Beta-1 Integrin Controls Homing and Expansion of Erythroid Cells in Stress Erythropoiesis and ß-Thalassemia

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2661-2661
Author(s):  
Bart Crielaard ◽  
Roberta Chessa ◽  
Ritama Gupta ◽  
Carla Casu ◽  
Stefano Rivella

Abstract After blood loss, the production of red cells must be increased by stress erythropoiesis. This phenomenon is associated with increased proliferation and reduced differentiation of the erythroblasts, leading to a net increase in the number of progenitor erythroid cells and red cells (erythron). In normal conditions, after expansion of the pool of erythroblasts, these cells eventually differentiate to erythrocytes and the anemia resolves. However, in diseases such as β-thalassemia, production of healthy mature erythrocytes is impaired, resulting in anemia. Over time, the expansion, rather than the differentiation, of the erythron further exacerbates the ineffective erythropoiesis (IE), reducing the ability of the erythroid progenitors to generate erythrocytes. Interupting the interaction between macrophages and erythroblasts (macrophage-erythroblast interaction, MEI) in thalassemia models is efficacious in reducing IE and alleviating the disease phenotype. Targeting MEI, using a number of approaches, caused a significant improvement in blood parameters in β-thalassemia intermedia (BTI) mouse models (Hbbth3/+) and a rapid and dramatic improvement in splenomegaly, an outcome that is relevant for clinical practice. Importantly, MEI is not critical for hematopoiesis under non-stress conditions, and ablation of this interaction in normal mice showed minimal effects on blood parameters. As our initial observations indicate that MEI is essential to support stress erythropoiesis, we investigated adhesion molecules that might activate downstream pathways in erythroblasts that regulate cell proliferation. We also speculate that these molecules are also responsible for the homing of erythroid progenitor cells to extramedullary organs, such as the spleen and liver. Our studies in erythroblasts indicate that integrin beta 1 (Itgb1) and also intracellular molecules such as Fak1, Talin1 and Sharpin might play a role in stress erythropoiesis. There is increased interaction between Itgb1 and Fak1 in erythroblasts co-cultured with macrophages as demonstrated by immunocytochemistry and in vitro proximity ligation assays. In addition, targeting either Itgb1 and Fak1 prevents expansion of erythroid cells when cultured in the presence of macrophages. Strikingly, using Itgb1 together with Ter119 as selection parameters in flow cytometry, a distinct subset of erythroblasts, not discernable using CD44 or CD71, was observable, which we found to be part of the mixed orthochromatic erythroblast/reticulocyte population as determined with CD44 expression. More specifically, when measuring the content of DNA, we were able to demonstrate that enucleation of erythroblasts was accompanied by a marked loss of Itgb1 expression, indicating that there may be an important role for Itgb1 in erythroblast enucleation, and differentiation in general. Lack of Itgb1 in thalassemic mice prevents erythroid cells from homing to and expanding in the spleen, the major source of chronic stress erythopoiesis in this disorder. In particular, such a role of Itgb1 is supported by our analysis of thalassemic mice in which this molecule was partially depleted by induction of the Cre recombinase. These animals were generated by crossing th3/+ mice with animals in which Itgb1 was floxed and carrying an inducible Cre-recombinase (Mx1-CRE). We utilized the BM of these animals (Hbbth3/+, Itgb1fl/fl, Mx1-CRE) to generate thalassemic animals that expressed the floxed Itgb1 only in hematopietic cells. After serial administration of polyI:C the animals were analyzed for their erythropoiesis in the bone marrow and spleen. Interestingly, all the animals analyzed show chimeric populations of Itgb1 positive and negative erythroid cells in the bone marrow. This indicated that not all the HSCs were successfully depleted of the Itgb1 gene. However, when we investigated Itgb1 in the spleen, we observed only erythroid cells positive for the expression of this adhesion molecule. This last observation strongly suggests that depletion of Itgb1 prevents homing and expansion of erythroid cells in the spleen and drugs that by inhibit Itgb1 could reduce erythroid spleen colonization, splenomegaly and limit erythropoiesis. We are now in the process of identifying compounds that target MEI. Such molecules might be utilized for development of new treatments for thalassemia or additional disorders of aberrant erythropoiesis. Disclosures Casu: Merganser Biotech : Research Funding; Isis Pharmaceuticals, Inc.: Research Funding.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2196-2196
Author(s):  
Roberta Chessa ◽  
Ritama Gupta ◽  
Bart J Crielaard ◽  
Carla Casu ◽  
Rick Feldman ◽  
...  

