Targeting β-arrestin2 Enhances Survival in a Murine Model of Chronic Myeloid Leukemia

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 857-857
Author(s):  
Lindsay A.M. Rein ◽  
Minyong Chen ◽  
Barbara S. Theriot ◽  
James W. Wisler ◽  
Laura M. Wingler ◽  
...  

Abstract Background Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm of hematopoietic stem cells characterized by presence of a dysregulated BCR-ABL fusion protein which leads to constitutive activation of tyrosine kinase activity. Classically, CML is treated with tyrosine kinase inhibitors (TKIs). However, TKI therapy is non-curative, and persistence of quiescent leukemia stem cells likely accounts for the inability of these agents to cure CML. β-arrestins are multifunctional adapter proteins which regulate G protein-coupled receptor (GPCR) signaling and trafficking and have recently been identified as mediators of distinct cellular signaling cascades independent of G proteins. β-arrestins also play a role in the Smoothened/Hedgehog pathway, as well as in the Wingless/Frizzled (Wnt/Fz) signaling axis, both of which have been associated with the development of CML. We, therefore, hypothesize that β-arrestin2 (βarr2) is necessary for the development and propagation of CML and may function as a therapeutic target. Aim Demonstrate that loss of βarr2, using an inducible conditional knockout mouse model, slows progression of CML. Methods We used a standard murine retroviral transduction system to model chronic phase BCR-ABL positive CML. KLS cells (Lin-, Sca-1+, c-kit+) were harvested from bone marrow of donor C57BL6/J βarr2F/F-CreERT2+/- (Cre positive, CD45.2) and age matched C57BL6/J βarr2F/F-CreERT2-/- (Cre negative, CD54.2) male mice. KLS cells were retrovirally transduced with MSCV-BCR-ABL-IRES-GFP and were subsequently injected retro-orbitally into sublethally irradiated congenic wild type recipient male mice (CD45.1). Donor mice were engineered using global Cre-ER/loxP technology in order to induce site-specific recombination and loss of βarr2 when treated with tamoxifen. Mice who received Cre positive cells lost βarr2 only in hematopoietic cells. Recipient mice were treated with tamoxifen 75mg/kg daily via intraperitoneal injection for 5 days starting day 3 after transplant and were monitored for signs of leukemia development. Weekly blood analysis included WBC count, number of donor cells by flow cytometry, blood film, and qPCR for BCR-ABL expression. Survival was compared between animals receiving Cre positive (βarr2F/F-CreERT2+/-) and Cre negative (βarr2F/F-CreERT2-/-) donor cells as well as both tamoxifen treated and untreated conditions. Results Treatment of donor C57BL6/J βarr2F/F-CreERT2+/- mice with tamoxifen resulted in decreased βarr2 expression within 10 days in multiple tissues including spleen and bone marrow. By day 10, βarr2 expression was 9.5 ± 3.0% in Cre positive mice relative to pretreatment expression levels (Figure 1). In total, 8 mice received Cre positive cells and 11 mice received Cre negative cells. Ten of 11 (90.9%) Cre negative mice developed CML as evidenced by splenomegaly, leukocytosis, increased BCR-ABL expression measured by qPCR and increased number of donor cells detectable by flow cytometry. Median survival was 15 days. Six of 8 (75%) Cre positive mice developed disease with median survival of 27 days (HR 3.2, 95% CI; 1.525-12.2, p=0.013)(Figure 2). At day 11, flow cytometry for donor CD45.2 cells present in peripheral blood of recipient mice was 38 ± 2.05% in Cre negative versus 16.5± 3.9% in Cre positive mice (p<0.0001). Spleen size at death and WBC count at day 11 were not significantly different between groups. Conclusions These data demonstrate that targeting βarr2 prolongs the course of disease in chronic phase CML and raise the possibility that loss of βarr2 after disease onset may lead to disease regression. βarr2 may therefore represent an alternative therapeutic target for CML independent of tyrosine kinase inhibition. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
1993 ◽  
Vol 81 (3) ◽  
pp. 801-807 ◽  
Author(s):  
T Leemhuis ◽  
D Leibowitz ◽  
G Cox ◽  
R Silver ◽  
EF Srour ◽  
...  

