Human NUP98/Iqcg Fusion Gene Induced An Acute Myelomonocytic Leukemia In Mice

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3725-3725
Author(s):  
Qi-Yao Zhang ◽  
Ping Liu ◽  
Mengmeng Pan ◽  
Sai-Juan Chen

Abstract NUP98 gene encoding a nucleoporin located at 11p15 has been reported to be fused with about 30 different partner genes by chromosomal translocations in hematological malignances. NUP98/IQCG was cloned in a patient of Myeloid/ T-lymphoid bi-phenotypic leukemia with 47, XX, t(3;11)(q29q13;p15)der(3)(q29), +21 karyotype. However, NUP98/IQCG’s ability for leukemogenesis has not been identified yet.In this study, we established a retrovirus-mediated murine bone marrow transduction and transplantation (BMT) model of NUP98/IQCG to investigate its oncogenicity. In our model, half of the NUP98/IQCG mice developed a penetrable and transplantable acute myelomonocytic leukemia ,which was similar to the phenotype of patient with t(3;11). It suggested that NUP98/IQCG could induce the disease development. To investigate how the fusion gene promoted leukemogenesis, we transduced NUP98/IQCG into primary bone marrow cells, and found that NUP98/IQCG-expressing cells retained the ability to generate colonies in serial replating, while seldom control cells did, which indicated the increasing self-renewal ability caused by NUP98/IQCG. Meanwhile, when induced by Macrophage-Colony Stimulating Factor, NUP98/IQCG -expression bone marrow cells showed enhanced proliferation in vitro. Further molecular mechanism studies revealed that NUP98/IQCG could be involved in both NFκB and CREB pathways during leukemia development. In summary, we showed that NUP98/IQCG promoted leukemogenesis in BMT mouse model through increasing the bone marrow cells’ proliferation and self-renewal capacity, which explained the fusion gene’s oncogenicity in patient with t(3;11). Our mouse model will be a powerful tool both to investigate the leukemogenic mechanism of NUP98-related fusion gene, and to find the drugs for treating the disease. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4194-4194
Author(s):  
Tobias Berg ◽  
Michael Heuser ◽  
Florian Kuchenbauer ◽  
Gyeongsin Park ◽  
Stephen Fung ◽  
...  

Abstract Abstract 4194 Cytogenetically normal acute myeloid leukemia (CN-AML) patients with high BAALC or MN1 expression have a poor prognosis. Whereas the oncogenic function of MN1 is well established, the functional role of BAALC in hematopoiesis is not known. We therefore compared the expression of BAALC and MN1 in 140 CN-AML patients by quantitative PCR. To further assess the impact of BAALC on leukemogenesis we used retroviral gene transfer into primary murine bone marrow cells and cells immortalized with NUP98-HOXD13 (ND13) and HOXA9. Transduced cells were assessed in vitro by colony forming assays and for their sensitivity to treatment with all-trans retinoic acid (ATRA). They were also evaluated by in vivo transplantation into lethally-irradiated mice. In the 140 CN-AML patients analyzed, the expression of BAALC and MN1 was highly correlated (R=0.71). Retroviral overexpression of MN1 or BAALC in the Hox gene-immortalized bone marrow cells did not cause upregulation of the other gene, suggesting that these genes do not regulate each other. In murine bone marrow cells BAALC did not immortalize the cells in vitro as assessed by serial replating of transduced cells in methylcellulose assays. Transplantation of transduced cells resulted in negligible engraftment of approximately 1 percent at 4 weeks after transplantation. However, co-transduction of BAALC into NUP98-HOXD13 cells (which are very sensitive to the treatment with all-trans retinoic acid) increased the 50 percent inhibitory concentration (IC50) of ATRA by 4.3-fold, suggesting a negative impact of BAALC on myeloid differentiation. We next evaluated whether the differentiation inhibiting effects of BAALC may cooperate with the self renewal-promoting effects of HOXA9 to induce leukemia in mice. Mice receiving transplants of murine bone marrow cells transduced with BAALC and HOXA9 developed myeloid leukemias with a median latency of 139.5 days that were characterized by leukocytosis, massively enlarged spleens (up to 1.02 g), anemia and thrombocytopenia. Infiltrations of myeloid cells were also found in liver, spleen, and kidney. The disease was transplantable into secondary animals. By Southern blot analysis we found one to two BAALC viral integrations per mouse, suggesting that clonal disease had developed from BAALC-transduced cells. We demonstrate for the first time that BAALC blocks myeloid differentiation and promotes leukemogenesis when combined with the self-renewal promoting oncogene HOXA9. Due to its prognostic and functional effects BAALC may become a valuable therapeutic target in leukemia patients. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 859-859 ◽  
Author(s):  
Chen Zhao ◽  
Yan Xiu ◽  
John M Ashton ◽  
Lianping Xing ◽  
Yoshikazu Morita ◽  
...  

