Inhibition of Factor XIIa-Mediated Factor XI Activation Reduces Infarct Size in a Mouse Model of Myocardial Ischemia and Reperfusion

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2873-2873
Author(s):  
Christina U Lorentz ◽  
Norah G Verbout ◽  
Zhiping Cao ◽  
Helen Liu ◽  
Owen J.T. McCarty ◽  
...  

Abstract The role of the intrinsic coagulation pathway in acute myocardial infarction is poorly defined. Both coagulation factors XII (FXII) and XI (FXI) support experimental thrombus propagation in animals. Additionally, humans with FXI deficiency have a lower incidence of thrombosis and stroke, however no such association has been established for FXII. Curiously, the incidence of previously verified myocardial infarction (MI) among 96 surviving FXI deficient subjects that were interviewed in an epidemiologic study was found to be similar to or possibly even higher than the recorded incidence of MI in an age/sex matched dataset from morbidity/mortality statistics of the general Israeli population (Salomon et al. J Thromb Haemost. 2003;1:658). However, the outcome of these coronary events were not reported, except for the fact that all interviewed FXI subjects were alive at the time of the interview. To investigate the contribution of FXI activation by FXIIa in experimental MI, we used a standard mouse model of acute myocardial ischemia (AMI). To inhibit FXI in the mouse, we utilized our monoclonal antibody (14E11) that targets the Apple 2 domain of FXI, and has been shown in vitro to inhibit the activation of FXI by factor XIIa, while not significantly inhibiting activation of FXI by thrombin. To evaluate the efficacy of 14E11 in reducing ischemic injury in mice, the left coronary artery (LCA) of wildtype male mice was reversibly ligated for 40 min, and 14E11 (1 mg/kg; iv) or vehicle was infused during the last 15 min of occlusion. Occlusion was confirmed by sustained S-T elevation, regional cyanosis and wall motion abnormalities. Following occlusion, the ligature was removed and the heart reperfused for 2 hr. To delineate the area of risk and ischemia, the LCA was re-occluded at 2 hr post-reperfusion and fluorescent polymers infused into the apex of the heart. The heart was excised, cut into 1 mm thick transverse slices and photographed under UV light to identify the area at risk. Tissue sections were additionally stained with 2,3,5-triphenyltetrazolium chloride solution and infarcted areas evaluated via morphometric analysis. The area at risk was evaluated as the percent of total heart volume and infarct size was calculated as the percentage of area at risk. Our results indicated that the area of risk did not differ between treatment groups, however treatment with 14E11 reduced infarct volume by 33% (p<0.05, n=10) compared with vehicle control (n=10). These results suggest that FXII-mediated activation of FXI contributes to the pathology of experimental MI in mice. Since FXII has no hemostatic function, we conclude that the data warrant further evaluation of whether systemic anticoagulation by selective inhibition of FXII-mediated FXI activation before interventional reperfusion is safe and reduces infarct size in patients with acute coronary syndrome. Figure 1 Figure 1. Disclosures Lorentz: Aronora, Inc: Employment. Verbout:Aronora, Inc: Employment. Tucker:Aronora, Inc: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Gruber:Aronora, Inc: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees.

2009 ◽  
pp. 635-643
Author(s):  
R Létienne ◽  
Y Calmettes ◽  
B Le Grand

The goal of the study was to determine whether postconditioning protects against different ischemia durations in the rabbit. Rabbits were assigned to a 20-, 25-, 45- or 60-min coronary occlusion followed by 24-h of reperfusion. Rabbits received no further intervention (control) or were postconditioned with four cycles of 30-s occlusion and 30-s reperfusion after myocardial infarction. Plasma levels of troponin I were quantified throughout reperfusion. In control conditions, infarct sizes (% area at risk using triphenyltetrazolium chloride) after 20, 25, 45 and 60 min of coronary occlusions were 23±3, 51±4, 70±3 and 81±3 %, respectively. With 20 and 25 min occlusion, postconditioning reduced infarct size by 43±10 and 73±21 %, respectively. On the other hand, with 45 or 60 min occlusion, postconditioning had no significant effects on infarct size (61±3 and 80±2 % of area at risk). Preconditioning protocol was performed with 25- and 60-min coronary occlusion. As expected, preconditioning significantly reduced infarct size. In conclusion, in the rabbit, the cardioprotection afforded by postconditioning is limited to less than 45 min coronary occlusion.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2978-2978
Author(s):  
Marek Trneny ◽  
Thierry Lamy ◽  
Jan Walewski ◽  
David Belada ◽  
Jiri Mayer ◽  
...  