Chronic myeloid leukemia (CML) is a malignant disorder of the hematopoietic stem cell. It has been shown that normal stem cells coexist with malignant stem cells in the bone marrow of patients with chronic-phase CML. To characterize the primitive hematopoietic progenitor cells within CML marrow, CD34+DR- and CD34+DR+ cells were isolated using centrifugal elutriation, monoclonal antibody labeling, and flow cytometric cell sorting. Polymerase chain reaction analysis of RNA samples from these CD34+ subpopulations was used to detect the presence of the BCR/ABL translocation characteristic of CML. The CD34+DR+ subpopulation contained BCR/ABL(+) cells in 11 of 12 marrow samples studied, whereas the CD34+DR- subpopulation contained BCR/ABL(+) cells in 6 of 9 CML marrow specimens. These cell populations were assayed for hematopoietic progenitor cells, and individual hematopoietic colonies were analyzed by PCR for their BCR/ABL status. Results from six patients showed that nearly half of the myeloid colonies cloned from CD34+DR- cells were BCR/ABL(+), although the CD34+DR- subpopulation contained significantly fewer BCR/ABL(+) progenitor cells than either low-density bone marrow (LDBM) or the CD34+DR+ fraction. These CD34+ cells were also used to establish stromal cell-free long-term bone marrow cultures to assess the BCR/ABL status of hematopoietic stem cells within these CML marrow populations. After 28 days in culture, three of five cultures initiated with CD34+DR- cells produced BCR/ABL(-) cells. By contrast, only one of eight cultures initiated with CD34+DR+ cells were BCR/ABL(-) after 28 days. These results indicate that the CD34+DR- subpopulation of CML marrow still contains leukemic progenitor cells, although to a lesser extent than either LDBM or CD34+DR+ cells.


Blood ◽  
1993 ◽  
Vol 81 (3) ◽  
pp. 801-807 ◽  
Author(s):  
T Leemhuis ◽  
D Leibowitz ◽  
G Cox ◽  
R Silver ◽  
EF Srour ◽  
...  

Abstract Chronic myeloid leukemia (CML) is a malignant disorder of the hematopoietic stem cell. It has been shown that normal stem cells coexist with malignant stem cells in the bone marrow of patients with chronic-phase CML. To characterize the primitive hematopoietic progenitor cells within CML marrow, CD34+DR- and CD34+DR+ cells were isolated using centrifugal elutriation, monoclonal antibody labeling, and flow cytometric cell sorting. Polymerase chain reaction analysis of RNA samples from these CD34+ subpopulations was used to detect the presence of the BCR/ABL translocation characteristic of CML. The CD34+DR+ subpopulation contained BCR/ABL(+) cells in 11 of 12 marrow samples studied, whereas the CD34+DR- subpopulation contained BCR/ABL(+) cells in 6 of 9 CML marrow specimens. These cell populations were assayed for hematopoietic progenitor cells, and individual hematopoietic colonies were analyzed by PCR for their BCR/ABL status. Results from six patients showed that nearly half of the myeloid colonies cloned from CD34+DR- cells were BCR/ABL(+), although the CD34+DR- subpopulation contained significantly fewer BCR/ABL(+) progenitor cells than either low-density bone marrow (LDBM) or the CD34+DR+ fraction. These CD34+ cells were also used to establish stromal cell-free long-term bone marrow cultures to assess the BCR/ABL status of hematopoietic stem cells within these CML marrow populations. After 28 days in culture, three of five cultures initiated with CD34+DR- cells produced BCR/ABL(-) cells. By contrast, only one of eight cultures initiated with CD34+DR+ cells were BCR/ABL(-) after 28 days. These results indicate that the CD34+DR- subpopulation of CML marrow still contains leukemic progenitor cells, although to a lesser extent than either LDBM or CD34+DR+ cells.


2012 ◽  
Vol 18 (4) ◽  
pp. 440-444 ◽  
Author(s):  
Prathima Prodduturi ◽  
Anamarija M Perry ◽  
Patricia Aoun ◽  
Dennis D Weisenburger ◽  
Mojtaba Akhtari

Nilotinib is a potent tyrosine kinase inhibitor of breakpoint cluster region-abelson (BCR-ABL), which has been approved as front-line therapy for newly diagnosed chronic myeloid leukemia in chronic phase and as second-line therapy after imatinib failure in chronic or accelerated phase chronic myeloid leukemia. Tyrosine kinase inhibitors have been associated with myelosuppression and grade 3 or grade 4 cytopenias are not uncommon in chronic myeloid leukemia patients treated with these drugs. There are a few reports of imatinib-associated bone marrow aplasia, but to our knowledge only one reported case of bone marrow aplasia associated with nilotinib. Herein, we report a 49-year-old male patient with chronic phase chronic myeloid leukemia, who developed severe bone marrow aplasia due to nilotinib. Possible mechanisms for this significant adverse drug reaction are discussed along with a review of literature.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3766-3766
Author(s):  
Paolo Strati ◽  
Hagop M. Kantarjian ◽  
Deborah A. Thomas ◽  
Susan M. O'Brien ◽  
Elias J. Jabbour ◽  
...  