Abstract Abstract 859 RelB and NF-kB2 are the main effectors of NF-kB non-canonical signaling and play critical roles in many physiological processes. However, their role in hematopoietic stem/progenitor cell (HSPC) maintenance has not been characterized. To investigate this, we generated RelB/NF-kB2 double-knockout (dKO) mice and found that dKO HSPCs have profoundly impaired engraftment and self-renewal activity after transplantation into wild-type recipients. Transplantation of wild-type bone marrow cells into dKO mice to assess the role of the dKO microenvironment showed that wild-type HSPCs cycled more rapidly, were more abundant, and had developmental aberrancies: increased myeloid and decreased lymphoid lineages, similar to dKO HSPCs. Notably, when these wild-type cells were returned to normal hosts, these phenotypic changes were reversed, indicating a potent but transient phenotype conferred by the dKO microenvironment. However, dKO bone marrow stromal cell numbers were reduced, and bone-lining niche cells supported less HSPC expansion than controls. Further, increased dKO HSPC proliferation was associated with impaired expression of niche adhesion molecules by bone-lining cells and increased inflammatory cytokine expression by bone marrow cells. Thus, RelB/NF-kB2 signaling positively and intrinsically regulates HSPC self-renewal and maintains stromal/osteoblastic niches and negatively and extrinsically regulates HSPC expansion and lineage commitment through the marrow microenvironment. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 999-999
Author(s):  
Lynette C.Y. Chee ◽  
Jean Hendy ◽  
Louise Purton ◽  
Grant A. McArthur

Abstract Abstract 999 All-trans retinoic acid (ATRA) is used successfully to treat acute promyelocytic leukemia (APML), however, to date it has not shown promise in treating other AML subtypes. ATRA has been shown to enhance hematopoietic stem cell (HSC) self-renewal (requiring RARγ activation) but promotes differentiation of myeloid progenitors likely through RARα activation. We hypothesized that (1) the lack of success of ATRA in treating other AML subtypes may be due to the potential ability of ATRA to enhance self-renewal of the leukemic stem cell and (2) the use of a specific RARα agonist may have more promise in enhancing AML differentiation. We therefore compared the effects of pharmacological levels (1μM) of ATRA and an RARα-specific agonist, NRX195183, on bone marrow cells harvested from a Cre-inducible conditional AML1-ETO (AE) knock-in murine model. AE cells cultured for 2 weeks with ATRA showed significant reductions in the proportions of mature myeloid cells (Gr1brightCD11b+) by fluorescence activated cell sorting (FACS) (DMSO: 14.2±4.3%, ATRA: 4.0±1.6%, p=0.04, n=4). By 4 weeks of culture, ATRA-treated AE cells had increased blast and reduced maturing myeloid cell proportions (Blasts %: DMSO 70.2 ± 3.0, ATRA 95.3 ± 1.2, p=0.08; Intermediate %: DMSO 14.3 ± 2.6, ATRA 3.8 ± 1.0, p=0.01; Neutrophils %: DMSO 2.3± 1.0, ATRA 0.3 ± 0.2, p=0.07, n=6). Furthermore, ATRA potentiated the clonogenicity of the AE cells after 5 weeks of treatment in vitro (Mean±SEM