Death Receptor 3 (DR3) Is Expressed By Innate Lymphoid Cells (ILC) and Ligation By Tumor Like Antigen-1 (TL1A) Leads To Costimulation and Significant ILC Expansion

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 782-782
Author(s):  
Michael R. Verneris ◽  
Yong-Oon Ahn ◽  
Matthew A Weeres ◽  
Bruce R Blazar ◽  
Jeffrey S. Miller

Abstract ROR-gt expressing innate lymphoid cells (ILCs) are unique lymphocytes that play important roles in the immune system and have applications to hematopoietic cell transplantation. In fetal life, ILCs orchestrate lymph node organogenesis, while in adults they facilitate the repair of damaged lymphoid structures and mediate mucosal immunity. ILCs function through the production of IL-22 and the expression of TNF-superfamily molecules (lymphotoxin, BAFF, and OX40L) that act on stroma or other lymphocytes, respectively. ILCs are almost exclusively found in the secondary lymphoid tissues (i.e., lymph nodes) and are essentially absent from the peripheral blood, making the study of these cells difficult and clinical application nearly impossible. To overcome these limitations, we devised a method to generate ILCs from hematopoietic stem cells (HSCs) cultured on irradiated stroma in the presence of cytokines (IL-7, IL-15, SCF and FLT3L) [Blood 11:4052-5, 2011]. After ∼21 days of culture, functional ILCs and conventional NK cells differentiate. While this system robustly leads to the ILCs differentiation, GMP-compatible methods of expansion will be required for clinical translation. We sought to identify factors involved in ILC growth and proliferation. After screening gene expression arrays on purified ILCs, the TNF superfamily receptor, known as Death Receptor 3 (DR3, TNFRSF25) was selected for further study. DR3 expression was confirmed using quantitative PCR. Compared to cNK cells, ILCs expressed significant quantities of mRNA for DR3 (p<0.001). While DR3 contains death receptor signaling domains, under some conditions it can also mediate T cell growth. We assessed DR3 functionality in purified ILCs by stimulating them with recombinant TL1A (TNSF15), the only reported ligand for DR3. Consistent with known effect of TL1A on NF-kB activation in T cells, NK-kB phosphorylation was also observed in ILCs. To determine the impact of TL1A on ILC function, IL-22 production was tested. When TL1A was added to ILCs, there was surprisingly no IL-22 production by intracellular cytokine staining or ELISA. We reasoned that TL1a may costimulate ILC activation and combined TL1A with IL-1b and IL-23, known to activate IL-22 production in ILCs. Compared to IL-1b and IL-23, the addition of TL1A led to a significantly higher percentage of IL-22 producing ILCs (9.3% vs. 23.3%, n=8, p<0.001) and more IL-22 production as determined by ELISA (3399 pg/ml vs. 8757 pg/ml, n=3, p<0.001). Nearly identical results were obtained for IL-8 production (p<0.001). Prior studies in T cells show that DR3 signaling increases the expression of the high affinity IL-2 receptor (CD25). While TL1A alone did not increase CD25 on resting ILCs and IL1b + IL-23 only marginally increased CD25 expression (∼1.7x increase from baseline), the combination of TL1A and IL1b + IL-23 led to significantly higher amounts of CD25 on the surface of ILCs (∼3.8x induction). We then tested whether IL-2 could be used to expand ILCs in vitro. Purified ILCs were treated in the following conditions: media (control), TL1A alone, IL1b + IL-23, or the combination of TL1A + IL-1b + IL-23 for 16 hours. Cells were then washed and cultured in media containing IL-2 (1,000U/ml). In short term (5 day) cultures, there was significantly more proliferation with TL1A + IL-1b + IL-23 (14.4% vs. 21.2% vs. 17.4% vs. 42%, n=7, p<0.001) as measured by CSFE dilution. When ILCs were cultured for 14 days, TL1A + IL-1b + IL-23 resulted in significantly greater expansion than IL1-b + IL23 cultured cells (39.3x vs. 14x, n=7, p=0.007). Since TL1A has been associated with skewing of T cells to IL-17 production and the onset of inflammatory conditions (Crohn’s disease), we assessed the expanded ILCs for the loss of IL-22 and/or the acquisition of IL-17. ILCs expanded in the presence of TLA1 + IL-1b + IL-23 had no change in their surface phenotype or capacity to produce IL-22. Importantly, neither IL-17 nor changes in RORgt or AHR mRNA expression were detected after expansion. Collectively, these studies identify a novel axis where DR3/TL1A signaling costimulates IL1b and IL-23 induced production of IL-22 and results in the expression of IL-2R (CD25) along with the associated proliferative response to IL-2. These studies significantly advance our ability to devise GMP-compliant methods to generate ILCs and pave the way for adoptive transfer experiments using ILCs in humans. Disclosures: Miller: Coronado Biosciences: Scientific Advisory Board Other.