Abstract Abstract 3766 Background: Chronic Myeloid Leukemia (CML) may progress at advanced phase at the rate of 1–1.5% per year. Blastic phase (BP) CML (defined by a bone marrow blast count >30%) can show lymphoid features in up to 20–30% of cases. With the use of single agent imatinib or dasatinib, median overall survival (OS) ranges between 7 and 11 months. Combination therapy may offer an improved outcome. We analyzed the outcome of patients (pts) with lymphoid BP-CML treated with hyperfractionated cyclophosphamide, vincristine, adriamycin, dexamethasone (HCVAD) plus imatinib or dasatinib. Methods: 32 pts with lymphoid BP-CML were treated at MD Anderson with HCVAD plus imatinib or dasatinib between 2000 and 2011. The starting dose of imatinib was 400 mg (2 pts), 600 mg (20 pts) and 800 mg (1 pt). The starting dose of dasatinib was 50 mg (1 pt), 100 mg (7 pts) and 140 mg (1 pt). Survival curves were calculated using Kaplan-Meier estimates and were compared using the log-rank test. Results: the median age was 48 (22–74) and 72% were male. Four (12%) pts had a de novo diagnosis, 21 (66%) were previously treated with a tyrosine kinase inhibitor (TKI) for chronic phase (CP) and 3 (9%) for BP. At diagnosis, median WBC was 23.4 (1.1–165.4) x109/L, hemoglobin 10.6 (6.3–16.4) g/dL, platelets 51 (6–526) x109/L, blasts 33 (0–91)%, basophils 0 (0–2)%, creatinine 1 (0.6–1.5) mg/dL, albumin 3.8 (2–4.7) g/dL, bilirubin 0.5 (0.2–3.4) mg/dL, alanine aminotransferase 34 (12–446) IU/L; on bone marrow, median blasts were 78 (26–97)%, basophils 0 (0–4)% and additional chromosomal aberrations (ACA) were found in 15/24 (62%) pts, affecting mostly chromosome (chr) 7 (60%), chr9 (40%), chr8 (33%) and chr1 (27%). Before BP diagnosis, median Philadelphia (Ph) positivity by FISH was 67% (0–96); 6/14 (43%) pts showed a Ph mutation (Y253H, T315I, Q252H, F317L, E255K, M244V) at time of progression to BP. Median time from CML diagnosis to BP was 18 (2–33) months, with no significant differences according to previous Ph FISH positivity or CML therapies. Imatinib was added to HCVAD in 23 pts and Dasatinib in 9. Complete Remission (CR) was obtained in 27 (84%) of them (78% with imatinib, 100% with dasatinib). Twenty-three of 27 (87%) CR were achieved after 1stcycle of induction. Early mortality (i.e., within 60 days) occurred in 3 pts. Patients received a median of 4 (1–8) cycles of HCVAD. At the time of CR, median BCR-ABL transcript levels were 1.7 (0–100). The levels decreased to a median of 0.01 (0–100) after 3–4 cycles of therapy; 7/27 (26%) pts achieved negative values of BCR-ABL transcripts after a median of 2 (1–4) months. Three (43%) of 7 pts who achieved complete molecular remission relapsed. MRD by flow cytometry became negative in 15/17 (88%) pts: 14 after induction, 1 after 2 months. Six (40%) of the pts with negative flow cytometry for MRD relapsed. Thirteen pts received SCT in remission: 4 relapsed and died after SCT. Median Progression Free Survival (PFS) was not reached and was longer among SCT recipients (p=0.03) and patients who had a negative flow cytometry at the time of CR (p<0.001). OS was 17 (7–27) months and was longer in patients with no more than 1 line of treatment for CP of CML, with ACA (p=0.01) and among SCT recipients (p<0.001). Among patients who had a CR, OS was longer if flow cytometry was negative at the time of CR (p=0.02) and if BCR-ABL transcript levels were < 1.7% (p=0.01) at the time of CR or <0.025% as best result (p=0.03). Conclusions: HCVAD plus imatinib or dasatinib is an effective regimen for pts with lymphoid BP CML, particularly when followed by SCT. ACA and less than 1 treatment for CML are positive prognostic factors. Better results are observed if negative flow cytometry and low levels of BCR-ABL transcripts are achieved with therapy. Disclosures: Ravandi: BMS: Honoraria, Research Funding.