for colony #/ 5×104 cells: DMSO 505.8±337.0, ATRA 4394±388.9, p=0.001; n=6). In contrast, AE cells cultured for 2 weeks with NRX195183 showed significant increases in the proportions of mature myeloid cells by FACS (DMSO: 15.8±3.5%, NRX195183 26.7±3.0%, p=0.03; n=5). By 4 weeks of culture, NRX195183-treated AE cells had decreased blast and increased maturing myeloid cell proportions (Blasts %: DMSO 82.4±3.0, NRX195183 58.8±9.1, p=0.03; Intermediate %: DMSO 14.5±2.5, NRX195183 29.0±6.8, p=0.07; Neutrophils %: DMSO 1.6±0.8, NRX195183 8.2±4.7 p=ns; DMSO n=8, NRX195183 n=5). Moreover, NRX195183 reduced the clonogenicity of the AE cells after 5 weeks of treatment in vitro (Mean±SEM for colony #/ 5×104 cells DMSO 554.8±252.6, NRX195183 82.6±61.6, p=0.05; n=8). Short-term in vivo transplants of fetal liver cells overexpressing the truncated AE gene, AE9a, into sublethally irradiated recipients revealed similar findings in the NRX195183-treated mice with a decrease in blasts and an increase in mature neutrophils in the peripheral blood on morphological analysis after 4 weeks of treatment (Blasts x106/ml: DMSO 3.1±1.0, NRX195183 0.9±0.3, p=0.08; Neutrophils x106/ml: DMSO 0.5±0.1, NRX195183 0.8±0.1, p=0.04; DMSO n=16, NRX195183 n=11). Taken together, these findings support a model whereby ATRA promotes self-renewal of leukemic blasts whilst NRX195183 has the opposing effect. To understand the mechanism by which ATRA promotes self-renewal in AE cells, we performed genome-wide gene expression analyses on the ATRA- versus control-treated AE cells. This revealed 16 differentially upregulated genes after 24 hours of treatment. Using Ingenuity Pathway Analysis, the top scoring network in the ATRA-treated AE cells was cell-to-cell signalling and interaction (p=1.1E-7-2.4E-3), lipid metabolism (p=2.3E-7-2.0E-3) and small molecule biochemistry (p=2.3E-7-2.1E-3); SERPINE1 and BMP2 were the genes with the highest connectivity within the network interacting with molecules known for their roles in tumorigenesis, including AKT, NF-kβ complex and TGFβ1. SERPINE1 upregulation has been shown to be RARα-mediated whilst BMP2 has been shown to be a RARγ-regulated gene. Interestingly, the specific RARγ agonist, NRX204723, had no effect on the clonogenic potential of these AE progenitors thus raising the hypothesis that both RARα and RARγ activation are required to promote self-renewal of the AE progenitors. Further studies using both RARα/RARγ agonists are warranted to assess if the ATRA effects on AE cells are phenocopied. Collectively, these findings reveal the contrasting roles of specific RARα activation in promoting loss of self-renewal ability and enhancing differentiation in the AE cells whilst ATRA promotes clonogenicity of these cells. This has potential significant implications in AML treatment as specific RARα agonists may be beneficial in improving the efficacy of current treatment modalities to achieve sustained remission in other AML subtypes. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1280-1280
Author(s):  
Vaia Stavropoulou ◽  
Susanne Kaspar ◽  
Laurent Brault ◽  
Sabine Juge ◽  
Stefano Morettini ◽  
...  