Abstract Background: Patients with relapsed/refractory (R/R) mantle cell lymphoma (MCL) have limited treatment options, especially those receiving multiple prior therapies. Patients with MCL are mostly an elderly population with various comorbidities who receive multiple medications that may lead to an increased risk of toxicity from underlying disease, as well as drug interactions. These multiple, concomitant conditions introduce complexity into the evaluation of the risk-benefit ratio of available therapies. In the relapsed setting, there is increasing use of new treatment options, such as lenalidomide, which is an immunomodulatory agent with direct and immune-mediated mechanisms of action. Lenalidomide has shown efficacy and a tolerable safety profile in multiple studies of R/R MCL, including the randomized MCL-002 (SPRINT) study comparing lenalidomide vs. investigator's choice (IC) of monotherapy. The objective of this post hoc subgroup analysis from the MCL-002 study was to examine the effect and safety of lenalidomide in patients who are at risk of bleeding events because of multiple comorbidities or treatments (i.e., polymedication) denoted as LEN-CM compared with those not at risk (LEN), LEN-CM being a population with a limited choice of treatment options. Methods: The multicenter MCL-002 study randomized patients 2:1 to lenalidomide vs. single-agent IC of monotherapy (rituximab, gemcitabine, fludarabine, chlorambucil, or cytarabine; NCT00875667). Patients had 1-3 relapses or had failed prior therapy, and were ineligible for intensified chemotherapy or stem cell transplantation. Oral lenalidomide was initiated at 25 mg/day on days 1-21 of 28-day cycles until disease progression or as tolerated. Progression-free survival (PFS) was the primary endpoint (per modified 1999 IWG criteria); secondary endpoints included response rates, duration of response (DOR), overall survival (OS), and safety. The current analyses were based on investigator's assessment. Specific patient groups with or without increased bleeding risk due to comorbidities and/or treatment were identified for the subgroup analysis based on pre-existing characteristics at study initiation. Patients in the LEN-CM group included those with hemorrhages (or predispositions to such), concomitant anticoagulant therapy with vitamin K antagonists or nonsteroidal anti-inflammatory drugs, and/or current or preexisting atrial fibrillation requiring anticoagulants. Results: Of 170 patients originally randomized to lenalidomide treatment, there were 60 (35%) LEN-CM vs. 110 (65%) LEN patients included in this subanalysis. At baseline, patients in both groups generally had a similar baseline patient profile and prior treatment history, although there were some differences between groups: more patients in the LEN-CM group (vs. LEN) were >=65 years of age (78% vs. 62%) and had more high-risk MIPI score at baseline (47% vs. 29%), whereas fewer had positive bone marrow (7% vs. 15%), high tumor burden (37% vs. 54%), or bulky disease (15% vs. 25%). Median PFS by investigator assessment was 10.7 months (95% CI, 4.3-14.0) for LEN-CM and 7.0 months (95% CI, 5.3-14.6) for LEN (Table 1). Overall response rates (ORR) in the LEN-CM vs. LEN patients were 29/60 (48%) and 49/110 (45%) with complete response (CR)/CR unconfirmed (CRu) rates of 6/60 (10%) and 13/110 (12%), respectively. Median DOR and OS were also similar in both groups of lenalidomide-treated patients. The safety profiles were similar for these subgroups, with similar rates of AEs leading to discontinuations and dose reductions/interruptions. Most common any grade treatment-emergent AEs (>=20%) for LEN-CM vs. LEN groups respectively were 48% vs. 52% neutropenia, 33% vs. 38% thrombocytopenia, 32% vs. 27% anemia, 25% vs. 19% fatigue, 23% vs. 22% diarrhea, and 5% vs. 23% pyrexia. Conclusions: For patients with R/R MCL, there is a high, unmet medical need for effectivetherapy with acceptable toxicity. Overall, the LEN-CM and LEN subgroups showed similar efficacy and safety outcomes. Results from this subgroup analysis of the MCL-002 study show that lenalidomide leads to clinically meaningful PFS and other efficacy outcomes irrespective of the presence or absence of bleeding risk due to comorbidities and/or treatment. Disclosures Walewski: Roche: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; GSK: Research Funding; Novartis: Research Funding; Mundipharma: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen Cilag: Honoraria, Membership on an entity's Board of Directors or advisory committees; Teva: Honoraria; Gilead: Honoraria, Membership on an entity's Board of Directors or advisory committees; Sanofi: Honoraria; Servier: Honoraria, Membership on an entity's Board of Directors or advisory committees; Ariad: Membership on an entity's Board of Directors or advisory committees. Belada:Seattle Genetics: Research Funding. Radford:Novartis: Honoraria, Speakers Bureau; Seattle Genetics: Honoraria, Speakers Bureau; GSK: Equity Ownership; Astra-Zeneca: Equity Ownership; Takeda: Consultancy, Honoraria, Research Funding, Speakers Bureau. Jurczak:Morphosys: Consultancy, Research Funding, Speakers Bureau; Acerta: Research Funding; Novartis: Research Funding; Pfizer: Research Funding; Celgene: Research Funding; Gilead: Research Funding; Janssen: Research Funding; Celtron: Research Funding; Bayer: Research Funding; Takeda: Research Funding; Servier: Research Funding; Teva: Research Funding; Roche: Research Funding, Speakers Bureau; Sandoz-Novartis: Speakers Bureau. Morschhauser:Janssen: Honoraria; Celgene: Consultancy, Honoraria; Roche: Consultancy, Honoraria; Gilead Sciences: Consultancy, Honoraria; Servier: Consultancy, Honoraria. Kaplanov:State Budgetary Healthcare Institution "Volgograd Regional Clinical Oncology Dispensary #1: Employment. Thyss:Takeda: Research Funding; Millennium: Research Funding. Kuzmin:Republican Clinical Oncology Dispensary: Employment. Stelitano:Azienda Ospedaliera: Employment. Marks:Pfizer: Honoraria. Trümper:Roche: Research Funding; Mundipharma: Research Funding; Hexal: Membership on an entity's Board of Directors or advisory committees. Biyukov:Celgene: Employment, Equity Ownership. Barnett:Celgene Corporation: Employment, Equity Ownership. Casadebaig Bravo:Celgene: Employment, Equity Ownership. Arcaini:Sandoz: Membership on an entity's Board of Directors or advisory committees; Bayer: Membership on an entity's Board of Directors or advisory committees; Roche: Membership on an entity's Board of Directors or advisory committees; Gilead: Research Funding.