Cell Research ◽  
2021 ◽  
Author(s):  
Chen Liu ◽  
Yandong Gong ◽  
Han Zhang ◽  
Hua Yang ◽  
Yang Zeng ◽  
...  

AbstractWhereas the critical roles of innate lymphoid cells (ILCs) in adult are increasingly appreciated, their developmental hierarchy in early human fetus remains largely elusive. In this study, we sorted human hematopoietic stem/progenitor cells, lymphoid progenitors, putative ILC progenitor/precursors and mature ILCs in the fetal hematopoietic, lymphoid and non-lymphoid tissues, from 8 to 12 post-conception weeks, for single-cell RNA-sequencing, followed by computational analysis and functional validation at bulk and single-cell levels. We delineated the early phase of ILC lineage commitment from hematopoietic stem/progenitor cells, which mainly occurred in fetal liver and intestine. We further unveiled interleukin-3 receptor as a surface marker for the lymphoid progenitors in fetal liver with T, B, ILC and myeloid potentials, while IL-3RA– lymphoid progenitors were predominantly B-lineage committed. Notably, we determined the heterogeneity and tissue distribution of each ILC subpopulation, revealing the proliferating characteristics shared by the precursors of each ILC subtype. Additionally, a novel unconventional ILC2 subpopulation (CRTH2– CCR9+ ILC2) was identified in fetal thymus. Taken together, our study illuminates the precise cellular and molecular features underlying the stepwise formation of human fetal ILC hierarchy with remarkable spatiotemporal heterogeneity.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1921-1921
Author(s):  
Sonia J. Laurie ◽  
Danny W. Bruce ◽  
Hemamalini Bommiasamy ◽  
Melodie P Noel ◽  
Joseph P. Foster ◽  
...  

Though hematopoietic stem cell transplantation (HSCT) is the preferred treatment for a variety of blood malignancies, its use is limited by the development of acute graft-versus-host disease (aGvHD). Type II innate lymphoid cells (ILC2s) are immune cells that play an important role in maintaining mucosal homeostasis, and our lab has previously shown that ILC2s in the gastrointestinal tract (GI) are sensitive to conditioning therapy prior to HSCT. Strikingly, we have demonstrated that the infusion of activated donor ILC2s markedly reduces aGvHD-associated mortality. We therefore wanted to investigate the mechanism of the loss of protective ILC2s from the GI tract. We hypothesized that ILC2s fail to repopulate the gut after HSCT due to inflammatory environmental cues that convert ILC2 precursors to an alternate, ILC1- or ILC3-like fate. Thus, we evaluated the impact of cytokines associated with commitment on murine ILC2s by exposing them to cytokines that may promote differentiation to an ILC1 or ILC3 fate (IL-1b/IL-12/IFN-γ and TGF-b/IL-6/IL-23, respectively). We found ILC2 cells acquired the ability to secrete TNF and IL-17 after in vitro skewing (with these lineage-defining cytokines. To test the ability of these "ex-ILC2" cells to home to other tissues in vivo, GFP-ILC2s were infused into recipients at the time of transplantation. We tracked GFP-ILC2s to the liver and spleen, where they made IFN-g and IL-17 and expressed transcription factors associated with the ILC1 and ILC3 lineages (Figure 1). Next we assessed the ability of cytokines alter ILC2 fate via epigenetic reprogramming by using ChIP-sequencing to evaluate the presence of histone marks that may underlie cellular plasticity. We show that these changes are associated with alterations in epigenetic marks around pioneer, lineage-determining factors. We therefore chose to test a screen of compounds known to modulate a variety of epigenetic targets to ask if they can maintain or convert ILC2s to alternate fates and identified a number of compounds that target bromodomains, methyltransferases, and histonedeacetylases, respectively, that alter the viability and differentiation of ILC2s into an "ex-ILC2"-like phenotype. Preliminary work suggests that maintenance ofG9a expression is able to rescue the loss of ILC2s, which is being tested in vivo. Taken together, these data provide new insights into mechanisms by which innate lymphoid cell precursors are epigenetically regulated, providing novel approaches to treating aGvHD following HSCT. Figure 1 Disclosures Davis: Triangle Biotechnology: Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Pattenden:Triangle Biotechnology, Inc.: Equity Ownership, Other: Inventor on intellectual property. Serody:Merck: Research Funding; GlaxoSmithKline: Research Funding.