Abstract Abstract 1280 Previous studies have shown that the expression of several leukemia-associated mixed lineage leukemia (MLL) fusion genes transformed human and mouse bone marrow cells in vitro and in vivo. In order to dissect the molecular and cellular targets of the MLL-AF9 fusion, we generated a novel inducible doxycycline (DOX)-regulated transgenic mouse model. Conditional ex vivo activation of MLL-AF9 induced aberrant self-renewal and impaired differentiation of long-term or short-term hematopoietic stem (LT-HSC and ST-HSC), common myeloid progenitor (CMP) and granulocyte-macrophage progenitor (GMP) cells in a fully reversible manner. Direct activation of the fusion in vivo or after transplantation of transgenic bone marrow cells into irradiated hosts induced an aggressive and transplantable disease after a median latency of 80days characterized as acute myelo-monocytic leukemia closely mimicking the human disease. Fusion gene expression and leukemia induction was DOX dosage dependent and reversible upon DOX removal. Activation of MLL-AF9 in isolated LT-HSC or GMP cells in vitro or in vivo resulted in the accumulation of immature blast-like cells with similar immunophenotypes. However, MLL-AF9-expressing stem and progenitor cells displayed distinct properties such as colony formation, differentiation and resistance to chemotherapeutic drugs. Turning-off the fusion resulted in multi-lineage differentiation of LT-HSC-derived cells, whereas GMP-derived cells were limited to mature macrophages and granulocytes suggesting partial maintenance of their original identity. In line with these in vitro observations, lower cell numbers of transplanted LT-HSCs induced a more aggressive leukemia with a significantly shorter latency as compared to ST-HSC, CMP or GMPs. Immunophenotypically 15% of the LT-HSC derived leukemias displayed a CMP–like phenotype and had a median latency of 37d (“early”) whereas the rest of the cases displayed a GMP-like phenotype with a median latency of 73d (“late”). In contrast, only GMP-like phenotypes and longer latencies were observed upon transplanting ST-HSCs (75d), CMPs (72d) or GMPs (100d). Transplantation of blasts from “early” LT-HSC- and GMP-derived leukemias into secondary recipients induced the disease after similar latency, however, cytarabine (Ara-C) treatment significantly delayed only the disease induced by GMP- but not by LT-HSC-derived blasts. Gene expression profiling in immortalized pre-leukemic cells revealed down-regulation of over 300 genes, including several well-known MLL targets such as Meis1, HoxA5, HoxA9 and HoxA10 upon reducing the levels of MLL-AF9 expression. Likewise, we observed a global decrease in histone H3 lysine 79 dimethylation consistent with a Dot1l function in MLL-AF9 driven leukemia. LT-HSC-derived (“early”) blasts displayed distinct genetic signatures with > 400 genes highly and > 1300 genes lowly expressed (p001 fc1.5), clearly separating them from the GMP-derived blasts. Evi-1 and Erg, two prognostic markers in patient-derived gene signatures, stood out among these genes. The aggressive “early” LT-derived murine leukemias showed high Evi-1 and Erg expression levels (Evi-1 high, Erg high) as compared to the “late” LT-derived (Evi-1 low, Erg high) or the GMP-derived leukemias (Evi-1 low, Erg low). These observations suggest that the previously reported poor prognosis associated with elevated EVI-1 and/or ERG expression might directly reflect the cell of origin of the disease. We are currently exploiting our highly informative MLL-AF9 disease model to evaluate the functional relevance of novel origin-dependent MLL-AF9 target genes and to identify novel prognostic markers and therapeutic targets. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 595-595 ◽  
Author(s):  
Liubin Yang ◽  
Benjamin Rodriguez ◽  
Min Luo ◽  
Mira Jeong ◽  
David Ruau ◽  
...  

