplasms; <5% AOD, p<0.05). After a MOT of 36 months, the frequency of AOD amounted to 36.1% and the frequency of severe AOD was 19.4%. We next examined the in vitro effects of nilotinib on cultured human umbilical vein endothelial cells (HUVEC), human coronary artery-derived endothelial cells (HCAEC), and the human microvascular endothelial cell line HMEC-1. As determined by 3H-thymidine incorporation, nilotinib was found to inhibit the proliferation of endothelial cells in a dose-dependent manner, with pharmacologically relevant IC50 values obtained in HUVEC (1.0 µM), HCAEC (100 nM), and HMEC-1 (1.0 µM), whereas imatinib showed little effect up to 5 µM. Moreover, nilotinib was found to inhibit the migration of HUVEC in a wound-scratch assay as well as angiogenesis in a tube-formation assay (relative capillary tubes: VEGF+control: 1.8±0.1, VEGF+nilotinib (100 nM): 1.3±0.1, VEGF+imatinib (100 nM): 1.7±0.05; n=3, p<0.01 for VEGF alone vs VEGF+nilotinib). In a mouse model of hindlimb ischemia, nilotinib (75 mg/kg/day p.o. for 28 days) was found to slow blood flow-recovery after induction of ischemia whereas imatinib (100 mg/kg/day p.o. for 28 days) showed no comparable effect (laser Doppler perfusion imaging ratio ischemic/control leg: control mice: 0.81±0.03, imatinib-treated mice: 0.79±0.04, nilotinib-treated mice: 0.68±0.04; n=13/group; p<0.05 for nilotinib vs control and for nilotinib vs imatinib). The decreased blood perfusion was accompanied by an increased rate of limb necrosis (necrosis score: control: 1.15±0.08, imatinib: 1.17±0.05, nilotinib: 1.54±0.18; p<0.05 for nilotinib vs control and nilotinib vs imatinib). Moreover, microvessel density was significantly lower in the affected hind limb in nilotinib-treated mice compared to imatinib-treated mice or control-mice (p<0.05). In addition, we found that nilotinib (between 1-10 µM), but not imatinib (1-10 µM) promotes the expression of pro-atherogenic cytoadhesion molecules (CAM) on HUVEC, including ICAM-1 (CD54), VCAM-1 (CD106) and E-Selectin (CD62E). By contrast, nilotinib (up to 10 µM) showed no effects on expression of plasminogen activators or uPA receptor (CD87) in cultured endothelial cells. As assessed by chemical proteomics profiling and phospho-array analysis, several angiogenesis-related and other endothelial antigens, including Tie-2/TEK, JAK1, BRAF and EPHB2 were identified as molecular targets of nilotinib, whereas imatinib did not bind to these vascular targets in endothelial cells. As assessed by immunohistochemistry using antibodies against KIT and mast cell tryptase, we also found that in our CML patients, nilotinib induces an almost complete depletion of KIT+ mast cells, a cell type that serves as unique source of heparin and uncomplexed tPA and has been implicated as a major repair cell in vascular disorders. However, imatinib was also found to induce mast cell depletion in our patients with CML. Neither nilotinib nor imatinib showed in vitro or in vivo effects on platelet adhesion or platelet aggregation. In conclusion, nilotinib exerts multiple effects on vascular endothelial cells and other perivascular cells such as mast cells, presumably through multiple mechanisms and targets. We hypothesize that these effects may contribute to nilotinib-induced vasculopathy in CML. Disclosures: Wolf: Bristol-Meyers Squibb: Honoraria; Pfizer: Honoraria; Novartis: Honoraria, Research Funding. Valent:Novartis: Consultancy, Honoraria, Research Funding.

1996 ◽  
Vol 316 (3) ◽  
pp. 703-707 ◽  
Author(s):  
Ralf BIRKENHÄGER ◽  
Bernard SCHNEPPE ◽  
Wolfgang RÖCKL ◽  
Jörg WILTING ◽  
Herbert A. WEICH ◽  
...  

Vascular endothilial growth factor (VEGF) and placenta growth factor (PIGF) are members of a dimeric-growth-factor family with angiogenic properties. VEGF is a highly potent and specific mitogen for endothelial cells, playing a vital role in angiogenesis in vivo. The role of PIGF is less clear. We expressed the monomeric splice forms VEGF-165, VEGF-121, PIGF-1 and PlGF-2 as unfused genes in Escherichia coli using the pCYTEXP expression system. In vitro dimerization experiments revealed that both homo- and hetero-dimers can be formed from these monomeric proteins. The dimers were tested for their ability to promote capillary growth in vivo and stimulate DNA synthesis in cultured human vascular endothelial cells. Heterodimers comprising different VEGF splice forms, or combinations of VEGF/PlGF splice forms, showed mitogenic activity. The results demonstrate that four different heterodimeric growth factors are likely to have as yet uncharacterized functions in vivo.