Abstract After blood loss, the production of red cells must be increased by stress erythropoiesis. This phenomenon is associated with increased proliferation and reduced differentiation of the erythroblasts, leading to a net increase in the number of progenitor erythroid cells and red cells (erythron). In normal conditions, after expansion of the pool of erythroblasts, these cells eventually differentiate to erythrocytes and the anemia resolves. However, in diseases such as β−thalassemia, production of healthy mature erythrocytes is impaired, resulting in anemia. Over time, the expansion, rather than the differentiation, of the erythron further exacerbates the ineffective erythropoiesis (IE), reducing the ability of the erythroid progenitors to generate erythrocytes. Interrupting the interaction between macrophages and erythroblasts (MEI) in thalassemia models is efficacious in reducing IE and alleviating the disease phenotype. We speculate that these molecules are also responsible for the homing of erythroid progenitor cells to extramedullary organs, such as the spleen and liver. Our studies in erythroblasts indicate that integrin beta−1 (Itgβ1) and also intracellular molecules such as focal adhesion kinase (Fak1), Talin−1 and Sharpin might play a role in stress erythropoiesis. Furthermore, there is increased interaction between Itgb1 and Fak1 in erythroblasts co−cultured with macrophages as demonstrated by immunocytochemistry and in vitro proximity ligation assays. In addition, targeting either Itgβ1 or Fak1 prevents expansion of erythroid cells when cultured in the presence of macrophages. Strikingly, using Itgβ1 together with Ter119 as selection parameters in flow cytometry, a distinct subset of erythroblasts, not discernable using CD44 or CD71, was observable, which we found to be part of the mixed orthochromatic erythroblast/reticulocyte population as determined with CD44 expression. Enucleation of erythroblasts was accompanied by a marked loss of Itgβ1 expression, indicating that Itgβ1 may be involved in erythroblast enucleation and differentiation. We crossed Hbbth3/+ mice with animals in which Itgβ1 or Fak1 were floxed and carrying an inducible Cre−recombinase (Mx1−Cre). From these animals, we investigated three different models; two obtained from breeding (Hbbth3/+−Itgβ1fl/fl−Mx1−Cre and Hbbth3/+−Fak1fl/fl−Mx1−Cre) and one by bone marrow transplant (BMT) of hematopoietic stem cells (HSCs) of Hbbth3/+−Itgβ1fl/fl −Mx1−Cre animals into wt mice to generate thalassemic animals that expressed the floxed Itgβ1 only in hematopoietic cells. After serial administration of Poly(I)−Poly(C) [poly(I:C)] the animals were analyzed for their erythropoiesis in the bone marrow and spleen. All the animals treated with poly(I:C) showed populations of Itgβ1 or Fak1 negative cells in the bone marrow and spleen. This indicated that all the HSCs were successfully depleted of the Itgβ1 or Fak1 gene. Interestingly, the spleen weight of all the treated animals was reduced, on average, 50% compared to untreated thalassemic mice. Similar results were seen also in Hbbth3/+−Itgβ1fl/fl−Mx1−Cre animals generated through BMT. Therefore, Itgβ1 and Fak1 might contribute to the pathophysiology of thalassemia and their removal might result in reduced stress erythropoiesis, erythroid proliferation and, as a consequence, amelioration of splenomegaly. Iron analysis and quantification of Erythroferrone (ERFE) are in progress to evaluate the impact of depleting Itgβ1 and Fak1 on these mechanisms. We are now in the process of identifying compounds that target MEI and, in particular, Itgβ1. Such molecules might be utilized for development of new treatments for thalassemia or additional disorders of aberrant erythropoiesis. Disclosures Feldman: Bayer ealthCare Phamaceuticals Inc.: Employment. Rivella:isis Pharmaceuticals: Consultancy; Merganser Biotech: Other: Stock options; Novartis Pharmaceuticals: Consultancy; Medgenics Pharmaceuticals: Consultancy; Bayer Healthcare: Consultancy, Research Funding.