Abstract The de novo DNA methyltransferase (DNMT) 3A is mutated in 50% of patients with mixed phenotype acute leukemia, 20% with acute myeloid leukemia (AML) and 18% with T-cell acute lymphoblastic leukemia (T-ALL). The mechanisms through which mutant DNMT3A contributes to hematologic malignancy are poorly understood. In mice, deletion of Dnmt3a in hematopoietic stem cells (HSCs) leads to abnormal DNA methylation and inhibition of differentiation, but is insufficient for leukemic transformation. To study the role of Dnmt3a in leukemia, we combined Dnmt3a-deletion with the activated FLT3 proto-oncogene (FLT3-ITD), a frequent co-mutation with DNMT3A in AML patients, to establish a murine model of Dnmt3a-associated malignancy. In mice transplanted with Dnmt3a-knockout (KO) or wild-type (WT) bone marrow cells transduced with a FLT3-ITD retrovirus, Dnmt3a-loss dramatically impacted the disease phenotype. Dnmt3aKO/ITD transplanted mice had significantly shortened survival (79 days vs. 116 days) and increased rate of acute leukemia compared to mice with ITD alone. The mice developed CD4+CD8+ Notch activation-associated T-ALL or myeloproliferative disease (MPD), or concurrently both, consistent with previous studies of FLT3-ITD in mice. To determine the leukemia-initiating population, we transplanted sorted HSC, myeloid, and lymphoid progenitors transduced with FLT3-ITD. All mice transplanted with HSC and myeloid progenitors succumbed to both malignancies. To uncover the mechanisms by which Dnmt3a-deletion accelerated acute leukemia, we analyzed changes in DNA methylation in T-ALL blasts by whole genome bisulfite sequencing. Compared to Dnmt3aWT/ITD, Dnmt3aKO/ITD blasts exhibited global hypomethylation, particularly at distal enhancer sites. These hypomethylated enhancer sites were associated with genes in signaling pathways, transcription regulators, and metabolic pathways in cancer (KEGG and GO Analysis). Transcriptome analysis showed that relative to Dnmt3aWT/ITD, the Dnmt3aKO/ITD blasts had 1577 significantly differentially expressed genes positively related to cancer, cellular growth, and proliferation, and negatively to apoptosis by Ingenuity Pathway Analysis (IPA). Surprisingly, we observed increased expression of genes related to HSCs and myeloid function and decreased expression of genes related to lymphocyte function. Human AML signature genes (Oncomine) were also upregulated in our mouse model. Predicted activated pathways include Myc, Nfe2l2, Eif4e, E2f1, Csf2, Cebpb, Vegf, Rxra, Ezh2, and Brd4 and inhibited pathways include tumor suppressors Rb, let7, Cdkn2a, and Tob1 (IPA). We did not observe changes in genomic copy number variation by chromosomal comparative hybridization (cCGH). To test whether Dnmt3a-deletion could functionally bestow stem cell properties on pre-leukemic cells, we examined self-renewal capabilities of malignant cells of Flt3+/ITD knock-in mouse (an ITD mutation knocked in to the endogenous murine Flt3 allele causing MPD). Remarkably, when Dnmt3aKO; Flt3+/ITD bone marrow cells were serially transplanted, MPD was seen in all recipients, compared to none in Dnmt3aWT; Flt3+/ITD transplanted mice (n=7). Further, we transplanted sorted CLP, CMP, GMP, MPP, ST-HSC, LT-HSC populations and observed myeloproliferation in transplanted non-stem (CMP, GMP, ST-HSC) and stem cell (LT-HSC) populations. This strongly suggests that Dnmt3aKO synergized with Flt3-ITD to confer stem cell self-renewal abilities to transformed progenitor and stem cells. Increasingly, decitabine is being used to treat patients with AML and MDS, but whether patients with DNMT3A mutations could benefit is unclear, so we examined the impact of decitabine treatment on the retroviral transduced Dnmt3aKO/ITD mice. Monthly treatment led to significantly increased survival of Dnmt3aKO/ITD mice from T-ALL and MPD and reduced presence of ITD-transduced KO cells. Together, we demonstrate that Dnmt3aKO accelerated malignancies induced by FLT3-ITD in mouse and may shed light on how DNMT3A mutations contribute to lymphoid and myeloid disease in patients. Dnmt3a deletion ignited multilineage and stem cell programs at the expense of lymphoid programs to accelerate disease, but was extinguishable by decitabine therapy. The findings from our mouse model can be used for the development and testing of targeted epigenetic therapy for DNMT3A-associated malignancies. Disclosures: No relevant conflicts of interest to declare.