2006 ◽  
Vol 84 (11) ◽  
pp. 1185-1189 ◽  
Author(s):  
Doreen Richardt ◽  
Andreas Dendorfer ◽  
Ralph Tölg ◽  
Peter Dominiak ◽  
Gert Richardt

During myocardial ischemia, a substantial accumulation of norepinephrine occurs in the ischemic zone due to a local nonexocytotic release of norepinephrine. Norepinephrine release is driven by the neuronal monoamine transporter (NET), which reverses its usual transmembrane transport direction. We investigated whether this local accumulation of norepinephrine contributes to irreversible myocardial injury in an in vivo model of myocardial infarction. Male, anaesthetized Wistar rats were subjected to 30 min coronary occlusion and subsequent 120 min reperfusion. Five minutes prior to coronary occlusion, the NET inhibitor desipramine was administered intravenously. Infarct size (IS) was determined by TTC-staining and was related to the area at risk (AAR). The influence of desipramine on cardiac norepinephrine release was investigated in isolated perfused hearts with 30 min of regional ischemia. Norepinephrine was measured in the effluent from the hearts by HPLC and electrochemical detection. Desipramine (0.1–0.8 mg/kg) dose-dependently reduced infarct size (IS/AAR) from 0.54 to 0.21 and suppressed postischemic norepinephrine release from 245 to 108 pg/mL. In summary, the data indicate that nonexocytotic release of norepinephrine in myocardial ischemia exaggerates acute ischemic damage, because suppression of ischemia-induced release of norepinephrine by the tricyclic antidepressant desipramine effectively reduces infarct size in an in vivo model of myocardial ischemia.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1961-1961
Author(s):  
John F. DiPersio ◽  
Jonathan Hoggatt ◽  
Steven Devine ◽  
Lukasz Biernat ◽  
Haley Howell ◽  
...  

Background Granulocyte colony-stimulating factor (G-CSF) is the standard of care for mobilization of hematopoietic stem cells (HSCs). G-CSF requires 4-7 days of injections and often multiple aphereses to acquire sufficient CD34+ cells for transplant. The number of CD34+ HSCs mobilized can be variable and patients who fail to mobilize enough CD34+ cells are treated with the combination of G-CSF plus plerixafor. G-CSF use is associated with bone pain, nausea, headaches, fatigue, rare episodes of splenic rupture, and is contraindicated for patients with autoimmune and sickle cell disease. MGTA-145 (GroβT) is a CXCR2 agonist. MGTA-145, in combination with plerixafor, a CXCR4 inhibitor, has the potential to rapidly and reliably mobilize robust numbers of HSCs with a single dose and same-day apheresis for transplant that is free from G-CSF. MGTA-145 plus plerixafor work synergistically to rapidly mobilize HSCs in both mice and non-human primates (Hoggatt, Cell 2018; Goncalves, Blood 2018). Based on these data, Magenta initiated a Phase 1 dose-escalating study to evaluate the safety, PK and PD of MGTA-145 as a single agent and in combination with plerixafor. Methods This study consists of four parts. In Part A, healthy volunteers were dosed with MGTA-145 (0.0075 - 0.3 mg/kg) or placebo. In Part B, MGTA-145 dose levels from Part A were selected for use in combination with a clinically approved dose of plerixafor. In Part C, a single dose MGTA-145 plus plerixafor will be administered on day 1 and day 2. In Part D, MGTA-145 plus plerixafor will be administered followed by apheresis. Results MGTA-145 monotherapy was well tolerated in all subjects dosed (Table 1) with no significant adverse events. Some subjects experienced mild (Grade 1) transient lower back pain that dissipated within minutes. In the ongoing study, the combination of MGTA-145 with plerixafor was well tolerated, with some donors experiencing Grade 1 and 2 gastrointestinal adverse events commonly observed with plerixafor alone. Pharmacokinetic (PK) exposure and maximum plasma concentrations increased dose proportionally and were not affected by plerixafor (Fig 1A). Monotherapy of MGTA-145 resulted in an immediate increase in neutrophils (Fig 1B) and release of plasma MMP-9 (Fig 1C). Neutrophil mobilization plateaued within 1-hour post MGTA-145 at doses greater than 0.03 mg/kg. This plateau was followed by a rebound of neutrophil mobilization which correlated with re-expression of CXCR2 and presence of MGTA-145 at pharmacologically active levels. Markers of neutrophil activation were relatively unchanged (<2-fold vs baseline). A rapid and statistically significant increase in CD34+ cells occurred @ 0.03 and 0.075 mg/kg of MGTA-145 (p < 0.01) relative to placebo with peak mobilization (Fig 1D) 30 minutes post MGTA-145 (7-fold above baseline @ 0.03 mg/kg). To date, the combination of MGTA-145 plus plerixafor mobilized >20/µl CD34s in 92% (11/12) subjects compared to 50% (2/4) subjects receiving plerixafor alone. Preliminary data show that there was a significant increase in fold change relative to baseline in CD34+ cells (27x vs 13x) and phenotypic CD34+CD90+CD45RA- HSCs (38x vs 22x) mobilized by MGTA-145 with plerixafor. Mobilized CD34+ cells were detectable at 15 minutes with peak mobilization shifted 2 - 4 hours earlier for the combination vs plerixafor alone (4 - 6h vs 8 - 12h). Detailed results of single dose administration of MGTA-145 and plerixafor given on one day as well as also on two sequential days will be presented along with fully characterized graft analysis post apheresis from subjects given MGTA-145 and plerixafor. Conclusions MGTA-145 is safe and well tolerated, as a monotherapy and in combination with plerixafor and induced rapid and robust mobilization of significant numbers of HSCs with a single dose in all subjects to date. Kinetics of CD34+ cell mobilization for the combination was immediate (4x increase vs no change for plerixafor alone @ 15 min) suggesting the mechanism of action of MGTA-145 plus plerixafor is different from plerixafor alone. Preliminary data demonstrate that MGTA-145 when combined with plerixafor results in a significant increase in CD34+ fold change relative to plerixafor alone. Magenta Therapeutics intends to develop MGTA-145 as a first line mobilization product for blood cancers, autoimmune and genetic diseases and plans a Phase 2 study in multiple myeloma and non-Hodgkin lymphoma in 2020. Disclosures DiPersio: Magenta Therapeutics: Equity Ownership; NeoImmune Tech: Research Funding; Cellworks Group, Inc.: Membership on an entity's Board of Directors or advisory committees; Karyopharm Therapeutics: Consultancy; Incyte: Consultancy, Research Funding; RiverVest Venture Partners Arch Oncology: Consultancy, Membership on an entity's Board of Directors or advisory committees; WUGEN: Equity Ownership, Patents & Royalties, Research Funding; Macrogenics: Research Funding, Speakers Bureau; Bioline Rx: Research Funding, Speakers Bureau; Celgene: Consultancy; Amphivena Therapeutics: Consultancy, Research Funding. Hoggatt:Magenta Therapeutics: Consultancy, Equity Ownership, Research Funding. Devine:Kiadis Pharma: Other: Protocol development (via institution); Bristol Myers: Other: Grant for monitoring support & travel support; Magenta Therapeutics: Other: Travel support for advisory board; My employer (National Marrow Donor Program) has equity interest in Magenta. Biernat:Medpace, Inc.: Employment. Howell:Magenta Therapeutics: Employment, Equity Ownership. Schmelmer:Magenta Therapeutics: Employment, Equity Ownership. Neale:Magenta Therapeutics: Employment, Equity Ownership. Boitano:Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties. Cooke:Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties. Goncalves:Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties. Raffel:Magenta Therapeutics: Employment, Equity Ownership. Falahee:Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties. Morrow:Magenta Therapeutics: Employment, Equity Ownership, Patents & Royalties. Davis:Magenta Therapeutics: Employment, Equity Ownership.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3129-3129
Author(s):  
Hans C. Lee ◽  
Sikander Ailawadhi ◽  
Cristina Gasparetto ◽  
Sundar Jagannath ◽  
Robert M. Rifkin ◽  
...  