2014 ◽  
Vol 211 (2) ◽  
pp. 199-208 ◽  
Author(s):  
Nicolas Serafini ◽  
Roel G.J. Klein Wolterink ◽  
Naoko Satoh-Takayama ◽  
Wei Xu ◽  
Christian A.J. Vosshenrich ◽  
...  

Group 3 innate lymphoid cells (ILC3) include IL-22–producing NKp46+ cells and IL-17A/IL-22–producing CD4+ lymphoid tissue inducerlike cells that express RORγt and are implicated in protective immunity at mucosal surfaces. Whereas the transcription factor Gata3 is essential for T cell and ILC2 development from hematopoietic stem cells (HSCs) and for IL-5 and IL-13 production by T cells and ILC2, the role for Gata3 in the generation or function of other ILC subsets is not known. We found that abundant GATA-3 protein is expressed in mucosa-associated ILC3 subsets with levels intermediate between mature B cells and ILC2. Chimeric mice generated with Gata3-deficient fetal liver hematopoietic precursors lack all intestinal RORγt+ ILC3 subsets, and these mice show defective production of IL-22 early after infection with the intestinal pathogen Citrobacter rodentium, leading to impaired survival. Further analyses demonstrated that ILC3 development requires cell-intrinsic Gata3 expression in fetal liver hematopoietic precursors. Our results demonstrate that Gata3 plays a generalized role in ILC lineage determination and is critical for the development of gut RORγt+ ILC3 subsets that maintain mucosal barrier homeostasis. These results further extend the paradigm of Gata3-dependent regulation of diversified innate ILC and adaptive T cell subsets.


2021 ◽  
Author(s):  
Paula Ruibal ◽  
Linda Voogd ◽  
Simone A. Joosten ◽  
Tom H. M. Ottenhoff

Blood ◽  
2021 ◽  
Author(s):  
Christian M. Schürch ◽  
Chiara Caraccio ◽  
Martijn A. Nolte

The bone marrow (BM) is responsible for generating and maintaining lifelong output of blood and immune cells. Besides its key hematopoietic function, the BM acts as an important lymphoid organ, hosting a large variety of mature lymphocyte populations, including B-cells, T-cells, NK(T)-cells and innate lymphoid cells (ILCs). Many of these cell types are thought to only transiently visit the BM, but for others, like plasma cells and memory T-cells, the BM provides supportive niches that promote their long-term survival. Interestingly, accumulating evidence points towards an important role for mature lymphocytes in the regulation of hematopoietic stem cells (HSCs) and hematopoiesis in health and disease. In this review, we describe the diversity, migration, localization and function of mature lymphocyte populations in murine and human BM, focusing on their role in immunity and hematopoiesis. We also address how various BM lymphocyte subsets contribute to the development of aplastic anemia and immune thrombocytopenia, illustrating the complexity of these BM disorders, but also the underlying similarities and differences in their disease pathophysiology. Finally, we summarize the interactions between mature lymphocytes and BM resident cells in HSC transplantation and graft-versus-host disease. A better understanding of the mechanisms by which mature lymphocyte populations regulate BM function will likely improve future therapies for patients with benign and malignant hematological disorders.


Sign in / Sign up

Export Citation Format

Share Document