1984 ◽  
Vol 2 (6) ◽  
pp. 550-557 ◽  
Author(s):  
D E Hogge ◽  
S Misawa ◽  
N Z Parsa ◽  
A Pollak ◽  
J R Testa

Six patients with M4 acute myelomonocytic leukemia ( AMMoL ) were identified who had abnormalities of chromosome 16 in bone marrow cells. Five had a pericentric inversion, inv(16)( p13q22 ), and a sixth patient had a translocation, t(16;16)(p13.1;q22). Each of these six patients had bone marrow eosinophils that were abnormal in morphology on light and/or electron microscopy and by cytochemical stains. The eosinophils constituted 1%-24% of nucleated marrow cells. Of 61 acute nonlymphocytic leukemia (ANLL) patients, all those with AMMoL and abnormal bone marrow eosinophils had an inv(16) or a t(16;16). One other patient in this group had a rearrangement of chromosome 16 (with a break in the short arm at band p13); however, the ANLL type was M1 and no abnormal eosinophils were present. Four patients with ANLL types other than M4 had an increase in marrow eosinophils; three in whom the eosinophils appeared normal and one with ANLL-M2 and bizarre eosinophils morphologically distinct from those seen in AMMoL . Chromosome pair 16 was normal in the latter four patients. AMMoL with dysplastic bone marrow eosinophils appears to represent a unique clinicopathologic entity associated with several related abnormalities affecting 16q . The morphologic features of both blasts and eosinophils may be more important than the absolute number of eosinophils in the marrow in identifying this group of patients. This may have prognostic importance as five of six patients achieved complete remission with standard antileukemic therapy and are still alive.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 95-95 ◽  
Author(s):  
Hui Z. Zhang ◽  
Svetlana Rogulina ◽  
Wendy Chen ◽  
Barbara A. Degar ◽  
Bernard G. Forget

Abstract Pitx2, a homeodomain gene preferentially expressed in murine hematopoietic stem/progenitor cells, is also a downstream target of genes important for hematopoiesis such as MLL and Wnt/Dvl/β-Catenin. We have previously reported that Pitx2 null hematopoietic stem cells (HSCs) can contribute to multi-lineage hematopoiesis under physiologic conditions. We have now carried out serial bone marrow transplantation experiments and demonstrated that after the 3rd round of serial transplantation, Pitx2 null cells reconstituted only 28.6% of the recipient hematopoietic cells as compared to 60% in the case of wild type cells (P<0.001). There were no Pitx2 null donor-derived cells in recipient mice after the 4th round of transplantation, whereas donor-derived chimerism was 57% with wild type cells (P<0.001), and 26% with Pitx2 +/− cells (P<0.001). Therefore, Pitx2 null HSCs have decreased self renewal capacity. To further study the function of Pitx2 in HSC, we constitutively overexpressed the Pitx2 gene in murine bone marrow cells following transduction using a MSCV/IRES/GFP retroviral vector, and analyzed the effects on hematopoiesis in vitro and in vivo. Bone marrow cells overexpressing Pitx2 were isolated on the basis of their GFP expression and analyzed for their colony forming ability in vitro. Retrovirally transduced bone marrow cells were also transplanted into lethally irradiated mice, and the transplanted mice were observed for long-term reconstitution. Colony-forming unit assays showed that Pitx2 overexpressing bone marrow cells, compared to control cells transduced with vector only, had increased numbers of GM colony forming units and reduced numbers of megakaryocytic colony forming units. Pitx2-overexpressing cells continued to form GM colonies after more than eight serial replatings. When these cells were cultured in liquid medium containing SCF, IL-3 and IL-6, they gave rise to cells that stained positively either for alpha naphthyl butyrate, indicating monocytic differentiation, or for peroxidase, indicating neutrophilic differentiation. The ability of these GM-colony forming cells to cause leukemia is currently under investigation. Long-term reconstitution of hematopoiesis in mice by Pitx2 over-expressing HSCs was demonstrated by identifying GFP positive multi-lineage peripheral blood cells four months following transplantation. One of these mice manifested leukemia at this time, as evidenced by a markedly elevated WBC count and other hematologic abnormalities. The leukemic WBCs had very high levels of GFP and Pitx2 expression and were shown to contain two retroviral integration sites, neither of which involved a known oncogene or overexpression of the gene at the integration site. Immunophenotyping by flow cytometry demonstrated that the majority of the leukemic cells were c-kit positive and expressed the megakaryocytic marker CD41, as well as the common myeloid progenitor marker, CD16/32. Some of the cells expressed the erythroid marker Ter119. The leukemic cells did not express any lymphoid markers, including CD3ε, B220, CD19, and IL7R3. This Pitx2-overexpression-associated leukemia was transplantable. Experiments are under way to characterize the leukemia initiating cells. Taken together, our results provide evidence that the homeodomain gene Pitx2 plays a role in the self-renewal of hematopoietic stem/progenitor cells.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3507-3507