1983 ◽  
Vol 60 (1) ◽  
pp. 89-102
Author(s):  
D de Bono ◽  
C. Green

The interactions between human or bovine vascular endothelial cells and fibroblast-like vascular intimal spindle-shaped cells have been studied in vitro, using species-specific antibodies to identify the different components in mixed cultures. Pure cultures of endothelial cells grow as uniform, nonoverlapping monolayers, but this growth pattern is lost after the addition of spindle cells, probably because the extracellular matrix secreted by the latter causes the endothelial cells to modify the way they are attached to the substrate. The result is a network of tubular aggregates of endothelial cells in a three-dimensional ‘polylayer’ of spindle-shaped cells. On the other hand, endothelial cells added to growth-inhibited cultures of spindle-shaped cells will grow in sheets over the surface of the culture. Human endothelial cells grown in contact with spindle-shaped cells have a reduced requirement for a brain-derived endothelial growth factor. The interactions of endothelial cells and other connective tissue cells in vitro may be relevant to the mechanisms of endothelial growth and blood vessel formation in vivo, and emphasize the potential importance of extracellular matrix in controlling endothelial cell behaviour.


Blood ◽  
2010 ◽  
Vol 115 (20) ◽  
pp. 4130-4137 ◽  
Author(s):  
Jinmin Gao ◽  
Lei Sun ◽  
Lihong Huo ◽  
Min Liu ◽  
Dengwen Li ◽  
...  

Cylindromatosis (CYLD) is a deubiquitinase that was initially identified as a tumor suppressor and has recently been implicated in diverse normal physiologic processes. In this study, we have investigated the involvement of CYLD in angiogenesis, the formation of new blood vessels from preexisting ones. We find that knockdown of CYLD expression significantly impairs angiogenesis in vitro in both matrigel-based tube formation assay and collagen-based 3-dimensional capillary sprouting assay. Disruption of CYLD also remarkably inhibits angiogenic response in vivo, as evidenced by diminished blood vessel growth into the angioreactors implanted in mice. Mechanistic studies show that CYLD regulates angiogenesis by mediating the spreading and migration of vascular endothelial cells. Silencing of CYLD dramatically decreases microtubule dynamics in endothelial cells and inhibits endothelial cell migration by blocking the polarization process. Furthermore, we identify Rac1 activation as an important factor contributing to the action of CYLD in regulating endothelial cell migration and angiogenesis. Our findings thus uncover a previously unrecognized role for CYLD in the angiogenic process and provide a novel mechanism for Rac1 activation during endothelial cell migration and angiogenesis.


Author(s):  
LeShana SaintJean ◽  
H.S. Baldwin

The endocardium represents a distinct population of endothelial cells that arises during the initiation of heart development. Endocardial cells can easily be distinguished from most of the other cardiac cell types. However, endocardial and vascular endothelial cells contain a similar genetic profile that limits the ability to study each group independently. Despite these limitations, tremendous progress has been made in identifying the different roles of endocardial cells throughout heart development. Initial studies focused on the origin of endocardial cells and their role in valvulogenesis, trabeculation, and formation of the ventricular and atrial septum. With the advancement of microscopy and the availability of endocardial specific reporter models (in vitro and in vivo) we have obtained more insight into the molecular, structural, and functional complexity of the endocardium. Additional studies have demonstrated how the endocardium is also involved in the development of coronary vessels within the compact myocardium and in heart regeneration.


2017 ◽  
Vol 38 (5) ◽  
pp. 3153-3159 ◽  
Author(s):  
Xinwen Wang ◽  
Weifeng Xu ◽  
Shenglin Wang ◽  
Feqiang Yu ◽  
Jinyi Feng ◽  
...  

2012 ◽  
Vol 302 (4) ◽  
pp. H983-H991 ◽  
Author(s):  
Ji Zhang ◽  
Morton H. Friedman

The adaptation of vascular endothelial cells to shear stress alteration induced by global hemodynamic changes, such as those accompanying exercise or digestion, is an essential component of normal endothelial physiology in vivo. An understanding of the transient regulation of endothelial phenotype during adaptation to changes in mural shear will advance our understanding of endothelial biology and may yield new insights into the mechanism of atherogenesis. In this study, we characterized the adaptive response of arterial endothelial cells to an acute increase in shear stress magnitude in well-defined in vitro settings. Porcine endothelial cells were preconditioned by a basal level shear stress of 15 ± 15 dyn/cm2 at 1 Hz for 24 h, after which an acute increase in shear stress to 30 ± 15 dyn/cm2 was applied. Endothelial permeability nearly doubled after 40-min exposure to the elevated shear stress and then decreased gradually. Transcriptomics studies using microarray techniques identified 86 genes that were sensitive to the elevated shear. The acute increase in shear stress promoted the expression of a group of anti-inflammatory and antioxidative genes. The adaptive response of the global gene expression profile is triphasic, consisting of an induction period, an early adaptive response (ca. 45 min) and a late remodeling response. Our results suggest that endothelial cells exhibit a specific phenotype during the adaptive response to changes in shear stress; this phenotype is different than that of fully adapted endothelial cells.