2019 ◽  
Vol 20 (22) ◽  
pp. 5616 ◽  
Author(s):  
Fabien Muselli ◽  
Jean-François Peyron ◽  
Didier Mary

Chronic Myeloid Leukemia (CML) is a disease arising in stem cells expressing the BCR-ABL oncogenic tyrosine kinase that transforms one Hematopoietic stem/progenitor Cell into a Leukemic Stem Cell (LSC) at the origin of differentiated and proliferating leukemic cells in the bone marrow (BM). CML-LSCs are recognized as being responsible for resistances and relapses that occur despite the advent of BCR-ABL-targeting therapies with Tyrosine Kinase Inhibitors (TKIs). LSCs share a lot of functional properties with Hematopoietic Stem Cells (HSCs) although some phenotypical and functional differences have been described during the last two decades. Subverted mechanisms affecting epigenetic processes, apoptosis, autophagy and more recently metabolism and immunology in the bone marrow microenvironment (BMM) have been reported. The aim of this review is to bring together the modifications and molecular mechanisms that are known to account for TKI resistance in primary CML-LSCs and to focus on the potential solutions that can circumvent these resistances, in particular those that have been, or will be tested in clinical trials.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4425-4425
Author(s):  
Céline Bourgne ◽  
Alexandre Janel ◽  
Jacques Chassagne ◽  
Chantal Rapatel ◽  
Olivier Tournilhac ◽  
...  

Abstract Abstract 4425 Introduction: Despite the major benefit of TKI in the treatment of Chronic Myeloid Leukemia (CML) chronic phase, some of patients are resistant or progress to blast phase (BP) becoming not very accessible to therapy. We have been interested in the Syk molecule as a potential marker for CML progression for several reasons: i) its potential interaction with Src kinases, activated by BCR-ABL, and tyrosine kinase receptors, ii) its involvement in the molecular complexes activating actin and the cytoskeleton and integrin signalling pathways, regulating cell adhesion, a property that is impaired in CML, iii) its interaction with the PI3K/Akt pathway, activated by BCR-ABL. Furthermore, resistance to nilotinib was recently showed dependent on Syk expression. Method: The amount of Syk transcript was analyzed in primary cells using the 2-ΔΔ Ct method and was normalized to the endogenous reference gene (β2-microglobuline) and K562 cells as the calibrator. Using flow cytometry, we evaluated the expression of Syk and pSyk348 in K562 cells and in polymorphonuclear cells from 3 healthy donors (HD-PMN), primitive CML cells from 15 patients in chronic phase (CP) (patients #1 to #15) at diagnosis, in the blast cells from 4 patients in accelerated phase (AP) (patient#16, #17, #18 and #19) and from 2 patients in blast crisis (BC) (patient#20, #21). The level of intracellular dasatinib (DAS) was evaluated by an original flow cytometry method (Bourgne et al. Cytometry Part A, in press). Results: We observed a significant over expression of Syk mRNA in BP-CML cells, whereas there is no difference between HD-PMN and CP-CML cells. At the protein level we detected a decrease (2 times; p<0.001) in and a tendency to increase (1.5 times; p=0.5) in the expression of Syk in CP-CML cells and BP-CML cells respectively compared with HD-PMN cells. Interestingly, we did not observe any expression of pSyk348 in HD-PMN or in granulocytic cells from CP-CML (n=15) but we systematically detected pSyk348 expression in the blast cells of the 6 patients (positive/control ratio: 2.3 ± 0.3) in advanced phases of CML. Moreover we did not found Syk phosphorylation in CP cells from one patient resistant to imatinib, then nilotinib and dasatinib but we detected pSyk348 only when his CML progressed, strengthening the hypothesis of a link between Syk phosphorylation and BP of CML. We confirmed in vitro that Dasatinib was able to rapidly (15 min) inhibit Syk phosphorylation in K562 cells and in blast cells from patient #17. Then we could follow dasatinib uptake into target blast cells, and expression of pSyk348 before and 6, 12, 36, 60, 84 and 136 hours after the first dose of DAS. We observed a significant storage of DAS in blast cells reaching a plateau after the 4th dose even though analyses were done 12 hrs after each dose. However, after a slight fall of blood leukocytes and blast cells numbers corresponding to a sharp drop of pSyk348 we observed an increase of blood malignant cells in parallel of a strong recurrence of pSyk348 at H60. Discussion: We observed a constitutive expression of Syk348 only in blast cells from advanced phases of CML, including in one patient we could follow from the TKI resistant phases to blast phase, strongly suggesting that Syk activation could be a pertinent biomarker for CML progression and could represent a potential target for combinatory therapy. The fact that we observed in one patient a correlation between Syk348 expression and malignant cell resistance even though cells stored dasatinib suggests a BCR-ABL/Src kinases independent mechanism of Syk phosphorylation in blast cells. Targeting Syk in BP-CML should offer new therapeutic option to patients with disease progression. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 13 (1) ◽  
pp. 449-455
Author(s):  
Osamu Imataki ◽  
Tomoya Ishida ◽  
Hiroyuki Kubo ◽  
Makiko Uemura ◽  
Yasuhito Nanya ◽  
...  