Author(s):  
Jianhui Wang ◽  
Zongdong Li

Abstract Abstract 3507 Poster Board III-444 Thrombocytopenia is frequently associated with the myelodysplastic syndromes (MDS). 5-aza-2'-deoxycytidine (Decitabine) has been used to treat MDS with an approximately 20% response rate in thrombocytopenia. In this study, we have investigated the effect of Decitabine on platelet count in mouse. We report here that enhanced platelet release and maturation of megakaryocyte are two mechanisms involved in Decitabine induced elevation of platelet count. We first noted that a 30% of platelet count increase was found in the Balb/c mice 12 hours after the injection of Dectiabine at a clinically relevant dose (15 mg/m2) suggesting an instant platelet release from spleen or from megkaryocyte of bone marrow. The effect of Decitabine on megakaryocyte maturation was studied in in vitro differentiation of mouse bone marrow cells and megakaryoblastic cell line L8057. Decitabine (2.5 mm) is able to induce L8057 cells to differentiate into a megakaryocyte like polyploidy cells with positive marker of acetylcholinesterase and αIIb integrin. High expression of αIIb integrin was also found in the primary bone marrow cells cultured with both thrombopoietin and Decitabine as compared to thrombopoietin alone. The demethylation-induced transcription of GP6 has been reported in thrombopoietin induced megakaryocyte differentiation. Since Decitabine is a DNA demethylation reagent, we have investigated the GP6 expression in Decitabine treated L8057 cells and have found upregualtion of GP6 expression. Although the role of DNA demethylation in megkaryoctye differentiation still needs to be verified, our current data support that Decitabine is able to drive magakaryocyte maturation. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3790-3790
Author(s):  
Jingfang Zhang ◽  
Yangang Liu ◽  
Guangyao Kong ◽  
Yuan-I Chang ◽  
Erik A. Ranheim ◽  
...  

Abstract Chronic myelomonocytic leukemia (CMML) primarily occurs in the elderly with the median age ranging from 65 to 75 years. As defined by WHO, CMML is characterized by persistent monocytosis in peripheral blood, hepatosplenomegaly, and the absence of BCR-ABL fusion gene. CMML is a devastating cancer for multiple reasons, one of which is that approximately 20% of CMML cases evolve into acute myeloid leukemia (AML) soon after their first diagnosis. However, little is known about the cellular and molecular mechanisms underlying this malignant transformation. Recently, our lab developed a CMML mouse model induced by oncogenic NrasG12D/+ expressed from its endogenous locus. Above 90% of recipient mice with NrasG12D/+ bone marrow cells developed CMML-like phenotypes with a median survival of ∼56 weeks. Interestingly, none of these mice spontaneously transform to AML. To identify the pathogenetic origins underlying CMML transformation to AML, we further deleted p53 expression in NrasG12D/+ bone marrow cells using p53fl/fl allele and Mx1-Cre because deletion of p53 is a common genetic event observed in oncogenic Ras-driven cancers. We found that ERK1/2 is significantly hyperactivated in NrasG12D/+; p53-/- hematopoietic stem/progenitor cells (enriched for myeloid progenitors) in the absence of cytokines or in the presence of low concentration of GM-CSF. Concomitantly, the mutant myeloid progenitors show significantly increased self-renewal in a serial replating assay in vitro. We transplanted NrasG12D/+, p53-/-, or NrasG12D/+; p53-/- bone marrow cells into lethally irradiated mice. Unlike recipients with p53-/- cells that died of a T-cell disease with 100% penetrance and a median survival of 24 weeks, ∼70% of recipients with NrasG12D/+; p53-/- cells died of AML or acute myeloid sarcoma with a median survival of 16 weeks. These malignant myeloid diseases are transplantable in secondary recipients. Interestingly, only mutant hematopoietic stem cells (HSCs) could initiate and maintain leukemia phenotypes in the NrasG12D/+ induced CMML model, whereas both NrasG12D/+; p53-/- HSCs and myeloid progenitors could initiate AML or acute myeloid sarcoma. Our results indicate that deletion of p53 cooperates with NrasG12D/+ mutation to transform CMML into an acute phase. This malignant transformation is initiated by mutant myeloid progenitors, which show increased self-renewal and potentially serve as leukemia initiating cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 45-45 ◽  
Author(s):  
Hui Huang ◽  
Daniel E. Bauer ◽  
Mignon L. Loh ◽  
Govind Bhagat ◽  
Alan B. Cantor ◽  
...  