Background: Multiple myeloma (MM) is common among the elderly, with 35% of patients (pts) diagnosed being aged ≥75 years (y). With increasing overall life expectancy, the incidence and prevalence of newly diagnosed and previously treated MM patients ≥80 y is expected to increase over time. Because elderly pts are often excluded from clinical trials, data focused on their treatment patterns and clinical outcomes are lacking. The Connect® MM Registry (NCT01081028) is a large, US, multicenter, prospective observational cohort study of pts with newly diagnosed MM (NDMM) designed to examine real-world diagnostic patterns, treatment patterns, clinical outcomes, and health-related quality of life patient-reported outcomes. This analysis reviews treatment patterns and outcomes in elderly pts from the Connect MM Registry. Methods: Pts enrolled in the Connect MM registry at 250 community, academic, and government sites were included in this analysis. Eligible pts were adults aged ≥18 y with symptomatic MM diagnosed ≤2 months before enrollment, as defined by International Myeloma Working Group criteria; no exclusion criteria were applied. For this analysis, pts were categorized into 4 age groups: <65, 65 to 74, 75 to 84, and ≥85 y. Pts were followed from time of enrollment to the earliest of disease progression (or death), loss to follow-up, or data cutoff date of February 7, 2019. Descriptive statistics were used for baseline characteristics and treatment regimens. Survival outcomes were analyzed using Cox regression. Time to progression (TTP) analysis excluded causes of death not related to MM. Results: Of 3011 pts enrolled (median age 67 y), 132 (4%) were aged ≥85 y, and 615 (20%) were aged 75-84 y at baseline. More pts aged ≥85 y had poor prognostic factors such as ISS stage III disease and reduced hemoglobin (<10 g/dL or >2 g/dL <LLN) compared with other age groups, although no notable differences between creatinine and calcium levels were observed across age groups (Table). A lower proportion of elderly pts (75-84 and ≥85 y) received triplet regimens as frontline therapy. More elderly pts received a single novel agent, whereas use of 2 novel agents was more common in younger pts (Table). The most common frontline regimens among elderly pts were bortezomib (V) + dexamethasone (D), followed by lenalidomide (R) + D, whereas those among younger pts included RVD, followed by VD and CyBorD (Table). No pt aged ≥85 y, and 4% of pts aged 75-84 y received high-dose chemotherapy and autologous stem cell transplant (vs 61% in the <65 y and 37% in the 65-74 y age group). The most common maintenance therapy was RD in pts ≥85 y (although the use was low) and R alone in other age groups (Table). In the ≥85 y group, 27%, 10%, and 4% of pts entered 2L, 3L, and 4L treatments respectively, vs 43%, 23%, and 13% in the <65 y group. Progression-free survival was significantly shorter in the ≥85 y age group vs the 75-84 y age group (P=0.003), 65-74 y age group (P<0.001), and <65 y age group (P<0.001; Fig.1). TTP was significantly shorter in the ≥85 y group vs the <65 y group (P=0.020); however, TTP was similar among the 65-74 y, 75-84 y, and ≥85 y cohorts (Fig. 2). Overall survival was significantly shorter in the ≥85 y group vs the 75-84 y, 65-74 y, and <65 y groups (all P<0.001; Fig. 3). The mortality rate was lowest (46%) during first-line treatment (1L) in pts aged ≥85 y (mainly attributed to MM progression) and increased in 2L and 3L (47% and 54%, respectively); a similar trend was observed in the younger age groups. The main cause of death was MM progression (29% in the ≥85 y vs 16% in the <65 y group). Other notable causes of death in the ≥85 y group included cardiac failure (5% vs 2% in <65 y group) and pneumonia (5% vs 1% in <65 y group). Conclusions: In this analysis, elderly pts received similar types of frontline and maintenance regimens as younger pts, although proportions varied with decreased use of triplet regimens with age. Considering similarities in TTP across the 65-74 y, 75-84 y, and ≥85 y cohorts, these real-world data support active treatment and aggressive supportive care of elderly symptomatic pts, including with novel agents. Additionally, further clinical studies specific to elderly patients with MM should be explored. Disclosures Lee: Amgen: Consultancy, Research Funding; GlaxoSmithKline plc: Research Funding; Sanofi: Consultancy; Daiichi Sankyo: Research Funding; Celgene: Consultancy, Research Funding; Takeda: Consultancy, Research Funding; Janssen: Consultancy, Research Funding. Ailawadhi:Janssen: Consultancy, Research Funding; Takeda: Consultancy; Pharmacyclics: Research Funding; Amgen: Consultancy, Research Funding; Celgene: Consultancy; Cellectar: Research Funding. Gasparetto:Celgene: Consultancy, Honoraria, Other: Travel, accommodations, or other expenses paid or reimbursed ; Janssen: Consultancy, Honoraria, Other: Travel, accommodations, or other expenses paid or reimbursed ; BMS: Consultancy, Honoraria, Other: Travel, accommodations, or other expenses paid or reimbursed . Jagannath:AbbVie: Consultancy; Merck & Co.: Consultancy; Bristol-Myers Squibb: Consultancy; Karyopharm Therapeutics: Consultancy; Celgene Corporation: Consultancy; Janssen Pharmaceuticals: Consultancy. Rifkin:Celgene: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees. Durie:Amgen, Celgene, Johnson & Johnson, and Takeda: Consultancy. Narang:Celgene: Speakers Bureau. Terebelo:Celgene: Honoraria; Jannsen: Speakers Bureau; Newland Medical Asociates: Employment. Toomey:Celgene: Consultancy. Hardin:Celgene: Membership on an entity's Board of Directors or advisory committees. Wagner:Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees; American Cancer Society: Other: Section editor, Cancer journal. Omel:Celgene, Takeda, Janssen: Other: Patient Advisory Committees. Srinivasan:Celgene: Employment, Equity Ownership. Liu:TechData: Consultancy. Dhalla:Celgene: Employment. Agarwal:Celgene Corporation: Employment, Equity Ownership. Abonour:BMS: Consultancy; Celgene: Consultancy, Research Funding; Takeda: Consultancy, Research Funding; Janssen: Consultancy, Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4739-4739
Author(s):  
Pieter Sonneveld ◽  
Maria-Victoria Mateos ◽  
Adrián Alegre ◽  
Thierry Facon ◽  
Cyrille Hulin ◽  
...  