Blood ◽  
1997 ◽  
Vol 89 (8) ◽  
pp. 2757-2765 ◽  
Author(s):  
Tomohisa Inada ◽  
Atsushi Iwama ◽  
Seiji Sakano ◽  
Mitsuharu Ohno ◽  
Ken-ichi Sawada ◽  
...  

Abstract HTK is a receptor tyrosine kinase of the Eph family. To characterize the involvement of HTK in hematopoiesis, we generated monoclonal antibodies against HTK and investigated its expression on human bone marrow cells. About 5% of the bone marrow cells were HTK+, which were also c-Kit+, CD34low, and glycophorin A−/low. Assays of progenitors showed that HTK+c-Kit+ cells consisted exclusively of erythroid progenitors, whereas HTK−c-Kit+ cells contained progenitors of granulocytes and macrophages as well as those of erythroid cells. Most of the HTK+ erythroid progenitors were stem cell factor-dependent for proliferation, indicating that they represent mainly erythroid burst-forming units (BFU-E). During the erythroid differentiation of cultured peripheral CD34+ cells, HTK expression was upregulated on immature erythroid cells that corresponded to BFU-E and erythroid colony-forming units and downregulated on erythroblasts with high levels of glycophorin expression. These findings suggest that HTK is selectively expressed on the restricted stage of erythroid progenitors, particularly BFU-E, and that HTK is the first marker antigen that allows the purification of erythroid progenitors. Furthermore, HTKL, the ligand for HTK, was expressed in the bone marrow stromal cells. Our findings provide a novel regulatory system of erythropoiesis mediated by the HTKL-HTK signaling pathway.


Blood ◽  
1997 ◽  
Vol 90 (1) ◽  
pp. 138-147 ◽  
Author(s):  
Kristin L. Goltry ◽  
Vikram P. Patel

Abstract The binding of late stage erythroid cells to fibronectin (FN) has been well characterized and is believed to be critical for the terminal stages of erythroid differentiation, but the adhesive properties of more primitive murine erythroid progenitors and the role of these interactions during earlier stages of erythropoiesis has not been determined. Using chymotryptic fragments and inhibitory probes, we have tested the ability of each of the major cell binding domains of FN; the RGDS sequence, the CS-1 sequence, and the carboxy-terminal heparin-binding domain (HBD), to promote adhesion of primitive burst-forming unit-erythroid (BFU-E), mature BFU-E, and colony-forming unit-erythroid (CFU-E). We found that only 10% to 15% of BFU-E bound to FN or to the RGDS sequence in contrast to 75% to 85% of CFU-E. Approximately 50% to 70% of BFU-E and 60% to 80% of CFU-E bound to the carboxy-terminal HBD and to the CS-1 sequence. The binding of BFU-E and CFU-E to the RGDS and CS-1 sites was blocked by β1 integrin antibodies. These results suggest that binding to FN determinants is developmentally regulated during early erythroid differentiation. Erythroid progenitor migration within the bone marrow is thought to be important for the eventual release of reticulocytes into the circulation. A correlation between FN binding and the migratory capacity of erythroid cells has been suggested, although the ability of FN to promote migration of erythroid progenitors has not been directly measured. We measured migration of CFU-E on fragments of FN containing each cell binding region. CS-1–containing fragments, in addition to promoting adhesion of both BFU-E and CFU-E, supported the highest levels of CFU-E migration (11-fold above background). Migration was sixfold above background on intact FN and only threefold above background on RGDS-containing fragments. Fragments containing HBD alone, although they promoted adhesion of CFU-E, failed to support significant levels of migration. These results show that specific domains of FN possess distinct adhesion- and migration-promoting properties for murine erythroid progenitors. Regulation of the adhesive properties during erythroid differentiation may alter the ability of progenitors to migrate in the bone marrow and thus play an important role in normal murine erythroid differentiation.