Juvenile myelomonocytic leukemia (JMML) is an aggressive myeloproliferative neoplasm of young children. The only current curative treatment is bone marrow transplantation. Yet even with this aggressive therapy, ∼50% of children still die from their disease. Somatic mutations leading to constitutive activation of the tyrosine phosphatase Shp2 (also called PTPN11) or of RAS signaling occur in ∼90% cases of JMML. However, the transcription factors that act downstream of these aberrant signaling events have not been identified. We recently showed that RUNX1 is a direct interacting partner of Shp2 in megakaryocytic cells (Huang et al. 2012. Genes Dev 26: 1587-1601). Moreover, we showed that RUNX1 is normally negatively regulated by src-family kinase (SFK) mediated tyrosine phosphorylation in megakaryocytes and T-lymphocytes, and that Shp2 contributes to RUNX1 tyrosine dephosphorylation. We now show that overexpression of a mutant RUNX1 (RUNX1Y260F, Y375F, Y378F, Y379F, Y386F, “RUNX1-5F”), which is expected to mimic constitutive dephosphorylation by Shp2 in murine Lin- Sca-1+ c-kit+ (LSK) bone marrow cells is resistant to SFK-mediated tyrosine phosphorylation and leads to a dramatic expansion of CFU-M/CFU-GM and Gr1+Mac1+ cells in vitro and in vivo. In contrast, these effects are not seen when wild type RUNX1 or RUNX1Y260D, Y375D, Y378D, Y379D, Y386D (“RUNX1-5D”; mimicking constitutive RUNX1 tyrosine phosphorylation) are overexpressed. The RUNX1-5F expressing cells also have increased replating activity in serial colony forming assays, increased proliferation (BrdU incorporation), decreased apoptosis, and reduced cytokine dependence. This partially phenocopies conditional knock-in mice that express JMML associated activating Shp2 mutations. Flow sorted Gr1+Mac1+ cells from the RUNX1-5F transduced cultures expressed higher levels of the direct RUNX1 target gene PU.1, which plays a role in myelomonocytic growth, and Cyclin D1. To test whether RUNX1 is required for the myelomonocytic hyperproliferation in JMML, CD34+ peripheral blood cells from a patient with JMML and known activating Shp2 mutation (Shp2E76G) were lentivirally transduced with doxycycline-inducible RUNX1-5D or RUNX1-5F expression constructs and cultured under myeloid growth conditions. Upon doxycycline induction, the RUNX1-5D overexpressing cells (resistant to Shp2) exhibited at 32% reduction in BrdU incorporation. In contrast, the control RUNX1-5F expressing cells had no significant reduction in proliferation. These results are consistent with RUNX1 acting as an essential downstream target of activated Shp2 in JMML. As ERK mediated phosphorylation (downstream of RAS/MEK) is also known to increase RUNX1 activity, we propose that RUNX1 may be a common downstream transcriptional target of both activated Shp2 and RAS signaling in the pathogenesis of JMML. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document