Introduction: For patients with newly diagnosed multiple myeloma (NDMM) who are transplant-eligible, bortezomib/thalidomide/dexamethasone (VTd) is a standard of care (SoC) for induction and consolidation therapy. Clinical practice has evolved to use a modified VTd dose (VTd-mod; 100 mg thalidomide daily), which is reflected in recent treatment guidelines. As VTd-mod has become a real-world SoC, a matching-adjusted indirect comparison (MAIC) of the VTd-mod dose from recent clinical trials versus the dose included in the label (VTd-label; ramp up to 200 mg thalidomide daily) was performed to understand the effect on efficacy of modified VTd dosing for patients with NDMM who are transplant-eligible. Methods: For each outcome (overall survival [OS], progression-free survival [PFS], overall response rates [ORR] post-induction and post-transplant, and rate of peripheral neuropathy), a naïve comparison and a MAIC were performed. Data for VTd-label were obtained from the phase 3 PETHEMA/GEM study (Rosiñol L, et al. Blood. 2012;120[8]:1589-1596). Data for VTd-mod were pooled from the phase 3 CASSIOPEIA study (Moreau P, et al. Lancet. 2019;394[10192]:29-38) and the phase 2 NCT00531453 study (Ludwig H, et al. J Clin Oncol. 2013;31[2]:247-255). Patient-level data for PETHEMA/GEM and CASSIOPEIA were used to generate outcomes of interest and were validated against their respective clinical study reports; aggregate data for NCT00531453 were extracted from the primary publication. Matched baseline characteristics were age, sex, ECOG performance status, myeloma type, International Staging System (ISS) stage, baseline creatinine clearance, hemoglobin level, and platelet count. Results: Patients received VTd-mod (n = 591) or VTd-label (n = 130). After matching, baseline characteristics were similar across groups. For OS, the naïve comparison and the MAIC showed that VTd-mod was non-inferior to VTd-label (MAIC HR, 0.640 [95% CI: 0.363-1.129], P = 0.121; Figure 1A). VTd-mod significantly improved PFS versus VTd-label in the naïve comparison and MAIC (MAIC HR, 0.672 [95% CI: 0.467-0.966], P = 0.031; Figure 1B). Post-induction ORR was non-inferior for VTd-mod versus VTd-label (MAIC odds ratio, 1.781 [95% CI: 1.004-3.16], P = 0.065). Post-transplant, VTd-mod demonstrated superior ORR in both the naïve comparison and MAIC (MAIC odds ratio, 2.661 [95% CI: 1.579-4.484], P = 0.001). For rates of grade 3 or 4 peripheral neuropathy, the naïve comparison and MAIC both demonstrated that VTd-mod was non-inferior to VTd-label (MAIC rate difference, 2.4 [⁻1.7-6.49], P = 0.409). Conclusions: As naïve, indirect comparisons are prone to bias due to patient heterogeneity between studies, a MAIC can provide useful insights for clinicians and reimbursement decision-makers regarding the relative efficacy and safety of different treatments. In this MAIC, non-inferiority of VTd-mod versus VTd-label was demonstrated for OS, post-induction ORR, and peripheral neuropathy. This analysis also showed that VTd-mod significantly improved PFS and ORR post-transplant compared with VTd-label for patients with NDMM who are transplant-eligible. A limitation of this analysis is that unreported or unobserved confounding factors could not be adjusted for. Disclosures Sonneveld: Takeda: Honoraria, Research Funding; SkylineDx: Research Funding; Janssen: Honoraria, Research Funding; Celgene: Honoraria, Research Funding; BMS: Honoraria; Amgen: Honoraria, Research Funding; Karyopharm: Honoraria, Research Funding. Mateos:Janssen, Celgene, Takeda, Amgen, Adaptive: Honoraria; AbbVie Inc, Amgen Inc, Celgene Corporation, Genentech, GlaxoSmithKline, Janssen Biotech Inc, Mundipharma EDO, PharmaMar, Roche Laboratories Inc, Takeda Oncology: Other: Advisory Committee; Janssen, Celgene, Takeda, Amgen, GSK, Abbvie, EDO, Pharmar: Membership on an entity's Board of Directors or advisory committees; Amgen Inc, Celgene Corporation, Janssen Biotech Inc, Takeda Oncology.: Speakers Bureau; Amgen Inc, Janssen Biotech Inc: Other: Data and Monitoring Committee. Alegre:Celgene, Amgen, Janssen, Takeda: Membership on an entity's Board of Directors or advisory committees. Facon:Takeda: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Amgen: Membership on an entity's Board of Directors or advisory committees; Sanofi: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Celgene: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Hulin:celgene: Consultancy, Honoraria; Janssen, AbbVie, Celgene, Amgen: Honoraria. Hashim:Ingress-Health: Employment. Vincken:Janssen: Employment, Equity Ownership. Kampfenkel:Janssen: Employment, Equity Ownership. Cote:Janssen: Employment, Equity Ownership. Moreau:Janssen: Consultancy, Honoraria; Celgene: Consultancy, Honoraria; AbbVie: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; Takeda: Consultancy, Honoraria.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 390-390 ◽  
Author(s):  
Mark A. Schroeder ◽  
H. Jean Khoury ◽  
Madan Jagasia ◽  
Haris Ali ◽  
Gary J. Schiller ◽  
...  