Blood ◽  
1997 ◽  
Vol 90 (1) ◽  
pp. 138-147 ◽  
Author(s):  
Kristin L. Goltry ◽  
Vikram P. Patel

The binding of late stage erythroid cells to fibronectin (FN) has been well characterized and is believed to be critical for the terminal stages of erythroid differentiation, but the adhesive properties of more primitive murine erythroid progenitors and the role of these interactions during earlier stages of erythropoiesis has not been determined. Using chymotryptic fragments and inhibitory probes, we have tested the ability of each of the major cell binding domains of FN; the RGDS sequence, the CS-1 sequence, and the carboxy-terminal heparin-binding domain (HBD), to promote adhesion of primitive burst-forming unit-erythroid (BFU-E), mature BFU-E, and colony-forming unit-erythroid (CFU-E). We found that only 10% to 15% of BFU-E bound to FN or to the RGDS sequence in contrast to 75% to 85% of CFU-E. Approximately 50% to 70% of BFU-E and 60% to 80% of CFU-E bound to the carboxy-terminal HBD and to the CS-1 sequence. The binding of BFU-E and CFU-E to the RGDS and CS-1 sites was blocked by β1 integrin antibodies. These results suggest that binding to FN determinants is developmentally regulated during early erythroid differentiation. Erythroid progenitor migration within the bone marrow is thought to be important for the eventual release of reticulocytes into the circulation. A correlation between FN binding and the migratory capacity of erythroid cells has been suggested, although the ability of FN to promote migration of erythroid progenitors has not been directly measured. We measured migration of CFU-E on fragments of FN containing each cell binding region. CS-1–containing fragments, in addition to promoting adhesion of both BFU-E and CFU-E, supported the highest levels of CFU-E migration (11-fold above background). Migration was sixfold above background on intact FN and only threefold above background on RGDS-containing fragments. Fragments containing HBD alone, although they promoted adhesion of CFU-E, failed to support significant levels of migration. These results show that specific domains of FN possess distinct adhesion- and migration-promoting properties for murine erythroid progenitors. Regulation of the adhesive properties during erythroid differentiation may alter the ability of progenitors to migrate in the bone marrow and thus play an important role in normal murine erythroid differentiation.


2019 ◽  
Vol 3 (14) ◽  
pp. 2205-2217 ◽  
Author(s):  
Siyang Hao ◽  
Jie Xiang ◽  
Dai-Chen Wu ◽  
James W. Fraser ◽  
Baiye Ruan ◽  
...  

Abstract Anemic stress induces the proliferation of stress erythroid progenitors in the murine spleen that subsequently differentiate to generate erythrocytes to maintain homeostasis. This process relies on the interaction between stress erythroid progenitors and the signals generated in the splenic erythroid niche. In this study, we demonstrate that although growth-differentiation factor 15 (Gdf15) is not required for steady-state erythropoiesis, it plays an essential role in stress erythropoiesis. Gdf15 acts at 2 levels. In the splenic niche, Gdf15−/− mice exhibit defects in the monocyte-derived expansion of the splenic niche, resulting in impaired proliferation of stress erythroid progenitors and production of stress burst forming unit-erythroid cells. Furthermore, Gdf15 signaling maintains the hypoxia-dependent expression of the niche signal, Bmp4, whereas in stress erythroid progenitors, Gdf15 signaling regulates the expression of metabolic enzymes, which contribute to the rapid proliferation of stress erythroid progenitors. Thus, Gdf15 functions as a comprehensive regulator that coordinates the stress erythroid microenvironment with the metabolic status of progenitors to promote stress erythropoiesis.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 533-533
Author(s):  
Te Ling ◽  
Yehudit Birger ◽  
Monika Stankiewicz ◽  
Nissim Ben-Haim ◽  
Itamar Kanter ◽  
...  