Hematological malignancies, including chronic myeloid leukemia (CML), exhibit ASXL1 mutations; however, the function and molecular mechanism of these mutations remain unclear. ASXL1 was originally identified as tumor suppressor gene, in which loss of function causes myelodysplastic syndrome (MDS). ASXL1 mutations are common and associated with disease progression in myeloid malignancies including MDS, acute myeloid leukemia, and similarly in CML. In MDS, ASXL1 mutations have been associated with poor prognosis; however, the impact of ASXL1 mutations in CML has not been well described. A 31-year-old male was diagnosed as CML-chronic phase (CP). Laboratory findings showed a white blood cell count of 187,200/µL, with asymptomatic splenomegaly. Blast count was 5.0% in peripheral blood and 7.3% in bone marrow. There was no additional chromosomal abnormality except for t(9;22)(q34;q11.2) by chromosomal analysis. At onset, the Sokal score was 1.4, indicating high risk. The patient received tyrosine kinase inhibitor (TKI) therapy, comprising nilotinib ∼600 mg/day, bosutinib ∼600 mg/day, ponatinib ∼45 mg/day, and dasatinib ∼100 mg/day. Nevertheless, after 1.5 years of continuous TKI therapy, the best outcome was a hematological response. Although additional chromosomal aberrations and ABL1 kinase mutations were analyzed repeatedly before and during TKI therapy, known genetic abnormalities were not detected. Thereafter, the patient underwent bone marrow transplantation from an HLA 7/8 matched unrelated donor (HLA-Cw 1 locus mismatch, graft-versus-host direction). The patient achieved neutrophil engraftment, 18 days after transplantation, leading to complete remission with an undetectable level of BCR-ABL1 mRNA. The patient, however, died from graft-versus-host disease and thrombotic microangiopathy after 121 days. Gene sequence analysis of his CML cell before stem cell transplantation revealed ASXL1 mutations. Physiologically, ASXL1 contributes to epigenetic regulation. In the CML-CP patient in this case report, ASXL1 mutation conferred resistance to TKI through obscure resistance mechanisms. Even though a molecular mechanism for TKI resistance in ASXL1 mutation in CML has remained obscure, epigenetic modulation is a plausible mode of CML disease progression. The clinical impact including prognosis of ASXL1 for CML is underscored. And the treatment strategy of CML with ASXL1 mutation has not been established. A discussion of this case was expected to facilitate treatment options.


Hematology ◽  
2013 ◽  
Vol 2013 (1) ◽  
pp. 189-200 ◽  
Author(s):  
Wesam Ahmed ◽  
Richard A. Van Etten

Abstract In patients with chronic myeloid leukemia (CML) in chronic phase who have achieved complete molecular remission on imatinib therapy, clinical trials from France and Australia have demonstrated that the majority experience prompt molecular relapse of their leukemia upon discontinuation of the drug, showing that long-term monotherapy with tyrosine kinase inhibitors is not curative in the majority of patients with CML. This has focused attention on strategies to eradicate residual disease in CML that is presumed to arise from malignant Ph+ stem cells, which should result in permanent cure and long-term leukemia-free survival. Here, we review the evidence that targeting CML stem cells will be of clinical benefit and discuss pharmacological and immunological approaches to accomplish this goal. Where possible, we link preclinical studies of CML stem cell biology to emerging results from clinical trials of agents that may target these cells.


Sign in / Sign up

Export Citation Format

Share Document