Abstract Background: Corticosteroids are considered standard first-line systemic therapy for patients with aGVHD, but this approach is effective in only approximately half of all cases. For patients who progress or do not respond to corticosteroids, no specific agent has been identified as standard, and regimens are typically selected based on investigator experience and patient co-morbidities. In preclinical models, JAK inhibition has been shown to impair production of cytokines as well as the differentiation and trafficking of T cells implicated in the pathogenesis of aGVHD. Retrospective studies have suggested that JAK1/JAK2 inhibition with ruxolitinib treatment provides clinical benefit in patients with steroid-refractory GVHD (Zeiser et al, Leukemia 2015;29:2062-2068). Herein, we report preliminary safety results from a prospective randomized, parallel-cohort, open-label phase 1 trial evaluating the potent and selective JAK 1 inhibitor INCB039110 in patients with aGVHD. Methods: Male or female patients 18 years or older who underwent their first allo-hematopoietic stem cell transplant (HSCT) from any donor source and developed grades IIB-IVD aGVHD were eligible for the study. Patients were randomized 1:1 to either a 200 or 300 mg oral daily dose of INCB039110 in combination with corticosteroids, and were stratified based on prior treatment status (treatment-naive [TN] versus steroid-refractory [SR]). The primary endpoint of the study was safety and tolerability; secondary endpoints included overall response rate at Days 14, 28, 56, and 100, non-relapse mortality, and pharmacokinetic (PK) evaluations. Patients were assessed through Day 28 for dose-limiting toxicities (DLTs) and response. A Bayesian approach was used for continuous monitoring of DLTs from Days 1-28. Treatment continued until GVHD progression, unacceptable toxicity, or withdrawal from the study. Acute GVHD was graded according to MN-CIBMTR criteria; adverse events (AEs) were graded according to NCICTCAE v 4.03. Results: Between January and June 2016, 31 patients (TN, n=14; SR, n= 17) were randomized. As of July 25, 2016, data were available from 30 patients who received an oral daily dose of 200 mg (n=14) or 300 mg (n=16) INCB039110 in combination with 2 mg/kg methylprednisolone (or equivalent dose of prednisone). The median durations of treatment were 60.8 days and 56.5 days for patients receiving a daily dose of 200 mg and 300 mg INCB039110, respectively. One DLT of Grade 3 thrombocytopenia was reported. The most frequently reported AEs included thrombocytopenia/platelet count decrease (26.7%), diarrhea (23.3%), peripheral edema (20%), fatigue (16.7%), and hyperglycemia (16.7%). Grade 3 or 4 AEs occurred in 77% of patients and with similar frequency across dose groups and included cytomegalovirus infections (n=3), gastrointestinal hemorrhage (n=3), and sepsis (n=3). Five patients had AEs leading to a fatal outcome, including multi-organ failure (n=2), sepsis (n=1), disease progression (n=1), and bibasilar atelectasis, cardiopulmonary arrest, and respiratory distress (n=1); none of the fatal events was attributed to INCB039110. Efficacy and PK evaluations are ongoing and will be updated at the time of presentation. Conclusion: The oral, selective JAK1 inhibitor INCB039110 can be given safely to steroid-naive or steroid-refractory aGVHD patients. The safety profile was generally consistent in both dose groups. Biomarker evaluation, PK, and cellular phenotyping studies are ongoing. The recommended phase 2 dose will be selected and reported based on PK studies and final safety data. Disclosures Schroeder: Incyte Corporation: Honoraria, Research Funding. Khoury:Incyte Corporation: Membership on an entity's Board of Directors or advisory committees, Research Funding. Jagasia:Incyte Corporation: Research Funding; Therakos: Research Funding; Janssen: Research Funding. Ali:Incyte Corporation: Research Funding. Schiller:Incyte Corporation: Research Funding. Arbushites:Incyte Corporation: Employment, Equity Ownership. Delaite:Incyte Corporation: Employment, Equity Ownership. Yan:Incyte Corporation: Employment, Equity Ownership. Rhein:Incyte Corporation: Employment, Equity Ownership. Perales:Merck: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Seattle Genetics: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Incyte Corporation: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Chen:Incyte Corporation: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Research Funding. DiPersio:Incyte Corporation: Research Funding.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 886-886
Author(s):  
Partow Kebriaei ◽  
Matthias Stelljes ◽  
Daniel J. DeAngelo ◽  
Nicola Goekbuget ◽  
Hagop M. Kantarjian ◽  
...  