Abstract Mutations in GATA1 are seen in rare cases of dyserythropoietic anemia and in a subset of patients with Diamond Blackfan Anemia (DBA). Of note the truncation mutations in DBA, known as GATA1s, closely resemble those that are more commonly associated with acute megakaryoblastic leukemia in children with Down syndrome (DS). Studies with a mouse model of the Gata1s mutation revealed that replacement of the full-length protein by the shortened isoform led to a marked yet transient enhancement in megakaryopoiesis, similar in some respects to transient myeloproliferative disorder in DS. Furthermore, these mutant mice displayed impaired embryonic erythropoiesis but ostensibly no defects in adult hematopoiesis. In our efforts to better understand the connection between GATA1s and DBA, we comprehensively studied erythropoiesis in the Gata1s mouse strain. We observed a striking impairment in erythropoiesis in fetuses at E10.5 though E12.5, but saw improvement as the animals progressed through E14.5 and beyond. Defects included impaired terminal maturation and reduced numbers of erythroid progenitors, likely at the expense of expanded megakaryopoiesis. RNA-sequencing revealed that both erythroid genes and megakaryocytic genes were altered by the Gata1s mutation. Epiproteomic histone modification analysis further revealed there was an accumulation of H3K27 methylation in the R3 (CD71hiTer119hi) erythroid progenitor population, which suggests that GATA1 has a link to the epigenetic machinery that is altered in Gata1s mutant cells. Despite a global increase in H3K27me3, critical Gata2 regulatory elements in Gata1s mutant erythroid progenitors were marked by substantially less H3K27me3 than in wild-type littermates. Given that overexpression of GATA2 has been reported to impair erythropoiesis, we investigated whether reducing the GATA2 levels would ameliorate the phenotype. Indeed, we observed that haploinsufficiency for Gata2 rescued the erythroid defects of Gata1s fetuses. Next, to comprehensively study the effect of absence of the GATA1 N-terminus genome-wide, we performed Cleavage Under Targets and Release Using Nuclease (CUT&RUN) with H3K27me3, GATA1 or GATA1s antibodies on wild-type versus Gata1s expressing fetal erythroid cells. Our data indicated that there is a substantial reduction in H3K27me3 along regulatory elements of the Runx1 gene at the late stage (R3) of fetal erythropoiesis in Gata1s mice. Along with an increase in Runx1 expression we observed strong downregulation of Klf1, a repressive target of RUNX1. Thus, failure of GATA1s to facilitate trimethylation of Runx1 and Gata2 regulatory elements appears to cause the defects in erythroid cell and megakaryocyte development. In parallel, we performed an in-depth analysis of the phenotype of adult Gata1s mice and discovered that they have reduced red cell counts, lower hemoglobin and hematocrit, increased extramedullary hematopoiesis and impaired stress erythropoiesis compared to control littermates. Although there were significantly more megakaryocyte erythrocyte progenitors (MEPs, Lin-c-Kit+Sca-1-CD34-FcgR-) in Gata1s mouse bone marrow, there were fewer pre-colony-forming unit erythroid cells (preCFU-E, Lin-c-Kit+Sca-1-CD41-FcgR-CD150hiCD105hi), likely at the expense of expanded megakaryocyte progenitors (MkP, Lin-c-Kit+Sca-1-CD41+CD150hi).Gata1s mice also developed an MDS-like disease with age. Together, our integrated genomic analysis of transcriptome, GATA1/GATA1s chromatin binding profile and chromatin signature reveal that, although Gata1s mice do not precisely model DBA, they provide novel insights into the role of the N-terminus of GATA1 in gene transcriptional regulation, lineage determination and red blood cell maturation. Disclosures Crispino: Scholar Rock: Research Funding; Forma Therapeutics: Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 7-7
Author(s):  
Qingqing Wu ◽  
Jizhou Zhang ◽  
Courtney Johnson ◽  
Anastasiya Slaughter ◽  
Margot Lindsay May ◽  
...  