Author(s):  
Cheng-Jen Chang ◽  
Chung-Ho Sun ◽  
Lih-Huei L. Liaw ◽  
Michael W. Berns ◽  
J. Stuart Nelson

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1883-1883 ◽  
Author(s):  
Emir Hadzijusufovic ◽  
Rudolf Kirchmair ◽  
Markus Theurl ◽  
Susanne Gamperl ◽  
Daniela Lener ◽  
...  

Abstract The potent BCR-ABL1-targeting tyrosine kinase inhibitor (TKI) ponatinib is used for the treatment of patients with drug-resistant chronic myeloid leukemia (CML). However, an increased risk of development of cardiovascular events has been described in CML patients treated with ponatinib. The etiology of these adverse events is currently unknown. In an attempt to discover mechanisms underlying ponatinib-induced adverse vascular events, we have evaluated the effects of ponatinib in vitro on human vascular endothelial cells and on contraction of explanted mice aortic rings. In addition, we examined the effects of ponatinib on angiogenesis in vivo in a mouse model of hind limb ischemia. Ponatinib dose-dependently induced apoptosis in human coronary artery endothelial cells (HCAEC) in a caspase assay (relative apoptosis vs. 1% DMSO: ponatinib 50 nM: 1.79±0.38, p<0.001; ponatinib 100 nM: 2.13±0.42, p<0.001) and this drug effect could partially be blocked by addition of insulin (ponatinib 100 nM + insulin 5 µg/ml: 1.70±0.18, p<0.05). In addition, ponatinib was found to inhibit the proliferation of human umbilical vein endothelial cells (HUVEC) and the human microvascular endothelial cell line HMEC-1, with IC50 values ranging between 100 and 250 nM (p<0.05) as determined by thymidine-incorporation assay. Using a phospho-receptor tyrosine kinase assay in HCAEC, we found that ponatinib also inhibits fetal bovine serum-induced phosphorylation of the VEGF receptor KDR as well as phosphorylation of MER and insulin receptors, which play a role in angiogenesis, vascular homeostasis, and vessel protection. We also found that ponatinib (1 µM, 4 hours) increases adhesion of HUVEC to a plastic-surface compared to DMSO control (Figure). Based on clinical observations of vasoconstriction in ponatinib-treated patients, we also applied ponatinib on aortic rings harvested from C57BL/6 mice. Ponatinib (100 nM, overnight) enhanced norepinephrine-induced vasoconstriction (log EC50: control -7.76±0.06 vs. ponatinib -7.96±0.05, p<0.05, n=6) and inhibited acetylcholine-mediated vasodilatation (log IC50: control -7.45±0.05 vs. ponatinib -7.06±0.1, p<0.001) as shown by myography. These drug effects were blocked by inhibition of nitric oxide (using nitric oxide synthase inhibitor L-NNA, 100 µM) or COX (by applying diclofenac, 3 mg/l), suggesting that ponatinib promotes the generation of vasoconstricting prostanoids. Ponatinib effects were also blocked by the calcium channel blocker nifedipine (1 µM). In C57BL/6 mice, ponatinib (5 mg/kg/day for 35 days) was found to inhibit blood flow recovery in a hind limb ischemia model as shown by Laser-Doppler perfusion imaging after femoral artery ligation. The blood perfusion ratios of the ischemic limb vs. non-ischemic limb at week 5 were: control group: 0.67±0.07 vs. ponatinib: 0.56±0.1; p<0.05). Ponatinib-treated mice also developed toe and foot necrosis more frequently than control mice (necrosis score: control: 0.3 vs. ponatinib: 1.3). In summary, ponatinib affects endothelial cell growth and vasomotor function in-vitro as well as blood flow recovery in a mouse model. These findings might help explain the occurrence of vascular events in CML patients treated with ponatinib and may lead to development of therapeutic strategies for prevention and treatment of ponatinib-induced adverse events. Figure Figure. Disclosures Kirchmair: Ariad: Research Funding. Valent:Ariad: Honoraria, Research Funding; Amgen: Honoraria; Deciphera Pharmaceuticals: Research Funding; Novartis: Honoraria, Research Funding; Celgene: Honoraria, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document