Abstract Introduction: Attaining complete remission (CR) prior to HSCT is associated with better outcomes post-HSCT. Inotuzumab ozogamicin (INO), an anti-CD22 antibody conjugated to calicheamicin, has shown significantly higher remission rates (CR/CRi and MRD negativity) compared with standard chemotherapy (SC) in patients (pts) with R/R ALL (Kantarjian et al. N Engl J Med. 2016). Pts treated with INO were more likely to proceed to HSCT than SC, which allowed for a higher 2-yr probability of overall survival (OS) than patients receiving SC (39% vs 29%). We investigated the role of prior transplant and proceeding directly to HSCT after attaining remission from INO administration as potential factors in determining post-HSCT survival to inform when best to use INO in R/R ALL patients. Methods: The analysis population consisted of R/R ALL pts who were enrolled and treated with INO and proceeded to allogeneic HSCT as part of two clinical trials: Study 1010 is a Phase 1/2 trial (NCT01363297), while Study 1022 is the pivotal randomized Phase 3 (NCT01564784) trial. Full details of methods for both studies have been previously published (DeAngelo et al. Blood Adv. 2017). All reference to OS pertains to post-HSCT survival defined as time from HSCT to death from any cause. Results: As of March 2016, out of 236 pts administered INO in the two studies (Study 1010, n=72; Study 1022, n=164), 101 (43%) proceeded to allogeneic HSCT and were included in this analysis. Median age was 37 y (range 20-71) with 55% males. The majority of pts received INO as first salvage treatment (62%) and 85% had no prior SCT. Most pts received matched HSCTs (related = 25%; unrelated = 45%) with peripheral blood as the predominant cell source (62%). The conditioning regimens were mainly myeloablative regimens (60%) and predominantly TBI-based (62%). Dual alkylators were used in 13% of pts, while thiotepa was used in 8%. The Figure shows post-transplant survival in the different INO populations: The median OS post-HSCT for all pts (n=101) who received INO and proceeded to HSCT was 9.2 mos with a 2-yr survival probability of 41% (95% confidence interval [CI] 31-51%). In patients with first HSCT (n=86) the median OS post-HSCT was 11.8 mos with a 2-yr survival probability of 46% (95% CI 35-56%). Of note, some patients lost CR while waiting for HSCT and had to receive additional treatments before proceeding to HSCT (n=28). Those pts who went directly to first HSCT after attaining remission with no intervening additional treatment (n=73) fared best, with median OS post-HSCT not reached with a 2-yr survival probability of 51% (95% CI 39-62%). In the latter group, 59/73 (80%) attained MRD negativity, and 49/73 (67%) were in first salvage therapy. Of note, the post-HSCT 100-day survival probability was similar among the 3 groups, as shown in the Table. Multivariate analyses using Cox regression modelling confirmed that MRD negativity during INO treatment and no prior HSCT were associated with lower risk of mortality post-HSCT. Other prognostic factors associated with worse OS included older age, higher baseline LDH, higher last bilirubin measurement prior to HSCT, and use of thiotepa. Veno-occlusive disease post-transplant was noted in 19 of the 101 pts who received INO. Conclusion: Administration of INO in R/R ALL pts followed with allogeneic HSCT provided the best long-term survival benefit among those who went directly to HSCT after attaining remission and had no prior HSCT. Disclosures DeAngelo: Glycomimetics: Research Funding; Incyte: Consultancy, Honoraria; Blueprint Medicines: Honoraria, Research Funding; Takeda Pharmaceuticals U.S.A., Inc.: Honoraria; Shire: Honoraria; Pfizer Inc.: Consultancy, Honoraria, Research Funding; Novartis Pharmaceuticals Corporation: Consultancy, Honoraria, Research Funding; BMS: Consultancy; ARIAD: Consultancy, Research Funding; Immunogen: Honoraria, Research Funding; Celgene: Research Funding; Amgen: Consultancy, Research Funding. Kantarjian: Novartis: Research Funding; Amgen: Research Funding; Delta-Fly Pharma: Research Funding; Bristol-Meyers Squibb: Research Funding; Pfizer: Research Funding; ARIAD: Research Funding. Advani: Takeda/ Millenium: Research Funding; Pfizer: Consultancy. Merchant: Pfizer: Consultancy, Research Funding. Stock: Amgen: Consultancy; Pfizer: Consultancy, Membership on an entity's Board of Directors or advisory committees; Seattle Genetics: Consultancy, Membership on an entity's Board of Directors or advisory committees. Wang: Pfizer: Employment, Equity Ownership. Zhang: Pfizer: Employment, Equity Ownership. Loberiza: Pfizer: Employment, Equity Ownership. Vandendries: Pfizer: Employment, Equity Ownership. Marks: Pfizer: Consultancy, Honoraria, Speakers Bureau; Amgen: Consultancy, Honoraria, Speakers Bureau.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 863-863 ◽  
Author(s):  
Robert M. Rifkin ◽  
Jason M. Melear ◽  
Edward Faber ◽  
William I. Bensinger ◽  
John M Burke ◽  
...  