The anatomy of differentiation in the bone marrow (BM) is poorly understood due to lack of markers to image stepwise HSPC differentiation. We analyzed 250+ cell surface molecules in all hematopoietic progenitors and identified 56 differentially expressed markers in at least one HSPC that can be "mixed and matched" to prospectively image any HSPC of interest in the bone marrow. We used this data to develop a pipeline to map stepwise erythropoiesis in vivo. We found that all erythroid progenitors can be defined as Ly6C-CD27-ESAM-CD117+ cells and then Pre-MegE (earliest erythroid progenitor Cell Stem Cell. 2007 1(4):428-42) are CD150+CD71-. These give rise to CD71+CD150+ Pre-CFU-E that differentiate into CD71+CD150- CFU-E that then generate early erythroblasts. All BFU-E activity was restricted to Pre-MegE and Pre- CFU-E (70 and 30% of all BFU-E) whereas all CFU-E colonies were spread between Pre-MegE (44%), pre-CFU-E (10%) and CFU-E (46%). We also confirmed previously published data showing that CD71 and Ter119 can be used to image stepwise terminal erythropoiesis; CD71+Ter119dim early erythroblasts, CD71+Ter119bright late erythroblasts, CD71dimTer119bright reticulocytes and CD71-Ter119bright erythrocytes. Importantly, all populations were detected at identical frequencies using FACS or confocal imaging indicating that our imaging strategy detects all erythroid cells (Pre-CFU-E: 0.022 vs 0.027 %; CFUE: 0.32 vs 0.30%; Early-Ery: 0.62 vs 0.66%; Late-Ery: 32.05 vs 32.12%; Reticulocyte: 5.98 vs. 3.36%; Erythrocytes: 12.49 vs. 13.47%). We mapped the 3D location of every erythroid lineage cell in mouse sternum and interrogated the spatial relationships between the different maturation steps and with candidate niches. We compared the interactions found in vivo with those found in random simulations. Specifically, we used CD45 and Ter119 to obtain the spatial coordinates of every hematopoietic cell. Then we randomly placed each type of erythroid lineage cell at identical frequencies as those found in vivo to generate random simulations. We found erythroid progenitors show no specific association with HSC, indicating that Pre-Meg-E or more primitive progenitors leave the HSC niche after differentiation. Both Pre-Meg-E and Pre-CFU-E are found as single cells through the central BM space and do not specifically associate with other progenitors, or components of the microenvironment. In contrast almost all CFU-E locate to strings (28 strings per sternum) containing 8 CFU-E that are selectively recruited to sinusoids (mean CFU-E to sinusoid distance=2.2µm). As soon as CFU-E detach from sinusoids they downregulate CD117 and upregulate CD71 giving rise to a cluster of early erythroblasts that buds from the vessel. These progressively upregulate Ter119 to generate large clusters of late erythroblasts that in turn differentiate into clusters of reticulocytes and erythrocytes. To examine the clonal architecture of erythropoiesis we used Ubc-creERT2:confetti mice where a tamoxifen pulse leads to irreversible expression of GFP, CFP, YFP or RFP. Four weeks later we found that the CFU-E strings are oligoclonal with each clone contributing 2-6 CFU-E to the string. The budding erythroblasts clusters are similarly organized. These indicate that different CFU-E are serially recruited to the same sinusoidal spot where they self-renew 1-2 times and then undergo terminal differentiation. We then tracked how this architecture changed in response to stress (hemorrhage). Two days after bleeding we found that Pre-Meg-E and Pre-CFU-E numbers and locations were unaltered. The number of CFU-E strings remained constant (30 CFUE strings/sternum) but all strings contained more CFU-E (2-fold) suggesting increased self-renewal. Unexpectedly, fate mapping showed that the size of CFU-E clones did not increase when compared to steady-state. These results indicate that all CFU-E expand in respond to stress and that this is mediated via increased recruitment and differentiation of upstream progenitors. In summary we have found 56 differentially expressed markers that can be combined to detect most HSPC; validated a 5-color stain to image and fate map all steps of red blood cell maturation in situ; demonstrated that terminal erythropoiesis emerges from strings of sinusoidal CFU-E, and revealed the clonal architecture of normal and stress erythropoiesis. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1262-1262
Author(s):  
Shan-Run Liu ◽  
Sean C. McConnell ◽  
Yongliang Huo ◽  
Ting-Ting Zhang ◽  
Rui Yang ◽  
...  

Abstract The mammalian erythrocyte is a highly specialized blood cell that differentiates via an orderly series of committed progenitors in the bone marrow in a process termed erythropoiesis. Homeostasis of the erythron is carefully maintained by balancing the proliferation and destruction of early and late erythroid progenitors. In mature red blood cells over ninety-five percent of the protein is hemoglobin (Hb). What happens to committed erythroid cells in the absence of hemoglobin? To answer this question we have derived a novel line of embryonic stem (ES) cells from mouse embryos that have all eight adult alpha and beta globin genes knocked out. These “Null” Hb ES cells were injected into wild-type blastocysts to examine their in vivo potential to contribute to the tissues of developing chimeric mice. Examination of the peripheral blood and bone marrow of these chimeras by flow cytometry revealed that the “Null” Hb ES cells were able to produce normal levels of each type of white blood cell analyzed. However, “Null” erythrocytes were absent from the circulation and only early committed progenitors were found in the bone marrow. Very few “Null” erythroid cells matured beyond the proerythoblast to the basophilic erythroblast stage (Ter119low, CD71hi). To study this maturational block in more detail, an erythroid culture system was established by in vitro differentiation of the “Null” Hb ES cells. These pure erythroid progenitor (EP) cultures support and amplify the proerythroblast stage of development. Interestingly, EP cells could be derived from “Null” Hb ES cells demonstrating that Hb is not required for the development of proerythroblasts. “Null” derived EP cells express erythroid lineage markers (EKLF, GATA1, GypA, EpoR, Tal1), but express no adult globins or markers of other hematopoietic lineages (Mpl, GATA3, IL7R, PAX5, CEBPα, CD41b). Upon terminal differentiation most “Null” derived EP cells undergo apoptosis by 48 hours (7AAD−, Annexin V+) and are dead (7AAD+) by 72 hours. These “Null” Hb ES cells provide a novel experimental system to elucidate the role of hemoglobin during erythroid differentiation, maturation, and homeostasis.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 950-950
Author(s):  
Xu Zhang ◽  
Jihyun Song ◽  
Binal N. Shah ◽  
Jin Han ◽  
Taif Hassan ◽  
...  