Background: DARA, a human IgGκ monoclonal antibody targeting CD38, is approved in combination with bortezomib, melphalan, and prednisone (VMP) and bortezomib and dexamethasone (Vd) for newly diagnosed MM (NDMM) and relapsed MM (RMM), respectively. CyBorD is a commonly used immunomodulatory drug-sparing regimen for MM. In the LYRA (NCT02951819) study, DARA plus CyBorD (DARA-CyBorD) demonstrated efficacy and a tolerable safety profile at the end of induction. Here, we present updated findings examining the effect of monthly DARA maintenance on the efficacy and safety of DARA-CyBorD in NDMM and RMM. Methods: LYRA is an ongoing, single-arm, open-label, phase 2 study conducted at US community oncology centers. Patients (pts) were aged ≥18 years with documented MM per IMWG criteria, an ECOG performance score (PS) of 0-2, and ≤1 prior line of therapy. Pts received 4-8 induction cycles of DARA-CyBorD (cyclophosphamide 300 mg/m2 PO on Days 1, 8, 15, and 22; bortezomib 1.5 mg/m2 SC on Days 1, 8, and 15; and dexamethasone 40 mg PO or IV weekly [qw]) every 28 days. DARA was given at 8 mg/kg IV on Days 1 and 2 of C1, 16 mg/kg qw from C1D8 through C2, 16 mg/kg q2w for C3-6, and 16 mg/kg q4w for C7-8. After induction, eligible pts could undergo autologous stem cell transplantation (ASCT). All pts received up to 12 maintenance cycles with DARA 16 mg/kg IV q4w. Results: A total of 101 (87 NDMM, 14 RMM) pts were enrolled; 100 (86 NDMM, 14 RMM) pts received ≥1 treatment dose. Median age was 63 years; most pts were white (81%), male (64%), had ECOG PS 0-1 (94%) and had IgG (57%) MM; 36% of pts had high cytogenetic risk, defined as a del(17p), t(4:14) or t(14;16) abnormality. NDMM and RMM pts received a median of 6 and 8 cycles, respectively, of induction therapy. Thirty-nine NDMM pts and 1 RMM pt underwent ASCT. Fifty percent of pts received plerixafor; median stem cell yield for NDMM pts was 6.2 x 106 (range 2-15 x 106) CD34+ cells/kg. A total of 85 (75 NDMM, 10 RMM) pts received ≥1 dose of maintenance treatment; 63 (56 NDMM, 7 RMM) pts have received all 12 maintenance cycles. In NDMM pts, ORR was 87%, with 64% ≥VGPR and 12% ≥CR, by the end of induction. By the end of maintenance, ORR, ≥VGPR and ≥CR rates were 97%, 82% and 51% in NDMM pts who underwent ASCT and 83%, 70% and 30% in NDMM pts who did not receive ASCT. In RMM pts, ORR, ≥VGPR and ≥CR rates were 79%, 71% and 29% by the end of induction and 86%, 71% and 64% by the end of maintenance. At a median follow up of 24.8 mo in NDMM pts and 26.6 mo in RMM pts, median duration of response was not reached (NR). Median PFS (Figure) was NR in NDMM pts, regardless of transplant status, and was 21.7 mo in RMM pts; median OS was NR in NDMM pts and was 30.1 mo in RMM pts. In NDMM pts the 24-mo PFS rate was 89% in pts who underwent ASCT and 72% in pts who did not receive ASCT. The 24-mo OS rate was 90% for NDMM pts. In RMM pts, the 24-mo PFS and OS rates were 48% and 64%, respectively. All treated pts had ≥1 TEAE. Common TEAEs (≥25%) included fatigue, nausea, cough, diarrhea, upper respiratory tract infection, back pain, vomiting, insomnia, dyspnea, constipation, and headache. Grade 3/4 TEAEs were reported in 62% of pts; the most common (≥10%) was neutropenia (14%). Serious TEAEs occurred in 33% of pts; the most common (&gt;2%) were pneumonia, atrial fibrillation and pulmonary embolism. TEAEs led to permanent treatment discontinuation in 7% of pts, with 2% related to treatment. TEAEs resulted in death in 2 pts (nephrotic syndrome, sudden death); both unrelated to treatment. Infusion reactions (IRs) occurred in 56% of pts including grades 1-2 in 52% of pts, grade 3 in 3% of pts and grade 4 in 1% of pts. Most common (&gt;5%) IRs were chills, cough, dyspnea, nausea, pruritus, flushing and nasal congestion. Conclusion: Maintenance with DARA monotherapy for 12 mo increased the &gt;CR rate in NDMM and RMM pts, consistent with observations in prior studies that longer DARA treatment improves depth of response. Importantly, the increase in ≥CR rate was associated with durable PFS and OS. The 24-mo PFS rates in NDMM and RMM pts compare favorably with results for DARA-VMP and DARA-Vd in NDMM and RRMM, respectively. Safety profile was consistent with previous reports of DARA, with no new safety concerns observed with longer follow-up. These data indicate that DARA-CyBorD is a safe, effective MM treatment and that DARA maintenance increases depth of response and achieves durable remissions. Disclosures Rifkin: Amgen: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees. Melear:Texas Oncology: Employment; DARA: Speakers Bureau. Faber:Cardinal Health: Consultancy, Honoraria; Celgene: Consultancy, Honoraria; Janssen: Consultancy, Honoraria; Kite: Consultancy, Honoraria; Amgen: Consultancy, Honoraria. Bensinger:Amgen, Celgene: Other: Personal Fees, Research Funding, Speakers Bureau; Takeda, Janssen: Speakers Bureau; Sanofi, Seattle Genetics, Merck, Karyopharm: Other: Grant. Burke:Gilead: Consultancy; Celgene: Consultancy; Roche/Genentech: Consultancy. Narang:Celgene: Speakers Bureau. Stevens:Astellas: Consultancy. Gunawardena:Janssen: Employment, Equity Ownership. Lutska:Janssen: Employment. Qi:Janssen: Employment. Ukropec:Janssen: Employment, Equity Ownership. Qi:Janssen: Employment. Lin:Janssen: Employment, Equity Ownership. Yimer:Amgen: Consultancy; Clovis Oncology: Equity Ownership; Puma Biotechnology: Equity Ownership; Celgene: Honoraria; Seattle Genetics: Honoraria; Janssen: Speakers Bureau; AstraZeneca: Speakers Bureau.


Sign in / Sign up

Export Citation Format

Share Document