Abstract Reticulocytosis in sickle cell disease (SCD) is driven by tissue hypoxia from hemolytic anemia and vascular occlusion. Gene expression changes caused by hypoxia and other factors during reticulocytosis may impact SCD outcomes. We detected 1226 differentially expressed genes in SCD reticulocyte transcriptome compared to normal Black controls. To assess the role of hypoxia-mediating HIFs from other regulation of changes of the SCD reticulocyte transcriptome, we compared differential expression in SCD to that in Chuvash erythrocytosis (CE), a disorder characterized by constitutive upregulation of HIFs in normoxia. Of the SCD differentially expressed genes, 28% were shared between CE and SCD and thus classified as HIF-mediated. The HIF-mediated changes were generally in genes promoting erythroid maturation. We found that genes encoding the response to endoplasmic reticulum stress generally lacked HIF mediation. We then investigated the clinical correlation of erythroid gene expression for the 1226 differentially expressed genes detected in SCD reticulocytes, using clinical measures and gene expression data previously profiled in peripheral blood mononuclear cells (PBMCs) of 157 SCD patients at the University of Illinois at Chicago (UIC). Normal PBMCs contain only a small number of erythroid progenitors, but in SCD or CE PBMCs the erythroid transcriptome is enriched due to elevated circulating erythroid progenitors from heightened erythropoiesis (PMID: 32399971). We applied deconvolution analysis to assess the clinical correlation of erythroid gene expression, using a 16-gene expression signature of erythroid progenitors previously identified in SCD PBMCs. Deconvolution analysis uses the proportion of cell/tissue or specific marker genes (here the erythroid specific 16-gene signature) to dissect gene expression variation in biological samples with cell/tissue type heterogeneity. We correlated, in the 157 UIC patients, erythroid gene expression with i) degree of anemia as indicated by hemoglobin concentration, ii) vaso-occlusive severe pain episodes per year, and iii) degree of hemolysis measured by a hemolysis index. The analysis identified 231 genes associated with at least one of the complications. Increased expression of 40 erythroid specific genes, including 15 HIF-mediated genes, was associated with all three complications. These 40 genes are all upregulated in SCD reticulocytes and correlated with low hemoglobin concentration, frequent severe pain episodes, and high hemolysis index, suggesting that these manifestations may share a relationship to stress erythropoiesis-driven transcriptional activity. Expression quantitative trait loci (eQTL) contain genetic polymorphisms that associate with gene expression level, which can be viewed as a natural experiment to investigate the causal relations between gene expression change and phenotypic outcomes. To assess the causal effect of erythroid gene expression, we tested association between erythroid eQTL and the clinical manifestations in 906 SCD patients from the Walk-PHaSST and PUSH cohorts. We first mapped erythroid eQTL in the 157 UIC patients, who were previously genotyped by array, applying deconvolution algorithm on the same PBMC data for the 1226 differential genes in SCD reticulocytes, and detected 54 distinct eQTL for 30 genes at 5% false discovery rate. After adjusting for multiple comparisons, we found that the C allele of rs16911905, located in the β-globin cluster and associated with increased erythroid expression of HBD (encodes δ-globin of hemoglobin A 2), significantly correlated with lower hemoglobin concentration (β=-0.064, 95% CI -0.092 - -0.036, P=6.7×10 -6). The C allele was also associated with higher hemolytic rate (P=0.031), less frequent pain episodes (P=0.045), and increased erythroid expression of HBB here encoding sickle β-globin (P=5.1x10 -5). The association of the C allele with lower hemoglobin concentration was then validated in 242 patients from the UIC cohort (β=-0.071, 95% CI -0.13 - -0.011, P=0.023), as was the trend of association with higher hemolytic rate (P=0.0031) and less pain episodes (P=0.034). Our findings reveal HIF- and non-HIF-mediated genes in SCD stress erythropoiesis, and identify novel clinical associations for a HBD eQTL. Our study highlights the correlation of altered erythroid gene expression with SCD hemolytic and vaso-occlusive manifestations. Disclosures Saraf: Global Blood Therapeutics: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Pfizer: Research Funding. Gordeuk: Modus Therapeutics: Consultancy; Novartis: Research Funding; Incyte: Research Funding; Emmaus: Consultancy, Research Funding; Global Blood Therapeutics: Consultancy, Research Funding; CSL Behring: Consultancy.


Blood ◽  
2018 ◽  
Vol 131 (23) ◽  
pp. 2568-2580 ◽  
Author(s):  
Chang Liao ◽  
Ross C. Hardison ◽  
Mary J. Kennett ◽  
Bradley A. Carlson ◽  
Robert F. Paulson ◽  
...  

Key Points Selenoproteins, and in particular SelenoW, are required for stress erythroid progenitor proliferation and maturation. Macrophages require selenoproteins to maintain erythropoietic niche competency.


Sign in / Sign up

Export Citation Format

Share Document